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The main concentration of the present research is to explore several theoretical criteria for proving the existence results for the
suggested boundary problem. In fact, for the first time, we formulate a new hybrid fractional differential inclusion in the φ-
Caputo settings depending on an increasing function φ subject to separated mixed φ-hybrid-integro-derivative boundary
conditions. In addition to this, we discuss a special case of the proposed φ-inclusion problem in the non-φ-hybrid structure
with the help of the endpoint notion. To confirm the consistency of our findings, two specific numerical examples are
provided which simulate both φ-hybrid and non-φ-hybrid cases.

1. Introduction

Arbitrary order calculus theory is considered as an impor-
tant topic of research for all mathematicians, researchers,
engineers, and scientists due to the applicability of men-
tioned theory in several contexts in engineering and applied
science and its flexibility to model different systems and phe-
nomena having memory effects (see, e.g., [1–3] and refer-
ence therein). Several arbitrary order derivatives have been
introduced in the past decade, and the most common of
them are Riemann-Liouville, Caputo, and Hadamard deriv-
atives. Hence, arbitrary order boundary value problems
(BVPs) can be formulated in the framework of different
operators. In the meantime, some recent research investiga-
tions have been conducted with the aid of these operators to
establish the relevant analytical results for proposed BVPs.
For instance, Alzabut et al. [4] investigated the oscillatory
behavior of a kind of fractional differential equations (FDEs)
supplemented with damping and forcing terms by terms of
generalized proportional operators. In [5], Baleanu et al.

modeled an applied instrument in engineering in the context
of a hybrid Caputo FBVP and studied its existence theory.
Also, the same authors [6] established similar results by
means of Caputo and Riemann-Liouville conformable deri-
vation and integration operators. In 2019, Matar et al. [7]
devoted their focus on solvability of nonlinear systems of
FDEs via nonlocal initial value problems by terms of fixed
point methods and after that, Mohammadi et al. [8] utilized
another fractional operator entitled Caputo–Hadamard for
modeling a hybrid FBVP with Hadamard integral boundary
conditions. Zhou et al. [9] presented a fractional antiperiodic
model of Langevin equation and investigated qualitative
aspects of its solutions with the aid of techniques appeared
in functional analysis. Similarly, one can find some papers
on applications of fractional operators [10–13].

In 2017, a generalization of the Caputo fractional opera-
tor known as φ-Caputo derivative (φ-CF) was presented by
Almeida [14] in which its kernel is with respect to a given
increasing function φ. One of the most important advan-
tages of the φ-CF derivative operator is its ability to produce
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all previous fractional derivatives, and also, it involves the
semigroup property. As a result, φ-CF derivative is known
as an extended structure of arbitrary order derivative
operators.

To get acquainted with some previous research works
done based on φ-CF operators so far, we refer to a paper
published by Wahash et al. [15]. In that paper, Wahash
et al. designed a generalized φ-fractional differential equa-
tion with a simple integral condition as

CD
σ∗ ;φ
0+ w zð Þ = ℏ∗ z,w zð Þð Þ,

w 0ð Þ = v + d
ð1
0
ξ qð Þu qð Þdq,

8><>: ð1Þ

where z ∈ ½0, 1�, σ∗ ∈ ð0, 1Þ, ν ∈ℝ+, and d ∈ℝ≥0, and also,
ℏ∗ : ½0, 1� ×ℝ+ ⟶ℝ+ stands for a continuous function
along with ξ ∈ L1ℝ+

ð½0, 1�Þ. The lower-upper solution is a
technique implemented in that article by Wahash et al. in
which they utilized a fixed point method on cones. Further,
lower-upper control maps are provided with respect to the
nonlinear term without a certain monotonicity criterion
[15]. Similarly, by using the newly introduced φ-CF operator
and its generalizations, several articles have been published
like as [16] in which Almeida et al. considered a FDE via a
Caputo derivative with respect to a kernel function and
reviewed some applications of them. Derbazi et al. [17] used
such a generalized operator to investigate a nonlinear initial
value problem via monotone iterative method. Samet et al.
derived some Lyapunov-type inequalities in relation to an
antiperiodic FBVP involving φ-Caputo operator [18]. The
analysis of the stability to an φ-Hilfer impulsive FDE is
another instance of applications of such generalized opera-
tors which was studied by Sousa et al. in [19]. In 2020, Tar-
iboon et al. [20] turned to establishment of existence
theorems to sequential generalized inclusion FBVP, and
then, Thabet et al. [21] achieved to similar findings on a
new structure of the pantograph inclusion FBVP. In a higher
level, Vivek et al. [22] defined generalized φ-operators in the
context of partial operators and analyzed a PDE in the φ-
Caputo settings.

