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The oscillation of even-order nonlinear differential equations (NLDiffEqs) with mixed nonlinear neutral terms (MNLNTs) is
investigated in this work. New oscillation criteria are obtained which improve, extend, and simplify the existing ones in other
previous works. Some examples are also given to illustrate the validity and potentiality of our results.

1. Introduction

Recently, numerous research studies have been carried out
concerning the oscillatory behavior of the differential equa-
tions with a linear neutral term. Some previous notable stud-
ies include the investigation of even-order quasilinear neutral
functional differential equations’ oscillation (DEqsOs) [1]
(see also [2–4]), 3rd-order neutral delay dynamic equations
on time scales [5], 2nd-order nonlinear neutral delay differ-
ential equation solutions’ asymptotic behavior [6] (see also
[7]), and 2nd-order superlinear Emden-Fowler neutral DEq-
sOs [8]. On one hand, higher-order neutral delay DEqsOs
was studied in [9]. On the other hand, even-order of DEqsOs
and nonlinear neutral DEqsOs with variable coefficients were
investigated in [10, 11], respectively. A neutral functional
delay differential equation was investigated in the sense of
fractional calculus [12] (for more information about the
applications of fractional calculus, refer to [13]).

However, differential equations’ oscillation with nonlin-
ear neutral terms has been rarely studied in literature. For
the case of differential equations with a sublinear neutral
term [14–16], Grace et al. [17] proposed differential equa-
tions with both sublinear and super-linear neutral terms,
where a second-order half-linear differential equation of the
following form was investigated:

r tð Þ y n−1ð Þ tð Þ
h iα� �

′ + q tð Þxγ τ1 tð Þð Þ = 0, ð1Þ

where n > 0 is an even integer, and

y tð Þ = x tð Þ + p1 tð Þxβ τ2 tð Þð Þ − p2 tð Þxδ τ2 tð Þð Þ: ð2Þ

From Equations (1) and (2), the following are assumed:
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(i) α, β, γ, and δ are the ratios of two positive odd inte-
gers with α ≥ 1

(ii) p1, p2, q : ½t0,∞Þ⟶ℝ+ are continuous functions

(iii) τk : ½t0,∞Þ⟶ℝ are continuous functions; τkðtÞ
≤ t and τkðtÞ⟶∞ as t⟶∞ for k = 1, 2

(iv) hðtÞ = τ−12 ðτ1ðtÞÞ ≤ t, and hðtÞ⟶∞ as t⟶∞

Let us suppose that

A∗ t, t0ð Þ≔
ðt
t0

t − sð Þ n−2ð ÞA s, t0ð Þds⟶∞as t⟶∞, ð3Þ

for which

A t, t0ð Þ≔
ðt
t0

r−1/α sð Þds⟶∞ as t⟶∞: ð4Þ

A continuous function x satisfying Equation (1) on
½t∗,∞Þ, t∗ ≥ t0, is said to be a solution of Equation (1)
on ½t∗,∞Þ where yðtÞ is defined in (2). We only con-
sider those solutions x of (1) which satisfy

sup x tð Þj j: t ≥ t∗f g > 0 for all t∗ ≥ t∗: ð5Þ

A solution x of (1) is said to be oscillatory if there
exists a sequence fξng such that xðξnÞ = 0 and

lim
n⟶∞

ξn =∞: ð6Þ

Otherwise, it is called nonoscillatory. Equation (1) is
said to be an oscillatory (or nonoscillatory) equation if
all its solutions are oscillatory (or nonoscillatory).

According to the best of our knowledge, the higher-order
differential equations with nonlinear neutral terms have not
been studied yet in any other research work. Inspired by
the above studies, the oscillation of the proposed differential
equations in (1) is investigated in this paper. New oscillation
results for Equation (1) are obtained by comparing with the
first-order delay differential equations whose oscillatory
characters are well-known via an integral criterion. All results
in this work are totally new, and more general oscillation
results can be obtained by extending our obtained results to
more general differential equations with both sublinear and
super-linear neutral terms. As a result, a special research
interest is hopefully stimulated from our work for possible
general investigation of various neutral differential equations’
classes, particularly the ones with sublinear and/or super-
linear neutral terms.

This article consists of the following sections: our main
results are investigated in Section 2. Two illustrative exam-
ples are given in Section 3. Then, a short conclusion of our
work is provided in Section 4.

