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In this article, we familiarize a subclass of Kamali-type starlike functions connected with limacon domain of bean shape. We
examine certain initial coefficient bounds and Fekete-Szeg6 inequalities for the functions in this class. Analogous results have
been acquired for the functions f~' and &/f(£) and also found the upper bound for the second Hankel determinant a,a, — a2.

1. Introduction

Denote by & the class of analytic functions

&) =E+a,8 +a +-, (1)
in the open unit disk U = {£ : |£|<1}. The Hankel determi-
nants %;(n), (n=1,2,3,--5j=1,2,3,---) of f are denoted by

ay Ape1r - - Apijo
% (n) = Aps1 Apyp - - Oy ’ 2)
Anij-1 Gnj - - Opi2j

where a, = 1. Hankel determinants are beneficial, for exam-
ple, in viewing that whether the certain coefficient func-
tionals related to functions are bounded in U or not and
do they carry the sharp bounds, see [1]. The applications
of Hankel inequalities in the study of meromorphic func-
tions can be seen in [2, 3]. In 1966, Pommerenke [4]
inspected |#;(n)| of univalent functions and p - valent

functions as well as starlike functions. In [5], it is evidenced
that the Hankel determinants of univalent functions satisfy

|%j(n)| < kn~((V2)p)j+312 (n=1,2,3,-3j=1,2,3,--),

(3)

where §>0.00025 and k depends only on j. Later, Hayman
[6] demonstrated that |7,(n) | <AY?, (n=1,2,3,--; A an
absolute constant) for univalent functions. Further, the
Hankel determinant bounds of univalent functions with a
positive Hayman index « were determined by Elhosh [7], of
p-valent functions were seen in [8-10], and of close-to-convex
and k-fold symmetric functions were discussed in [11]. Lately,
several authors have explored the bounds |#;(n)|, of func-
tions belonging to various subclasses of univalent and multiva-
lent functions (for details, see [6, 12-27]). The Hankel
determinant #,(1) = a; — a3 is the renowned Fekete-Szegd
Functional (see [28, 29]) and H,(2); second, Hankel determi-
nant is presumed by %, (2) = a,a, — a3.

An analytic function f, is subordinate to an analytic
function f,, written as f, < f,, if there is an analytic function
w : U — U with w(0) =0, satisfying f, (&) = f,(w(¥)).
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Let & be the class of functions with positive real part
consisting of all analytic functions p: U — C satisfying
p(0) =1 and Rep(z) > 0.

Ma and Minda [30] amalgamated various subclasses of
starlike and convex functions which are subordinate to a
function v € P with w(0) =1,y (0) >0,y maps U onto a
region starlike with respect to 1 and symmetric with respect
to real axis and familiarized the classes as below:

§'()
f&)

_ R
{fegzi.1+ G <1//}.

5*(1//):{]"652{: <w}and%(w)

(4)

By choosing v satisfying Ma-Minda conditions and that
maps U on to some precise regions like parabolas, cardioid,
lemniscate of Bernoulli, and booth lemniscate in the right-
half of the complex plane, several fascinating subclasses of
starlike and convex functions are familiarized and studied.
Raina and Soko¢t [31] considered the class 8™ (y) for y(z)
=&+ /1 +&* and established some remarkable inequalities
(also see [32] and references cited therein). Gandhi in [33]
considered a class §* (y) with v = Be* + (1 - B)(1+&), 0<
B <1, a convex combination of two starlike functions. Fur-
ther, coeflicient inequalities of functions linked with petal
type domains were widely discussed by Malik et al. ([34],
see also references cited therein). The region bounded by
the cardioid specified by the equation

(9x% +9y” — 18x + 5)2 -16(9x* +9y* —6x+1) =0, (5)

was studied in [35]. Lately, Masih and Kanas [36] intro-
duced novel subclasses ST} ) and CV of starlike and con-
vex functions, respectively. Geometrically, they consist of

functions f € A such that &f'(§)/f(&) and (§f' (&))" /£ (&),

respectively, are lying in the region bounded by the limacon

[(u—1)2+v2—s4]2:452[(u— 1 +52)2+v2},

(6)