With regard to ideas of aforesaid research works, we
consider the following φ-hybrid fractional differential inclu-
sion in the sense of Caputo represented as

CD
σ∗ ;φ
a

ϖ∗ zð Þ
N∗ z, ϖ∗ zð Þð Þ
� �

∈ ~O z, ϖ∗ zð Þð Þ, ð2Þ

supplemented with separated mixed φ-hybrid-integro-
derivative boundary conditions

~m1
ϖ∗ zð Þ

N∗ z, ϖ∗ zð Þð Þ
� �

z=a = s∗1 + ~m2
ϖ∗ zð Þ

N∗ z, ϖ∗ zð Þð Þ
� ����� ����

z=a
,

~m1
RLI μ∗ ;φ

a
CD

~μ;φ
a

ϖ∗ zð Þ
N∗ z, ϖ∗ zð Þð Þ
� �

z=T = s∗2 + ~m2
RLI μ∗ ;φ

a
CD

1;φ
a

ϖ∗ zð Þ
N∗ z, ϖ∗ zð Þð Þ
� ����� ����

z=T
,

0BBB@
ð3Þ

where z ∈ ½a, T� with a ≥ 0, σ∗ ∈ ð1, 2Þ, ~μ ∈ ð0, 1Þ, μ∗ > 0,
~m1, ~m2 ∈ℝ≠0, and s∗1 , s∗2 ∈ℝ+. Two notations CD

ð⋅Þ;φ
a and

RLI
ð⋅Þ;φ
a stand for the φ-CF derivative and the φ-Rie-

mann-Liouville integral (φ-RLF), respectively. Also, notice

that CD
1;φ
a = ð1/φ′ðzÞÞðd/dzÞ. Besides, N∗ : ½a, T� ×ℝ⟶

ℝ is assumed to be a nonzero continuous single-valued
operator, and ~O : ½0, 1� ×ℝ⟶P ðℝÞ is assumed to be a
set-valued operator equipped with some required properties.
Notice that by putting N∗ðz, ϖ∗ðzÞÞ = 1, the given φ-hybrid
Caputo fractional differential inclusion BVP (2) and (3) is
transformed into a non-φ-hybrid separated inclusion BVP
presented by

CD
σ∗ ;φ
a ϖ∗ zð Þ ∈ ~O z, ϖ∗ zð Þð Þ,  z ∈ a, T½ �ð Þ,

~m1ϖ
∗ að Þ = s∗1 + ~m2ϖ

∗ að Þ,
~m1

RLI
μ∗ ;φ
a

CD
~μ;φ
a ϖ∗ Tð Þ = s∗2 + ~m2

RLI
μ∗ ;φ
a

CD
1;φ
a ϖ∗ Tð Þ:

8>>><>>>:
ð4Þ

Note that by taking into account the authors’ knowledge,
there are no research manuscripts on φ-CF operators involv-
ing mixed φ-hybrid-integro-derivative boundary conditions
simultaneously. In addition, this given structure is formu-
lated in a unique and general form in which we can consider
some standard special cases studied before. Here, we derive
some analytical criteria to prove the existence results for
the proposed novel φ-hybrid fractional differential inclusion
in the φ-Caputo settings (2) equipped with separated mixed
φ-hybrid-integro-derivative boundary conditions (3). The
applied approach to achieve desired purposes is based on
Dhage’s fixed point result. In addition, we discuss the special
case of the proposed φ-inclusion problem in the non-φ
-hybrid version with the aid of the endpoint notion. We
organize the present manuscript as the following construc-
tion. In Section 2, we briefly collect auxiliary preliminaries
on the φ-fractional operators and some required notions
on the multifunctions and related properties. In Section 3,
the existence criteria of solutions for both proposed φ
-hybrid and non-φ-hybrid BVPs (2)–(4) are derived by two
different analytical methods. To confirm the applicability
of our analytical findings, two simulative numerical exam-
ples are formulated in Section 4 which cover both φ-hybrid
and non-φ-hybrid cases.

2. Auxiliary Preliminaries

By continuing the path ahead, we assemble and recall several
auxiliary and fundamental notions in the direction of our
theoretical methods implemented in this paper. The concept
of RLF integral for ϖ∗ : ½0,+∞Þ⟶ℝ of order σ∗ > 0 is
defined as

RLI
σ∗

0 ϖ∗ zð Þ =
ðz
0

z − qð Þσ∗−1
Γ σ∗ð Þ ϖ∗ qð Þdq, ð5Þ
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provided that the integral has finite value [23, 24]. In this
position, let us take n − 1 < σ∗ < n in which n = ½σ∗� + 1.
Regarding a continuous function ϖ∗ : ½0,+∞Þ⟶ℝ, the
RLF derivative of order ρ∗ is defined as

RLD
σ∗

0 ϖ∗ zð Þ = d
dz

� �nðz
0

z − qð Þn−σ∗−1
Γ n − σ∗ð Þ ϖ∗ qð Þ dq, ð6Þ

provided that the integral has finite value [23, 24]. In the
next step, for an absolutely continuous n-times differentiable
real-valued function ϖ∗ on ½0, +∞Þ, the derivative in the
Caputo settings of order σ∗ is defined as

CD
σ∗

0 ϖ∗ zð Þ =
ðz
0

z − qð Þn−σ∗−1
Γ n − σ∗ð Þ ϖ∗ nð Þ

qð Þ dq, ð7Þ

such that it is finite-valued [23, 24]. Now, let φ ∈Cnð½a
, b�Þ be increasing with φ′ðzÞ > 0, ∀z ∈ ½a, b�. Then, an inte-
gral in the sense of φ-Riemann-Liouville for an integrable
ϖ∗ : ½a, b�⟶ℝ of order σ∗ depending on increasing func-
tion φ is defined as

RLI
σ∗ ;φ
a ϖ∗ zð Þ = 1

Γ σ∗ð Þ
ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1ϖ∗ qð Þdq,

ð8Þ

provided that the RHS of above equality involves the
finite value [25, 26]. It is clear that if we take φðzÞ = z, then
φ′ðzÞ = 1, and thus by inserting them into (8), we see that
the φ-RLF integral is converted to the standard RLF integral
given by (5). For a continuous function ϖ∗ : ½0,+∞Þ⟶ℝ,
a derivative in the sense of φ-RL of order σ∗ is given by