2. Main Results

Some oscillation criteria for Equation (1) are studied when
β < 1 and δ > 1.

To obtain our results, the following lemma is needed:

Lemma 1 ([5]). Let X and Y be two nonnegative real num-
bers. Then, the following inequality is obtained:

Xλ + λ − 1ð ÞYλ − λXYλ−1 ≥ 0 for λ > 1,
≤ 0 for 0 < λ < 1,

(
ð7Þ

where equality holds if and only if X =Y .
In what follows, we let

g1 tð Þ≔ 1 − βð Þββ/ 1−βð Þpβ/ β−1ð Þ tð Þp1/ 1−βð Þ
1 tð Þ,

g2 tð Þ≔ δ − 1ð Þδδ/ 1−δð Þpδ/ δ−1ð Þ tð Þp1/ 1−δð Þ
2 tð Þ,

Q tð Þ≔ q tð Þ p2 h tð Þð Þ½ �−γ/δ,

ð8Þ

for t ≥ t1 for some t1 ≥ t0, where p : ½t0,∞Þ⟶ ð0,∞Þ is a
continuous function.

Theorem 2. Let β < 1 and δ > 1, conditions (i)-(iv), and (3)
hold, and let p ∈ Cð½t0,∞Þ, ð0,∞ÞÞ such that

p2 tð Þ ≠ 0 is bounded and lim
t⟶∞

g1 tð Þ + g2 tð Þ½ � = 0, ð9Þ

and the equation

z′ tð Þ + Cq tð ÞAγ τ1 tð Þð Þzγ/α τ1 tð Þð Þ = 0, ð10Þ

is oscillatory for all constant C > 0. Let us assume that there
exist constants μi, i = 1, 2, 3, and φ ∈ ð0, 1Þ such that

1 ≤ μ1 ≤ μ2 ≤ μ3, ð11Þ

μ3h tð Þ ≤ t, ð12Þ
and the equations

Z ′ tð Þ +Q tð Þ μ2 − μ1ð Þn−2
n − 2ð Þ! hn−2 tð ÞA μ3h tð Þ, μ2h tð Þð Þ

( )γ/δ

Zγ/ αδð Þ μ3h tð Þð Þ = 0,

X ′ tð Þ +Q tð Þ φ μ2 − μ1ð Þ
n − 2ð Þ! hn−1 tð Þ

� �γ/δ
Xγ/αδ μ2h tð Þð Þ = 0,

ð13Þ

are oscillatory, and

ð∞
t0

Q sð Þ A∗ h sð Þ, t0ð Þ½ �γ/δds =∞: ð14Þ

Then, every solution xðtÞ of Equation (1) is oscillatory, or

lim
t⟶∞

x tð Þ =∞: ð15Þ
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Proof. Without loss of generality, the solution xðtÞ of
Equation (1) is assumed to be positive and xðτ1ðtÞÞ > 0
for t ≥ t1 for some t1 ≥ t0 (i.e., a nonoscillatory solution).
From Equation (1), we have the following: xðτ2ðtÞÞ > 0and

r tð Þ y n−1ð Þ tð Þ
h iα� �

′ = −q tð Þxγ τ1 tð Þð Þ ≤ 0: ð16Þ

Hence, rðtÞ½yðn−1ÞðtÞ�α is nonincreasing with a constant
sign. Namely, yðn−1ÞðtÞ > 0 or yðn−1ÞðtÞ < 0 for t ≥ t2 for some
t2 ≥ t1, so the following four cases are examined separately:

(a) yðtÞ > 0 and yðn−1ÞðtÞ < 0

(b) yðtÞ > 0 and yðn−1ÞðtÞ > 0

(c) yðtÞ < 0 and yðn−1ÞðtÞ > 0

(d) yðtÞ < 0 and yðn−1ÞðtÞ < 0

Let us first consider the case (a). Since yðn−1ÞðtÞ < 0 for
t ≥ t2, we obtain the following:

r tð Þ y n−1ð Þ tð Þ
h iα

≤ −c, ð17Þ

for some positive constant c, i.e.,

y n−1ð Þ tð Þ ≤ −
c

r tð Þ
� �1/α

, ð18Þ

for t ≥ t2. Integrating the last inequality ðn − 1Þ-times and
by condition (3), we conclude that