1
where0 < s< 7

Lately, Yuzaimi et al. [37] defined a region bounded by
the bean-shaped limacon region as below:

Q(U)={w=x+iy: (49c2+4y2—8x—5)2
+8(4x% + 457 — 12x - 3) :0},56 -1,1]\ {0}.
(7)
Suppose that

9(&): U—C, (8)
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is the function defined by
1
pE)=1+VEE+ 28, ©)

is preferred so that the limacon is in the bean shape [37].
Motivated by this present work and other aforesaid articles,
the goal in this paper is to examine some coeflicient inequal-
ities and bounds on Hankel determinants of the Kamali-type
class of starlike functions satisfying the conditions as given
in Definition 1.

Definition 1. Let ¢ : U — C be analytic and for 0<9<1,
we let the class (9, ¢) as

(9, 9) = {f cu TSE) (29 OF 8 ()
9Ef (&) + &' (§)

<€), &€ U},

where (&) =1+ v/2& + (1/2)€ as in (9).

We include the following results which are needed for
the proofs of our main results.

Lemma 2 see [38]. Suppose that p(£) =1+ c,&+c,& + -+,
R(p,;) >0, &€ U, then

l,| <2(n=1,2,3,-+),

(11)

{cz—vcﬂ <2max {1, |2v-1]},

and the outcome is sharp for the functions formulated by

2

o= 15
-5 (12)

=105

Lemma 3 see [30]. Suppose that p,(E) =1+ c,&+c,& + -+,
R(p,) >0, &eU. Then,

(i) For v< 0 orv> 1, we have

—v+2 ifv<o,
Icz—vcils 2 ifo<v<l, (13)
-2 ifv>1

Equality occurs when p,(§) = (1+&)/(1-&) or one of its
rotations.

(ii) For v € (0,1), the equality exists when p,(&) = (1+
E)1(1-E) or one of its rotations

(iii) For v =0, the equality happens when
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/1 1+¢ 1.\1-&
= (b 10) 26 (1 10) s
(14)

or one of its rotations.

Lemma 4 see [39]. If p € P and is given by p(§) =1+ ¢, &+
& + - then

2y 4x(4-), (15)
des=c]+2(4—c))ex—c (4— )+ 2(4— ) (1 - [x[¥),
(16)

for some x,& with |x | <I and & | <1.
Theorem 5. Let the function f € M (9, @) be given by (1) then

|a,| < S »
V2(9+1)
(17)

as =2 {11 S Vo3
G529+ T\ G T 12@0w 0y

Proof. Since f € M(9, ¢), there exists an analytic function w
with w(0) =0 and |w(§) | <1 in U such that

9f" (&) + (1+29)f"(€)F +&f'(§) _
98’1 (&) + &' (®)

Define the function p, by

&)= 1tz§g :1+51£+62E2+C3fg+“" (19)
or, equivalently
pi(§)-1
R AGES
1 AN .o N L3
=5 {c1£+ (cz— E) + <c -6+ —)E + ]
(20)

then p, is analytic in U with p,(0) =1 and has a positive real
part in U. By using (20) together with (9), it is evident that

@) =p(BG ) -1+ %o (- (o= 9) 4 Do

. 1 +c§ La a 5
— (¢ -2
\/z 3 1%2 4 4 2 2

(1)

3
Since
9°f"(§) + (1+29)f "' (§)8 +&f' (8)
98’ f(§) +&f'(§)
=1+2(9+ 1)ayt + (-4(9+1)%a3 + 6(29 + 1)a,) &
+ [8(9+1)°a — 18(29 + 39+ 1) ayay + 12(39+ 1)a, | &+
(22)

and equating coeflicients of &, £, 8 from (21) to (22), we get

o

229+ 1) (23)

a, =

a;= m {cf G - \/E> + 2\/Ec2], (24)