RLD
σ∗ ;φ
a ϖ∗ zð Þ = 1

Γ n − σ∗ð Þ
1

φ′ zð Þ
d
dz

 !n

�
ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þn−σ∗−1ϖ∗ qð Þ dq,

ð9Þ

provided that the RHS of above equality exists [25, 26]. If
φðzÞ = z, then the φ-RLF derivative (9) is converted to the
standard RLF derivative (6). Motivated by such operators,
Almeida gave a φ-version of the CF derivative as follows:

CD
σ∗ ;φ
a ϖ∗ zð Þ = 1

Γ n − σ∗ð Þ
ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þn−σ∗−1

� 1
φ′ qð Þ

d
dq

 !n

ϖ∗ qð Þ dq,

ð10Þ

provided that the RHS of above equality exists [14]. If
φðzÞ = z, then the φ-CF derivative (10) is converted to the
standard CF derivative (7). Some useful properties of the φ
-CF and φ-RLF operators can be seen in the following.

Lemma 1 [14, 24]. Let σ∗, ϱ∗, β∗ > 0 and φ ∈Cnð½a, b�Þ be
increasing with φ′ðzÞ > 0, ∀z ∈ ½a, b�. Then,

(i1) RLI
σ∗ ;φ
a ðRLI

ϱ∗ ;φ
a ϖ∗ÞðzÞ = ðRLI

σ∗+ϱ∗ ;φ
a ϖ∗ÞðzÞ

(i2) RLI
σ∗ ;φ
a ðφðzÞ − φðaÞÞβ∗ðyÞ = ðΓðβ∗ + 1Þ/Γðσ∗ + β∗

+ 1ÞÞðφðyÞ − φðaÞÞσ∗+β∗

(i3) CD
σ∗ ;φ
a ðφðzÞ − φðaÞÞβ∗ðyÞ = ðΓðβ∗ + 1Þ/Γðβ∗ − σ∗ +

1ÞÞðφðyÞ − φðaÞÞβ∗−σ∗ , ðβ∗ > σ∗Þ
(i4) RLD

σ∗ ;φ
a ðRLI

ρ∗ ;φ
a ϖ∗ÞðzÞ = ðRLI

ρ∗−σ∗ ;φ
a ϖ∗ÞðzÞ, ðσ∗

< ρ∗Þ
For instance, we plot the graph of φ-RLF integral and φ-

CF derivative of ϖðzÞ = ðz − 1Þ6:5 for φðzÞ = 2z + 3/2 in
Figure 1.

Lemma 2 [14]. Let n − 1 < σ∗ < n. Then, for each ϖ∗ ∈Cn−1

ð½a, b�Þ,

RLI
σ∗ ;φð Þ
a

CD
σ∗ ;φð Þ
a ϖ∗

� �
zð Þ = ϖ∗ zð Þ − 〠

n−1

j=0

δφ
� �jϖ∗ að Þ

j!
φ zð Þ − φ að Þð Þ j, 

� δφ =
1

φ′ zð Þ
d
dz

 !
:

ð11Þ

In accordance with above lemma, the authors proved
that the series solution for given homogeneous differential

equation ðCDσ∗ ;φ
a ϖ∗ÞðzÞ = 0 has such a form

ϖ∗ zð Þ = 〠
n−1

j=0
~k
∗
j φ zð Þ − φ að Þð Þj = ~k

∗
0 + ~k

∗
1 φ zð Þ − φ að Þð Þ

+ ~k
∗
2 φ zð Þ − φ að Þð Þ2+⋯+~k∗n−1 φ zð Þ − φ að Þð Þn−1,

ð12Þ

where n − 1 < σ∗ < n and ~k
∗
0 , ~k

∗
1 ,⋯, ~k∗n−1 ∈ℝ [14].

We consider the normed space by notation ðW, k·kWÞ.
Also, we introduce the notations P ðWÞ, P bndðWÞ,
P clsðWÞ, P cmpðWÞ, and P cvxðWÞ for the category of all
nonempty subsets, all bounded subsets, all closed subsets, all
compact subsets, and all convex subsets of W, respectively.
In the subsequent path, a metric function attributed to
Pompeiu-Hausdorff ℙℍdW

: P ðWÞ ×P ðWÞ⟶ℝ ∪ f∞g
is defined by

ℙℍdW
E1,E2ð Þ =max sup

e1∈E1

dW e1,E2ð Þ, sup
e2∈E2

dW E1, e2ð Þ
( )

,

ð13Þ

so that dWðE1, e2Þ = inf e1∈E1
dWðe1, e2Þ and dWðe1,E2Þ =

inf e2∈E2
dWðe1, e2Þ [27]. We say that ~O : W⟶P clsðWÞ is

Lipschitzian with constant ĉ > 0 if ℙℍdW
ð ~Oðϖ∗

1 Þ, ~Oðϖ∗
2 ÞÞ ≤ ĉ

dWðϖ∗
1 , ϖ∗

2 Þ, ∀ϖ∗
1 , ϖ∗

2 ∈W. Also, ~O is a contraction if ĉ ∈ ½0,
1Þ [27].
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We represent the collection of all existing selections of ~O
at point ϖ∗ ∈Cℝð½0, 1�Þ by

SELð Þ ~O,ϖ∗ ≔ bκ ∈L1
ℝ 0, 1½ �ð Þ: bκ zð Þ ∈ ~O z, ϖ∗ zð Þð Þ

n o
, ð14Þ

for almost all z ∈ ½0, 1� [27, 28]. We note that ϖ∗ ∈W is an
endpoint for given set-valued operator ~O : W⟶P ðWÞ
whenever we have ~Oðϖ∗Þ = fϖ∗g [29]. Also, the mapping
~O possesses an approximate endpoint property
(APXEndP-property) whenever

inf
ϖ∗
1∈W

sup
ϖ∗
2∈ ~O ϖ∗

1ð Þ
dW ϖ∗

1 , ϖ∗
2ð Þ = 0, ð15Þ

[29]. We need next results.