lim
t⟶∞

y n−1ð Þ tð Þ = −∞, ð19Þ

which is a contradiction.
Next, let us consider the case (b). It is obvious that

y tð Þ = x tð Þ + p tð Þx τ2 tð Þð Þ − p2 tð Þxδ τ2 tð Þð Þ
h i

+ p1 tð Þxβ τ2 tð Þð Þ − p tð Þx τ2 tð Þð Þ
h i

:
ð20Þ

From Equation ((2)) of yðtÞ, i.e., we obtain the following:

x tð Þ = y tð Þ − p tð Þx τ2 tð Þð Þ − p2 tð Þxδ τ2 tð Þð Þ
h i

− p1 tð Þxβ τ2 tð Þð Þ − p tð Þx τ2 tð Þð Þ
h i

:
ð21Þ

If we apply the first inequality in (7) with λ = δ > 1,
X = p1/δ2 ðtÞxðτ2ðtÞÞ, and

Y = 1
δ
p tð Þp−1/δ2 tð Þ

� 	1/ δ−1ð Þ
, ð22Þ

then we have

p tð Þx τ2 tð Þð Þ − p2 tð Þxδ τ2 tð Þð Þ
≤ δ − 1ð Þδδ/ 1−δð Þpδ/ δ−1ð Þ tð Þp1/ 1−δð Þ

2 tð Þ
≕ g2 tð Þ:

ð23Þ

In a similar manner, by applying the second inequality

in (7) with λ = β < 1, X = p1/β1 ðtÞxðτ2ðtÞÞ, and

Y = 1
β
p tð Þp−1/β1 tð Þ

� 	1/ β−1ð Þ
, ð24Þ

we obtain the following:

p1 tð Þxβ τ2 tð Þð Þ − p tð Þx τ2 tð Þð Þ
≤ 1 − βð Þββ/ 1−βð Þpβ/ β−1ð Þ tð Þp1/ 1−βð Þ

1 tð Þ
≕ g1 tð Þ:

ð25Þ

By using (21) and (23), (25) turns out that

x tð Þ ≥ y tð Þ − g1 tð Þ − g2 tð Þ = 1 − g1 tð Þ + g2 tð Þ
y tð Þ

� �
y tð Þ: ð26Þ

Since yðtÞ in nondecreasing, we have the following:
yðtÞ ≥ c0 for some c0 > 0. Hence, (26) turns that

x tð Þ ≥ 1 − g1 tð Þ + g2 tð Þ
c0

� �
y tð Þ: ð27Þ

Now, we see

x tð Þ ≥ c1y tð Þ, ð28Þ

from (9) and (27) for some c1 ∈ ð0, 1Þ. (28) implies that
Equation (1) turns to be

r tð Þ y n−1ð Þ tð Þ
h iα� �

′ + cγ1q tð Þyγ τ1 tð Þð Þ ≤ 0: ð29Þ

There exists a constant θ0 ∈ ð0, 1Þ such that

y τ1 tð Þð Þ ≥ θ0
n − 1ð Þ! τ

n−1
1 tð Þy n−1ð Þ τ1 tð Þð Þ, ð30Þ

for t ≥ t1 (see [16, 18, 19]). By setting wðtÞ = rðtÞ
½yðn−1ÞðtÞ�α, we obtain the following:

y τ1 tð Þð Þ ≥ θ0
n − 1ð Þ! τ

n−1
1 tð Þr−1/α τ1 tð Þð Þw1/α τ1 tð Þð Þ: ð31Þ

By using (31), (29) turns that

w′ tð Þ ≤ −K τn−11 tð Þr−1/α τ1 tð Þð Þ
 �γ
q tð Þwγ/α τ1 tð Þð Þ, ð32Þ
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where

K = c1θ0
n − 1ð Þ!

� �γ

: ð33Þ

From Corollary 1 in [20], it can easily be concluded
that there exists a positive solution wðtÞ of Equation
(10) with limt⟶∞wðtÞ = 0, which contradicts the fact that
Equation (10) is oscillatory.