~ 1 (11
a, = m [cl (ﬁ 8) +4(2 \/i)clcz +8\/§c3]
(25)
Now by applying Lemma 2, we get
1
ay|= ——, 26
1= Zoem (26)
and also,
= gy V24 (5 -2
2
_ V2| d( 5 (27)
12(29+1) 2 22
V2
209+ 1|c2 xct,

where x = 1/2(1 - (5/21/2)). Now by applying Lemma 2, we
get

5 5
. {1’|2ﬁ | } T 12(29+1) (28)

To show these bounds are sharp, we define the function

la,| < V2
6(29+1)

Ky (8), ¢, =q(&" ") (n=2,3,4,--) with K (0)=0=K, (0)
—-1by
3 ! ! 2 !
9K, (&) +2(1 ' 29)K¢n(£l)§ +EKy (&) —y (E’“). (29)
987K, (§) + €K, ()

Clearly, the function K, € .#(9, ¢). This completes the
proof. O
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4
Theorem 6. Let the function f € M (9, ¢) be given by (1) and ~ where for convenience
for any @ € C then
(5—2\/5)(1 +9)
0, = ,
2 5 3(20+1 3(1+29
|a3—wa§|£9Lmax{l,|——+(D(—+)2|} ( )
6(29+1) 22 V209+1) (5+2\/§)(1+9)z (35)
(30) 6, 3(1+29)
s (191429, 1
a5 = ] + 1+29 21" < 329y

Proof. Let the function f € .#(9,¢) be given by (1), as in

Theorem 5, from (23) to (24), we have
If 65 <u<d,, then

o V2 [ ot (1 > ﬂ @ o 92 9
a3 —WhHh=—- o |2 5\ T &) |~ 3(1+9) = (1+29)pu
12(29+1 2 22 8(9+1)° - ud’ 2 :
( ) V2 ( ) la; — pas| + T35 |a,|” < 31+ 29) (36)
V2 a 5 329+1)
=——|6-—=|1- +®
12(29+1) 2 2V2 V2(9+1)° These results are sharp.
= L [Cz _ ch], Proof. Between (23) and (24) and (31), we have
12(29+1)
(31) . — @a® = V2 c—ﬁ 1_i -® C§
PO+ [T 2 22 8(9+1)°
where  N=1/2(1- (5/2v2) + ®(3(29+ 1)/v2(9 + 1))). _ V2| af, 5(9+1) -30(29+1)
Now by Lemma 2, we get 1229+1) | > 2 2/2(9+1)
2
__ V2 6, hct],
0y - ad?| < V2 max d 1 L5 L 5309+ 12(29+1)
PO 629+ 1) 2v2 V2| (37)
(32)  here = 1/2(1- ((5(9+ 1) = 30(20 + 1))/2v2(9 + 1)%)).
0 Our result now follows by virtue of Lemma 3. To show that
these bounds are sharp, we define the function K, (n=2,3,
The result is sharp. ) by
In particular, by taking @ = 1, we get
K 5 (§) + (1+29)K,/ ()8 +EK, (§) (5”’1)
)

9K, () + 8K, (8)
Ky (0)=0=K, (0)-1,

a —a2|<imax l|—i+ 329+1)
P69+ 1) BENV-RRVCTCESIER &

(33) and the functions F, and G, (0 <n<1) by

9EFy(E) + (1+29)F)(£)E + EF)(§) _¢(€(€+f1)>F (0)
n

Theorem 7. Let the function f € o be given by (1) belongs to
heclss9,9)(0 202 1). Thn, o any el b e WG aE VIR
=0=F(0)-1,
2
f;;s 9+>1)(j<+1;)§9>@ <o, G + (L 29GOE +EG(E) _ ¢(—s<s+n>>G )
: V2 SEGJ(€) +EG(&) teng )
la; — pa?| < 5T 8, <u<é, =0=G,(0) - 1.
3(1+29)@-5(1+9)7° ¢ »
12(29+ 1)(1+9)? et Clearly, the functions K, =@(E""), F,, G, € .4(9,¢).