Theorem 3 (Closed graph theorem [30]). LetW be a separa-
ble Banach space, ~O : ½0, 1� ×W⟶P cmp,cvxðWÞ be L1-

Carathéodory and∐ : L1
Wð½0, 1�Þ⟶CWð½0, 1�Þ be a linear

continuous map. Then, ∐∘ðSELÞ ~O : CWð½0, 1�Þ⟶
P cmp,cvxðCWð½0, 1�ÞÞ is another operator in CWð½0, 1�Þ ×
CWð½0, 1�Þ with action ϖ∗ ↦ ð∐∘ðSELÞ ~OÞðϖ∗Þ =∐ð
ðSELÞ ~O,ϖ∗Þ having closed graph property.

Theorem 4 (Dhage’s theorem [31]). Consider the Banach
algebra W, and the operators A∗

1 : W⟶W and A∗
2 : W

⟶P cmp,cvxðWÞ satisfying the following:

(i) A∗
1 is Lipschitzian (with l∗ > 0)

(ii) A∗
2 is compact upper semicontinuous

(iii) 2l∗Ô < 1 with Ô = kA∗
2 ðWÞk

Then, either ð1iÞO∗ = fϖ∗ ∈W ∣ α0ϖ∗ ∈A∗
1ϖ

∗A∗
2ϖ

∗, α0
> 1g is unbounded, or ð2iÞ a solution, belonging to W, exists
for which ϖ∗ ∈A∗

1ϖ
∗A∗

2ϖ
∗.

Theorem 5 (Endpoint theorem [29]). Suppose that ðW, dWÞ
be complete and ψ : ℝ≥0 ⟶ℝ≥0 admits the upper semicon-
tinuity via ψðzÞ < z and lim inf z⟶∞ðz − ψðzÞÞ > 0, ∀z > 0.
Besides, we assume that ~O : W⟶P cls,bndðWÞ is such that

ℙℍdW
ð ~Oϖ∗

1 , ~Oϖ∗
2 Þ ≤ ψðdWðϖ∗

1 , ϖ∗
2 ÞÞ for each ϖ∗

1 , ϖ∗
2 ∈W.

Then, an endpoint (uniquely) exists for ~O iff ~O involves the
APXEndP-property.

3. New Existence Criteria

In two previous sections, we assembled some auxiliary and
useful notions to achieve our main goals. Now in the follow-
ing, we first establish a required lemma to derive the main
existence results. To do this, we need to consider a sup–
norm given by kϖ∗kW = supz∈½0,1�jϖ∗ðzÞj on the space W =
fϖ∗ðzÞ: ϖ∗ðzÞ ∈Cℝð½0, 1�Þg. In this case, the Banach space
ðW, k·kWÞ along with the multiplication action defined as
ðϖ∗

1 · ϖ∗
2 ÞðzÞ = ϖ∗

1 ðzÞϖ∗
2 ðzÞ is a Banach algebra for all ϖ∗

1 , ϖ∗
2

∈W.

Lemma 6. Let h∗ ∈W, a ≥ 0, σ∗ ∈ ð1, 2Þ, ~μ ∈ ð0, 1Þ, μ∗ > 0,
~m1, ~m2 ∈ℝ≠0, and s∗1 , s∗2 ∈ℝ+. An element ϖ∗

0 ∈W is a solu-
tion for given φ-hybrid fractional equation

CD
σ∗ ;φ
a

ϖ∗ zð Þ
N∗ z, ϖ∗ zð Þð Þ
� �

= h∗ zð Þ, z ∈ a, T½ �, σ∗ ∈ 1, 2ð Þð Þ, ð16Þ

supplemented with separated mixed φ-integro-derivative
boundary conditions

4e+12

σ⁎ = 1.19
σ⁎ = 1.29
σ⁎ = 1.49

σ⁎ = 1.69
σ⁎ = 1.89
σ⁎ = 1.99

φ-Riemann-liouville integral of the function ɷ (z) = (z-1)6.5

for φ = z+1.5

3e+12

2e+12

1e+12

RL
I 0
σ
⁎

;φ
 ɷ

(z
)

0
0 10 20 30

Z

40 50

1e+10

φ-Caputo derivative of the functiom ɷ (z) = (z-1)6.5

for φ = z+1.5

8e+09

6e+09

4e+09

2e+09

C D
0σ
⁎

;φ
 ɷ

(z
)

–2e+09

0

0 10 20 30

Z

40 50

Figure 1: The RLF-integral and CF-derivative of ϖðzÞ = ðz − 1Þ6:5 for φðzÞ = 2z + 3/2:
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~m1
ϖ∗ zð Þ