Now, let us consider the cases when yðtÞ < 0 for t ≥ t2.
Suppose that

v tð Þ = −y tð Þ = −x tð Þ − p1 tð Þxβ τ2 tð Þð Þ + p2 tð Þxδ τ2 tð Þð Þ
≤ p2 tð Þxδ τ2 tð Þð Þ,

ð34Þ

which implies

x τ2 tð Þð Þ ≥ v tð Þ
p2 tð Þ
� 	1/δ

, ð35Þ

or

x tð Þ ≥ v τ−12 tð Þ
 �
p2 τ−12 tð Þ
 �
" #1/δ

: ð36Þ

On the other hand, we obtain the following:

r tð Þ v n−1ð Þ tð Þ
h iα� �

′ = q tð Þxγ τ1 tð Þð Þ ≥ q tð Þ v τ−12 τ1 tð Þð Þ
 �
p2 τ−12 τ1 tð Þð Þ
 �
" #γ/δ

=Q tð Þvγ/δ h tð Þð Þ:
ð37Þ

Now, let us consider the case (c). Clearly, we see that
vðn−1ÞðtÞ ≤ 0 and either v′ðtÞ < 0 or v′ðtÞ > 0 for t ≥ t1. First,
we assume that v′ðtÞ < 0 for t ≥ t1. It is easy to see that

v μ3h tð Þð Þ ≥ μ2 − μ1ð Þn−2
n − 2ð Þ! hn−2 tð Þv n−2ð Þ μ2h tð Þð Þ, ð38Þ

(refer to [18]). Now, we may express

v n−2ð Þ u1ð Þ − v n−2ð Þ u2ð Þ = −
ðu2
u1

r−1/α sð Þ r sð Þ z n−1ð Þ sð Þ
h iαh i1/α

ds

≥ A u2, u1ð Þ −r−1/α u2ð Þv n−1ð Þ u2ð Þ
h i

,

ð39Þ

for t1 ≤ u1 ≤ u2. By taking u1 = μ2hðtÞ and u2 = μ3hðtÞ for
t ≥ t1 in inequality (39), we see that

v n−2ð Þ μ2h tð Þð Þ ≥ A μ3h tð Þ, μ2h tð Þð Þ −r−1/α μ3h tð Þð Þv n−1ð Þ μ3h tð Þð Þ
h i

:

ð40Þ

By using (40), (38) turns out to be

v μ3h tð Þð Þ ≥ μ2 − μ1ð Þn−2
n − 2ð Þ! hn−2 tð ÞA μ3h tð Þ, μ2h tð Þð Þ

× −r−1/α μ3h tð Þð Þv n−1ð Þ μ3h tð Þð Þ
h i

:

ð41Þ

By setting VðtÞ≔ −rðtÞ½vðn−1ÞðtÞ�α for t ≥ t1, (41) turns
that

v h tð Þð Þ ≥ v μ3h tð Þð Þ ≥ μ2 − μ1ð Þn−2
n − 2ð Þ! hn−2 tð ÞA μ3h tð Þ, μ2h tð Þð Þ

× −V1/α μ3h tð Þð Þ� 

:

ð42Þ

From (42) and (31), we obtain the following:

�V′ tð Þ ≥Q tð Þvγ/δ h tð Þð Þ

≥Q tð Þ μ2 � μ1ð Þn�2

n� 2ð Þ! hn�2 tð ÞA μ3h tð Þ, μ2h tð Þð Þ
( )γ/δ

× Vγ/ αδð Þ μ3h tð Þð Þ
h i

,

ð43Þ

which implies

V ′ tð Þ +Q tð Þ μ2 − μ1ð Þn−2
n − 2ð Þ! hn−2 tð ÞA μ3h tð Þ, μ2h tð Þð Þ

( )γ/δ

� Vγ/ αδð Þ μ3h tð Þð Þ
h i

≤ 0:

ð44Þ

The proof can be easily completed by following the
same steps as we did for the case (a) and hence is omitted.

Next, we assume that v′ðtÞ > 0 for t ≥ t1. Clearly, we have
the following:

v n−2ð Þ μ3h tð Þð Þ ≥ − μ2 − μ1ð Þh tð Þv n−1ð Þ μ2h tð Þð Þ: ð45Þ

There exists a constant θ1 ∈ ð0, 1Þ such that

v h tð Þð Þ ≥ θ1
n − 2ð Þ! h

n−2 tð Þv n−2ð Þ h tð Þð Þ

≥
θ1

n − 2ð Þ! h
n−2 tð Þv n−2ð Þ μ1h tð Þð Þ,

ð46Þ

for t ≥ t1. Now, we see that

v h tð Þð Þ ≥ θ1
n − 2ð Þ! h

n−2 tð Þv n−2ð Þ μ1h tð Þð Þ

≥
θ1

n − 2ð Þ! h
n−2 tð Þ μ2 − μ1ð Þh tð Þ −v n−1ð Þ μ2h tð Þð Þ

h i
:

ð47Þ
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The rest of the proof is similar to that of the above case
and hence is omitted.