(34)  Also, we write Ky=Kg =1+ V2E+ (112)E. If u< &, or p
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> 8,, then the equality holds if and only if f is K, or one of its
rotations. When &, < p < §,, then the equality holds if and
onlyiffis K, = @(E%) =1+ /28 + (1/2)€* or one of its rota-
tions. If 4 = &}, then the equality holds if and only if f is F, or

one of its rotations. If y =§,, then the equality holds if and
only if f is G, or one of its rotation. |

2. Coefficient Estimates for the Function f~'

Theorem 8. If f € #(9,¢) and [ (w)=w+YX,d,w" is
the inverse function of f with |w| <r, where r, is the greater
than the radius of the Koebe domain of the class M (9, ),
then for any complex number y, we have

1
s ey
L V2 . 59+ 1) +12(29+ 1)
4 sogv D “{1" 230+ 1) }

(40)

Also, for any complex number y, we have

2
|d, — ud?| < V2w {1,|

59+ 1)+ (12+6u)(29+1)
6(29+1) e

2729+ 1Y
(41)

The result is sharp. In particular,

2 V2 . 5(9+1)2 +18(29+ 1)
G S ™ {1" 20417 }
(42)
Proof. Since
flw) =w+ OZO: d,w", (43)
is the inverse function of f, we have
@) =f(f) =& (44)

From equations (23) to (24), we get
E+(ay+dy)E + (ay +2aydy +d3)E + - =&, (45)

Equating the coeflicients of £ and & on both sides of (45)
and simplifying, we get

1

d = - = N
W TE I

¢ V2 c 5
=242 —a., = 1 - e O O
=20~ 1~ i (23 (1 23

V2 C_cf L5 6(29+1)
SR 20 2v2 Va1

2 l cf(l 5(9+1)2+12(29+1)>]
= 7) (:2—E - .

12(29+1 2v2(9+1)?
(46)
By applying Lemma 2, we get
1
d S =
s o
2
d,) < V2 max 1. 5(9+1) +12(2§)+1) '
6(29+1) 2/2(9+1)

(47)

For any complex number y, consider

- V2 ¢ 5(9+ 1) +12(29+1)
d3_‘”d2__12(29+1) {Cz_i<1_ 229+ 1) )}
C? _ V2 ¥ 2
“Hsaeep T ey 2 Pab
(48)
where
L1 59+ 1) +3(4+u)(29+1)
P=3 (1 2V2(9+ 1) ) 49)

Taking modulus on both sides of (49) and applying
Lemma 2, we get the estimate as stated in (41). This com-
pletes the proof of Theorem 8. O

3. The Logarithmic Coefficients

The logarithmic coeflicients e, of f defined in U are given by
log JF(TE) =2 Z e, " (50)
n=1

Using series expansion of log (1+&) on the left hand
side of (50) and equating various coeflicients give

€ == (51)

1 a2
&=3 (a3 - f) (52)

Theorem 9. Let f € M(9, ) with logarithmic coefficients
given by (51) and (52). Then,



1
le;|l s ———

2V/2(9+1)
509+ 1)°+3(29+1)
2V/2(9+ 1)

V2
Ve 1,
o2l s ™=

and for any v € C, then

\/5 ) max {1,

59+ 1)+ (3+v)(29+ 1)
2729+ 1)°

2
e, — Ve[| S ————
2~ vel 12(29+1

}.

(54)

These inequalities are sharp. In particular, for v=1, we

get

2
e,—ejl < L max {1,
+1)
(55)

59+ 1) +4(29+1)

2V/2(9+ 1)

Proof. Using (23) and (24) in (51) and (52) and after simpli-
fication, one may have

e = INCTERIE (56)

V2 l g (1_ 5(9+1)2+3(29+1)>]

e,.=— |cC —
27 24(29+1) 2 2v2(9+1)?