N∗ z, ϖ∗ zð Þð Þ
� �

z=a = s∗1 + ~m2
ϖ∗ zð Þ

N∗ z, ϖ∗ zð Þð Þ
� ����� ����

z=a
,

~m1
RLI μ∗ ;φ

a
CD

~μ;φ
a

ϖ∗ zð Þ
N∗ z, ϖ∗ zð Þð Þ
� �

z=T = s∗2 + ~m2
RLI μ∗ ;φ

a
CD

1;φ
a

ϖ∗ zð Þ
N∗ z, ϖ∗ zð Þð Þ
� ����� ����

z=T
,

8>>><>>>:
ð17Þ

which is given by the following:

ϖ∗ zð Þ =N∗ z, ϖ∗ zð Þð Þ s∗1
~m1 − ~m2

+ 1
Γ σ∗ð Þ

ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1h∗ qð Þdq

	
+ s∗2

~m∗ φ zð Þ − φ að Þð Þ − ~m1 φ zð Þ − φ að Þð Þ
~m∗Γ σ∗ + μ∗ − ~μð Þ

�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1h∗ qð Þdq

+ ~m2 φ zð Þ − φ að Þð Þ
~m∗Γ σ∗ + μ∗ − 1ð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2h∗ qð Þdq



,

ð18Þ

so that ~m∗ is a positive real constant given as

~m∗ ≔
~m1 φ Tð Þ − φ að Þð Þ1+μ∗−~μ

Γ 2 + μ∗ − ~μð Þ −
~m2 φ Tð Þ − φ að Þð Þμ∗

Γ 1 + μ∗ð Þ ≠ 0:

ð19Þ

Proof. At first, the element ϖ∗
0 is assumed to be a solution for

the hybrid φ-Caputo differential Equation (16). Then, there

exist ~k
∗
0 , ~k

∗
1 ∈ℝ such that

ϖ∗
0 zð Þ

N∗ z, ϖ∗
0 zð Þð Þ = RLI

σ∗ ;φ
a h∗ zð Þ + ~k

∗
0 + ~k

∗
1 φ zð Þ − φ að Þð Þ,

ð20Þ

or more precisely, we have

ϖ∗
0 zð Þ =N∗ z, ϖ∗

0 zð Þð Þ
ðz
a

φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1
Γ σ∗ð Þ h∗ qð Þ dq

"

+ ~k
∗
0 + ~k

∗
1 φ zð Þ − φ að Þð Þ

#
:

ð21Þ

In view of the notion of fractional derivative in the φ-
Caputo framework, we get the following relations for
~μ ∈ ð0, 1Þ:

CD
1;φ
a

ϖ∗
0 zð Þ

N∗ z, ϖ∗
0 zð Þð Þ

� �
=
ðz
a

φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−2
Γ σ∗ − 1ð Þ h∗ qð Þ dq + ~k

∗
1 ,

ð22Þ

CD
~μ;φ
a

ϖ∗
0 zð Þ

N∗ z, ϖ∗
0 zð Þð Þ

� �
=
ðz
a

φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−~μ−1
Γ σ∗ − ~μð Þ h∗ qð Þdq

+ ~k
∗
1

φ zð Þ − φ að Þð Þ1−~μ
Γ 2 − ~μð Þ :

ð23Þ

In the following, by taking integral of order μ∗ > 0 in the
φ-Riemann-Liouville settings on both sides of (22) and (23),
we obtain

RLI
μ∗ ;φ
a

CD
1;φ
a

ϖ∗
0 zð Þ

N∗ z, ϖ∗
0 zð Þð Þ

� �
=
ðz
a

φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗+μ∗−2
Γ σ∗ + μ∗ − 1ð Þ h∗ qð Þ dq

+ ~k
∗
1

φ zð Þ − φ að Þð Þμ∗
Γ μ∗ + 1ð Þ ,

RLI
μ∗ ;φð Þ
a

CD
~μ;φð Þ
a

ϖ∗
0 zð Þ

N∗ z, ϖ∗
0 zð Þð Þ

� �
=
ðz
a

φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗+μ∗−~μ−1
Γ σ∗ + μ∗ − ~μð Þ h∗ qð Þdq

+ ~k
∗
1

φ zð Þ − φ − að Þð Þ1+μ∗−~μ
Γ μ∗ − ~μ + 2ð Þ :

ð24Þ

In this step, by considering the first boundary condition

in (17), we find that ð~m1 − ~m2Þ~k
∗
0 = s∗1 and so

~k
∗
0 =

s∗1
~m1 − ~m2

: ð25Þ

In addition, the second integro-derivative boundary con-
dition given in (17) yields

~k
∗
1 =

s∗2
~m∗ −

~m1
~m∗Γ σ∗ + μ∗ − ~μð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1h∗ qð Þdq

+ ~m2
~m∗Γ σ∗ + μ∗ − 1ð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2h∗ qð Þdq:

ð26Þ

In the last step, if we insert the values ~k
∗
0 and

~k
∗
1 obtained

in (25) and (26) into (21), then we get

ϖ∗
0 zð Þ =N∗ z, ϖ∗

0 zð Þð Þ s∗1
~m1 − ~m2

+ 1
Γ σ∗ð Þ

ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1h∗ qð Þ dq

	
+ s∗2

~m∗ φ zð Þ − φ að Þð Þ − ~m1 φ zð Þ − φ að Þð Þ
~m∗Γ σ∗ + μ∗ − ~μð Þ

�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1h∗ qð Þdq + ~m2 φ zð Þ − o að Þð Þ

~m∗Γ σ∗ + μ∗ − 1ð Þ
�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2h∗ qð Þdq



:

ð27Þ

The resultant integral equation confirms that ϖ∗
0 satisfies

the mentioned φ-integral Equation (18), and the proof is
completed.