Finally, let us consider the case (d). Clearly, we have
rðtÞ½v′ðtÞ�α > 0 and so

r tð Þ v n−1ð Þ tð Þ
h iα

≥ c2, ð48Þ

or that

v n−1ð Þ tð Þ ≥ c2
r tð Þ
� �1/a

, ð49Þ

for some c2 > 0. Thus, we obtain the following:

v tð Þ ≥ c1/α2 A∗ t, t2ð Þ ð50Þ

for t ≥ t3 ≥ t2. By using (50), (37) turns out

r tð Þ v n−1ð Þ tð Þ
h iα� �

′ ≥Q tð Þvγ/δ h tð Þð Þ ≥Q tð Þ c1/α2 A∗ h tð Þ, t2ð Þ� 
γ/δ
:

ð51Þ

The rest of the proof is trivial and hence is omitted.
This completes the proof. ☐

Corollary 3. Let β < 1 and δ > 1, conditions (i)-(iv), and (3)
hold, and let p ∈ Cð½t0,∞Þ, ðð0,∞Þ such that (9) holds. Assume
that there exist real numbers μi, i = 1, 2, 3 such that (11) is sat-
isfied. If we have condition (14), then

Then, Equation (1) is oscillatory.

3. Illustrative Examples

Two illustrative examples are presented in this section as
follows:

Example 1. Consider the following second-order equation:

e−t x tð Þ + 1
t
x1/3 t/2ð Þ − x3 t/2ð Þ

� �
′

� �
′

+ 3
4 −

5
36t +

1
2t2 + 2

t3

� �
e−4t/3

� �
x t/2ð Þ = 0:

ð53Þ

Clearly, rðtÞ = e−t , p1ðtÞ = pðtÞ = t−1, and p2ðtÞ = 1, and
hence, there exists a t∗ ≥ 3 such that

3
4 −

5
36t +

1
2t2 + 2

t3

� �
e−4t/3 > 0, ð54Þ

for t ≥ t∗. The verification of all the conditions of Theorem 2
gives that every solution x of Equation (53) is oscillatory;
otherwise, limt⟶∞xðtÞ =∞. It is worth mentioning that
x1ðtÞ = et is such a solution of Equation (53).

Example 2. Consider the following even-order equation:

e−t x tð Þ + 1
t
x1/3 t/2ð Þ − x3 t/2ð Þ

� � n−1ð Þ !
′

+ 1
t
e−t/2

� �
x t/2ð Þ = 0:

ð55Þ

By noting that rðtÞ = e−t , p1ðtÞ = pðtÞ = t−1, p2ðtÞ = 1, and
qðtÞ = e−t/2/t and letting μ1 = 1/8, μ2 = 1/4, and μ3 = 3/8, it
can be easily seen that all the conditions of Corollary 3 hold,
and hence, Equation (55) is oscillatory.

4. Conclusion

New results concerning the oscillation of NLDiffEq with
MNLNTs have been successfully established in this paper.
We have used novel technique which is based on a basic
inequality and some comparison results to prove the main
theorem. Demonstrating the validity and applicability of
our results, two examples have been presented in this regard.
It is worth mentioning that the oscillation of Equations (53)
and (55) cannot be commented by previous works.

lim
t⟶∞

ðt
τ1 tð Þ

q sð ÞAγ τ1 sð Þð Þds =∞when γ ≤ α,

liminf
t⟶∞

ðt
μ3h tð Þ

Q sð Þ hn−2 sð ÞA μ3h sð Þ, μ2h sð Þð Þ� �γ/δ
ds > 1

e
n − 2ð Þ!

μ2 − μ1ð Þn−2
 !γ/δ

when γ = αδ,

lim
t⟶∞

ðt
μ3h tð Þ

Q sð Þ hn−2 sð ÞA μ3h sð Þ, μ2h sð Þð Þ� �γ/δ
ds =∞when γ < αδ,

lim
t⟶∞

ðt
μ2h tð Þ

hn−1 sð Þ μ2 − μ1ð Þ� 
γ/δ
Q sð Þds =∞when γ ≤ α:

ð52Þ
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