(57)

To determine the bounds for e,, we express (57) in the
form

V2 .
€= m[cz—# Cﬂ’ (58)
where
e [, 50+1)?+3(29+1)
(i),

then by applying Lemma 2, we get

V2 ax {1,

o] < 59+1)°+3(29+1)
= nevrn "

2v2(9+1)

}. (60)
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For any v* € C, from (56) to (57), we have

. V2 lc _c§<1_5(9+1)2+3(29+1)>]

U 24029+1) |7 2 2v2(9+1)
a2

v32(9+ 1) 24(29+1)

e G 1_5(9+1)2+(3+v)(29+1)
P2 2V2(9+1)

e, —ve

_ \/E * 2
= m[CZ_MICI]’

(61)

where

L1 5(0+1)7+(3+v)(29+1)
(1 2V2(9+ 1) ) (©2)

An application of Lemma 2 gives the desired estimate. [

4. Coefficients Associated with &/f ()

In this section, we determine the coeflicient bounds and
Fekete-Szego problem associated with the function H(§)
given by

H(&) = f(Ef) =1+ Ozo;unE”E eU), (63)

where f € (9, ¢).

Theorem 10. Let f € #(9, ) and H(E) are given by (63).
Then

1
U< —=-,
il V2(9+ 1)
2
|uz|s6L ax{],

5 3(29+1)
29+1) "

_m ’ \/§(S+1)2

(64)

The results are sharp.

Proof. By routine calculation, one may have

Ea

HO=15

=1 _a2£+ (ai —33)52 + (a; +2a,a,4 —a4)f3 o

(65)

Comparing the coefficients of £ and & on both sides of
(63) and (65), we get

Uy =—a,, (66)
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U, =a; —a;. (67)
Using (23) and (24) in (66) and (67), we obtain

. (68)

2V2(9+1)
By Lemma 2, we get

1
| < —=——r (69)

V2(9+1)

c 5
8(9+1) 12(29+1) [CZ_ E(l_ z\—ﬁﬂ
W2 lc_ﬁ<l_ 5, 3(29+1)>]
12(29+1) | > 2 2V2 V2(9+1)
V2

_ _NgE 2
C12(29+1) [ =a],

(70)

where  R*=1/2(1 - (5/2v/2) + (3(29+ 1)3/v/2(9 + 1)%)).
Again by using Lemma 2, we get

V2 B 3(29+1)
|u2|£6(29+1)max{1,| 2\/§+\/§(9+1)2|}. (71)

For any v € C, between (68) and (70), we get

u —vuz:—i\/5 lc —C%<1—5+3(29+1)>]

O 1229+ 1) |2 2 2V2 V2(9+1)
q V2

Y89+ 1) 12(29+1)

. [C _c§<1_5+ 3(1—v)(29+1)>

22 2V/2 V2(9+1)?

3(29+ 1) ] - V2
BT

+yv—— 7 = [, -N*2.
4/2(9+1) 29+1) [e2 = Nic)
(72)
That is,
lu, —vul| = ! C = (73)
2 U202+ 1
where

L1050 3(1-v)(29+1)
N1—§<1 2\/§+ NCTCERY: ) (74)

The result follows by application of Lemma 2 and there-
fore completes the proof. O

5. Second Hankel Inequality for f € ./Z(9, ¢)

Theorem 11. Let the function f € M (9, ) be given by (1),
then

1

18(29+1)%° 75)

aa, — a3 <

Proof. Since f € (9, @), there exists an analytic function w
with w(0) =0 and |w(&) | <1 in U such that,

S () + (L+29)f"()E +Ef'(§)
9E°f"(§) + &f' )

=9(w(g)).  (76)

Therefore, between (23), (24), and (25), we get

2 =2 22
a,a,—a;= ﬁ\/; [c‘f{(&‘)z +49+1) (? + 4)

—L(392+49+ 1) + (129 +49+1)

3v2
(-2 1\ 2V2(49+1)
()25
2¢

+

2
;Cl {2(129 +49+ 1) +4(69 +49 +1)

. <_\/§ . %) }+8\/§c1c3(29 F1y?