Now, by considering Lemma 6, we can present the fol-
lowing definition.

Definition 7. An absolutely continuous function ϖ∗ : ½a, T�
⟶ℝ is called a solution function for the φ-hybrid inclu-
sion BVP in the sense of φ-Caputo (2) and (3) if there isbκ ∈L1ð½a, T�,ℝÞ with bκðzÞ ∈ ~Oðz, ϖ∗ðzÞÞ for almost all
z ∈ ½a, T� which satisfies separated mixed φ-integro-deriva-
tive boundary conditions
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~m1
ϖ∗ zð Þ

N∗ z, ϖ∗ zð Þð Þ
� �

z=a = s∗1 + ~m2
ϖ∗ zð Þ

N∗ z, ϖ∗ zð Þð Þ
� ����� ����

z=a
,

~m1
RLI

μ∗ ;φ
a

CD
~μ;φ
a

ϖ∗ zð Þ
N∗ z, ϖ∗ zð Þð Þ
� �

z=T = s∗2 + ~m2
RLI

μ∗ ;φ
a

CD
1;φ
a

ϖ∗ zð Þ
N∗ z, ϖ∗ zð Þð Þ
� ����� ����

z=T
,

8>>><>>>:
ð28Þ

and also

ϖ∗ zð Þ =N∗ z, ϖ∗ zð Þð Þ s∗1
~m1 − ~m2

+ 1
Γ σ∗ð Þ

ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1bκ qð Þdq

	
+ s∗2

~m∗ φ zð Þ − φ að Þð Þ − ~m1 φ zð Þ − φ að Þð Þ
~m∗Γ σ∗ + μ∗ − ~μð Þ

�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1bκ qð Þdq + ~m2 φ zð Þ − φ að Þð Þ

~m∗Γ σ∗ + μ∗ − 1ð Þ
�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2bκ qð Þdq



,

ð29Þ

for each z ∈ ½a, T�.

Now, we are in a position that we can prove the first exis-
tence result about the hybrid φ-Caputo inclusion BVP (2)
and (3).

Theorem 8. Assume that ~O : ½a, T� ×W⟶P cmp,cvxðWÞ is
a set-valued operator and a function N∗ : ½a, T� ×W⟶
W \ f0g is continuous. In addition, let

(C1) a bounded function χ : ½a, T�⟶ℝ+ exists such
that for each ϖ∗

1 , ϖ∗
2 ∈W and z ∈ ½a, T�

N∗ z, ϖ∗
1 zð Þð Þ −N∗ z, ϖ∗

2 zð Þð Þj j ≤ χ zð Þ ϖ∗
1 zð Þ − ϖ∗

2 zð Þj j ð30Þ

(C2) ~O is L1-Caratheodory
(C3) a function YðzÞ ∈L1ð½a, T�,ℝ+Þ exists such that

~O z, ϖ∗ð Þ
��� ��� = sup bκj j: bκ ∈ ~O z, ϖ∗ zð Þð Þ

n o
≤ Y zð Þ, ð31Þ

for all ϖ∗ ∈W and for almost all z ∈ ½a, T�
(C4) a real number bε ∈ℝ exists so that

bε > F∗Π∗ Yk kL1

1 − χ∗Π∗ Yk kL1

, ð32Þ

where F∗ = supz∈½a,T�j ~N∗ðz, 0Þj, kYkL1 =
Ð T
a jYðqÞjdq, χ∗ =

supz∈½a,T�jχðzÞj, and

Π∗ = s∗1
~m1 − ~m2j j +

φ Tð Þ − φ að Þð Þσ∗
Γ σ∗ + 1ð Þ + s∗2

~m∗j j φ Tð Þ − φ að Þð Þ

+ ~m1j j φ Tð Þ − φ að Þð Þσ∗+μ∗−~μ+1
~m∗j jΓ σ∗ + μ∗ − ~μ + 1ð Þ + ~m2j j φ Tð Þ − φ að Þð Þσ∗+μ∗

~m∗j jΓ σ∗ + μ∗ð Þ
ð33Þ

If χ∗Π∗kYkL1 < 1/2, then the φ-hybrid inclusion BVP (2)
and (3) has at least a solution.

Proof. For each ϖ∗ ∈W, the collection of all existing selec-
tions of ~O is defined as

SELð Þ ~O,ϖ∗ ≔ bκ ∈L1
ℝ a, T½ �ð Þ: bκ zð Þ ∈ ~O z, ϖ∗ zð Þð Þ

n o
, ð34Þ

for every ϖ∗ ∈W and for almost all z ∈ ½a, T�. Define a set-
valued map K : W⟶P ðWÞ by

K ϖ∗ð Þ = ζ∗ ∈W : ζ∗ zð Þ = ψ∗ zð Þ� 

, ð35Þ

where

ψ∗ zð Þ =N∗ z, ϖ∗ zð Þð Þ s∗1
~m1 − ~m2

+ 1
Γ σ∗ð Þ

ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1bκ qð Þdq

	
+ s∗2

~m∗ φ zð Þ − φ að Þð Þ − ~m1 φ zð Þ − φ að Þð Þ
~m∗Γ σ∗ + μ∗ − ~μð Þ

�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1bκ qð Þdq + ~m2 φ zð Þ − φ að Þð Þ

~m∗Γ σ∗ + μ∗ − 1ð Þ
�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2bκ qð Þdq



,

ð36Þ

for some bκ ∈ ðSELÞ ~O,ϖ∗ and for almost all z ∈ ½a, T�. It is
obvious that the function ψ∗

0 is a solution to the φ-hybrid
BVP (2) and (3) if ψ∗

0 is a fixed point of K. Now, define
A∗

1 : W⟶W by ðA∗
1ϖ

∗ÞðzÞ =N∗ðz, ϖ∗ðzÞÞ and A∗
2 : W

⟶P ðWÞ by

A∗
2ϖ

∗ð Þ zð Þ = h∗ ∈W : h∗ zð Þ = ξ∗ zð Þ� 

, ð37Þ

where

ξ∗ zð Þ = s∗1
~m1 − ~m2

+ 1
Γ σ∗ð Þ

ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1bκ qð Þdq

+ s∗2
~m∗ φ zð Þ − φ að Þð Þ − ~m1 φ zð Þ − φ að Þð Þ

~m∗Γ σ∗ + μ∗ − ~μð Þ
�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1bκ qð Þdq

+ ~m2 φ zð Þ − φ að Þð Þ
~m∗Γ σ∗ + μ∗ − 1ð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2bκ qð Þdq,

ð38Þ

for some bκ ∈ ðSELÞ ~O,ϖ∗ and for almost all z ∈ ½a, T�. This
implies Kðϖ∗Þ = ðA∗

1ϖ
∗ÞðA∗

2ϖ
∗Þ. We show that both opera-

tors A∗
1 and A∗

2 satisfy Theorem 4. We at first prove that A∗
1

is Lipschitzian. Let ϖ∗
1 , ϖ∗

2 ∈W. We have

A∗
1ϖ

∗
1 zð Þð Þ − A∗

1ϖ
∗
2 zð Þð Þj j = N∗ z, ϖ∗

1 zð Þð Þ −N∗ z, ϖ∗
2 zð Þð Þj j

≤ χ zð Þ ϖ∗
1 zð Þ − ϖ∗

2 zð Þj j,
ð39Þ

for all z ∈ ½a, T�. Therefore, for all ϖ∗
1 , ϖ∗

2 ∈W, we get

A∗
1ϖ

∗
1 −A∗

1ϖ
∗
2k kW ≤ χ∗ ϖ∗

1 − ϖ∗
2k kW: ð40Þ
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Hence, A∗
1 is Lipschitz with constant l∗ = χ∗ > 0. In the

current moment, we check the convexity of A∗
2 . For this,

let ϖ∗
1 , ϖ∗

2 ∈A
∗
2ϖ

∗. Choose bκ1, bκ2 ∈ ðSELÞ ~O,ϖ∗ such that

ϖ∗
i zð Þ = s∗1

~m1 − ~m2
+ 1
Γ σ∗ð Þ

ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1bκ i qð Þdq

+ s∗2
~m∗ φ zð Þ − φ að Þð Þ − ~m1 φ zð Þ − φ að Þð Þ

~m∗Γ σ∗ + μ∗ − ~μð Þ
�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1bκ i qð Þdq + ~m2 φ zð Þ − φ að Þð Þ

~m∗Γ σ∗ + μ∗ − 1ð Þ
�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2bκ i qð Þdq, i = 1, 2ð Þ,

ð41Þ

for almost all z ∈ ½a, T�. Let 0 < η < 1. Then,

ηϖ∗
1 zð Þ + 1 − ηð Þϖ∗

2 zð Þ = s∗1
~m1 − ~m2

+ s∗2
~m∗ φ zð Þ − φ að Þð Þ + 1

Γ σ∗ð Þ
�
ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1 ηbκ1 qð Þ + 1 − ηð Þbκ2 qð Þ½ �dq

−
~m1 φ zð Þ − φ að Þð Þ
~m∗Γ σ∗ + μ∗ − ~μð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1

� ηbκ1 qð Þ + 1 − ηð Þbκ2 qð Þ½ �dq + ~m2 φ zð Þ − φ að Þð Þ
~m∗Γ σ∗ + μ∗ − 1ð Þ

�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2 ηbκ1 qð Þ + 1 − ηð Þbκ2 qð Þ½ �dq,

ð42Þ

for almost all z ∈ ½a, T�. With due attention to the convexity
of ~O, ðSELÞ ~O,ϖ∗ has convex values. This implies that

ηbκ1 zð Þ + 1 − ηð Þbκ2 zð Þ ∈ SELð Þ ~O,ϖ∗ , ð43Þ

for almost all z ∈ ½a, T�. Therefore, A∗
2ϖ

∗ is convex for each
ϖ∗ ∈W. Next, we claim that A∗

2 is completely continuous.
To confirm this claim, we verify that the set A∗

2 ðWÞ is equi-
continuous and uniformly bounded. Firstly, we prove that
A∗

2 corresponds bounded sets to bounded sets contained in
W. For α∗ ∈ℝ+, define the bounded ball Bα∗ = fϖ∗ ∈W
: ∥ϖ∗∥W ≤ α∗g. For every ϖ∗ ∈Bα∗ and ξ∗ ∈A∗

2ϖ
∗, there

exists a function bκ ∈ ðSELÞ ~O,ϖ∗ such that

ξ∗ zð Þ = s∗1
~m1 − ~m2

+ 1
Γ σ∗ð Þ

ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1bκ qð Þdq

+ s∗2
~m∗ φ zð Þ − φ að Þð Þ − ~m1 φ zð Þ − φ að Þð Þ

~m∗Γ σ∗ + μ∗ − ~μð Þ
�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1bκ qð Þdq