- 167\/565(392+49+ 1)]

3

(77)
By writing
o2 (78)
O+1)(39+1)
4{(1892+89+2) —2\/5(692+49+1)} 9)
2T 39+ 1)(39+ 1)(29+ 1)?
dy— - 1OV2 (50)
3(29+1)



d,= ! 2{(6,92+4‘9+1)<_—2+&>
(O+1)(39+1)(29+1) 3 3

-(39° +49+ 1>§§ + (128" +49+1) <_2 + 1)

3 3vV2
_2\/5(49+1)}: 1

3 O+ 1)(39+1)(29+1)°
_ (28—16\592_29_%)

3v2 3 3
(81)
and T = /2/768, we have
|aya, — a3| = T|d,c,c5 + dycicy + dycs + dycf. (82)

From (15) to (16), it follows that

aya, - a3| = % |c*(d) +2d, +d; + 4d,) + 2x (4 - )
(dy+dy+dy) + (4= )P (-d P +dy(4- )
+2d,c(4- ) (1-[x]%)].
(83)

Replacing |x| by ¢ and then substituting the values of
d,,d,, ds, and d, from (81) yield

T
4(9+1)(39+1)(29+1)?

B 4
3v2

cc(4-)(1- ) +2uc (4- &)

- (g (129 +49+1) + 2(692 +49 + 1))

8v2

- (4-2) (3 (69 +49+1)c

|aya, —a3| <

4
(49+1)+?@(1292+49+1)

(9+1)(39+1)

+16vV2(29+ 1)

+ M3£(39+ D9+ 1))]

-2V2(49+1) + \%

B T ct
9+ 1)(39+ 1)(29+1)? {?
1
V2
+4V2(29+ 1)7c(4- ) - 4V2(29+ 1)

- (128° +49+1) (9+1)(39+1)

(4=t + %ptcz(4—c2)(2(1292 +49+1)
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+ (1297 +89+2)) - %i‘uz@—cz) (3(69° +49+1)

T
O+ 1)(39+1)(29+1)*

+8(392+49+2))] =

ct 9 2
'[g“Z\/E(‘LS”“ ﬁsz +4v2(29+ 1)’ c(4- &)

+ %[,tcz(4—cz)(3692+169+4) - ¥y2(4—c2)

(P (69 +49+1) +6(29+ 1)°c+ 8(39 + 49+ 2))

= F(c, 4, 9).
(84)

Differentiating F(c, u, 9) in (84) partially with respect to
u yields

BF_ T 1 204 2
" T T {3c (4- &) (36% + 169+ 4)
_4;75#(4— ) (C (65 +49+1) +6(29+ 1)

+8(39° + 49+ 2))} .
(85)
It is clear from (85) that 0F/du > 0; thus, F(c, u, 9) is an
increasing function of y for 0 < p < 1 and for any fixed c with
0 < ¢ < 2. So, the maximum of F(c, g, 9) occurs at =1 and

max F(c, , 9) = F(c, 1,9) = G(c, 9). (86)

Note that

G(c,9) =

T A
O+1)(39+1)(29+ 1)2 |:§ <’_2\/i(49+ 1)

11
V2 V2
1

—2(1292+49+1)—E(2492+169+4)
8
+2\/§(1+49+692))+§c2((1292+49+1)

+ (1287 +49+1) (9+1)(39+1)‘

+(1297 +89+2) - V2(129 +89+2))

T
(9+1)(39+1)(29+1)

64v/2
T3

C4
15
+2v/2(1+49+ 692)) + 28(3(892 +49+1)
64v/2
3

B9+ 1)(9+ 1)] =

2

—2\/5(49 +1)+ %

—4(99 +49+1)

-V2(129 +89+2)) + (39+1)(9+1)].

(87)
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Differentiating G(c, 9) partially with respect to ¢ yields

G'(c,9) = “2V2(49+1) + ——

V2

T 4c 99*
(9+1)(39+1)(29+1)7 | 3
—4(99° +49+1) +2v2(1 +49+692))

+ %& (3(89% +49+1)-v2(128 + 89+2))] :

(88)
If G'(c, 9) = 0 then its root is ¢ = 0. Also, we have

L 4c
O+ 1)(39+1)(29+1)°

-4(99" +49+1+22V2(1 +49+692)>

G'"(c,9) =

—2\/5(49 +1)+ %‘

+ %6 (3(89% +49+1)-v2(128 +89+2))}
(89)

is negative for ¢ =0, which means that the function G(c, 9)
can take the maximum value at ¢ =0, also which is

1

-d|<G(0,9)= — .
la,, = 3] < G(0,9) 18(29+1)*

(90)
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