+ ~m2 φ zð Þ − φ að Þð Þ
~m∗Γ σ∗ + μ∗ − 1ð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2bκ qð Þdq



,

ð44Þ

for almost all z ∈ ½a, T�. Then,

ξ∗ zð Þ�� �� ≤ 1
Γ σ∗ð Þ

ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1 bκ qð Þj jdq + s∗2

~m∗j j φ zð Þ − φ að Þð Þ

+ ~m1j j φ zð Þ − φ að Þð Þ
~m∗j jΓ σ∗ + μ∗ − ~μð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1 bκ qð Þj jdq

+ ~m2j j φ zð Þ − φ að Þð Þ
~m∗j jΓ σ∗ + μ∗ − 1ð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2 bκ qð Þj jdq

+ s∗1
~m1 − ~m2j j ≤

1
Γ σ∗ð Þ

ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1Y qð Þdq

+ s∗2
∣~m∗ ∣

φ zð Þ − φ að Þð Þ + ~m1j j φ zð Þ − φ að Þð Þ
∣~m∗ ∣ Γ σ∗ + μ∗ − ~μð Þ

�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1Y qð Þdq + ∣~m2 ∣ φ zð Þ − φ að Þð Þ

∣~m∗ ∣ Γ σ∗ + μ∗ − 1ð Þ
�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2Y qð Þdq + s∗1

∣~m1 − ~m2 ∣

≤
φ Tð Þ − φ að Þð Þσ∗
Γ σ∗ + 1ð Þ + s∗2

~m∗j j φ Tð Þ − φ að Þð Þ + ~m1j j φ Tð Þ − φ að Þð Þσ∗+μ∗−~μ+1
~m∗j jΓ σ∗ + μ∗ − ~μ + 1ð Þ

"

+ ~m2j j φ Tð Þ − φ að Þð Þσ∗+μ∗
~m∗j jΓ σ∗ + μ∗ð Þ + s∗1

~m1 − ~m2j j

#
Yk kL1 =Π∗∥Y∥L1 ,

ð45Þ

whereΠ∗ is given in (33). Thus, kξ∗k ≤Π∗kYkL1 , and so the
setA∗

2 ðWÞ is uniformly bounded. Now, we want to prove that
A∗

2 corresponds bounded sets to equicontinuous sets. Take
ϖ∗ ∈Bα∗ , ξ

∗ ∈A∗
2ϖ

∗ and choose bκ ∈ ðSELÞ ~O,ϖ∗ so that

ξ∗ zð Þ = 1
Γ σ∗ð Þ

ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1bκ qð Þ dq + s∗2

~m∗ φ zð Þ − φ að Þð Þ

−
~m1 φ zð Þ − φ að Þð Þ
~m∗Γ σ∗ + μ∗ − ~μð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1bκ qð Þdq

+ ~m2 φ zð Þ − φ að Þð Þ
~m∗Γ σ∗ + μ∗ − 1ð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2bκ qð Þdq

+ s∗1
~m1 − ~m2

,

ð46Þ

for almost all z ∈ ½a, T�. Let z1, z2 ∈ ½a, T� with z1 < z2, Then,

ξ∗ z2ð Þ − ξ∗ z1ð Þ�� �� ≤ 1
Γ σ∗ð Þ

ðz1
a
φ′ qð Þ φ z2ð Þ − φ qð Þð Þσ∗−1 − φ z1ð Þ − φ qð Þð Þσ∗−1

h i
� bκ qð Þj jdq + 1

Γ σ∗ð Þ
ðz2
z1

φ′ qð Þ φ z2ð Þ − φ qð Þð Þσ∗−1 bκ qð Þj jdq

+ s∗2
~m∗j j φ z2ð Þ − φ z1ð Þ½ � + ~m1j j φ z2ð Þ − φ z1ð Þ½ �

~m∗j jΓ σ∗ + μ∗ − ~μð Þ
�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1 bκ qð Þj jdq + ~m2j j φ z2ð Þ − φ z1ð Þ½ �

~m∗j jΓ σ∗ + μ∗ − 1ð Þ
�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2 bκ qð Þj jdq ≤ 1

Γ σ∗ð Þ
ðz1
a
φ′ qð Þ

� φ z2ð Þ − φ qð Þð Þσ∗−1 − φ z1ð Þ − φ qð Þð Þσ∗−1
h i

Y qð Þdq + 1
Γ σ∗ð Þ

�
ðz2
z1

φ′ qð Þ φ z2ð Þ − φ qð Þð Þσ∗−1Y qð Þdq + s∗2
~m∗j j φ z2ð Þ − φ z1ð Þ½ �

+ ~m1j j φ z2ð Þ − φ z1ð Þ½ �
~m∗j jΓ σ∗ + μ∗ − ~μð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1Y qð Þdq

+ ~m2j j φ z2ð Þ − φ z1ð Þ½ �
~m∗j jΓ σ∗ + μ∗ − 1ð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2Y qð Þdq:

ð47Þ
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The right-hand side of the latter inequalities tends to zero
(independent of ϖ∗ ∈Bα∗) as z1 tends to z2. Application of
Arzela–Ascoli theorem gives the complete continuity of A∗

2 .
We here discuss that A∗

2 has a closed graph, and this finding
implies that A∗

2 is upper semicontinuous. To achieve this

aim, let ϖ∗
n ∈Bα∗ and ξ∗n ∈ ðA∗

2ϖ
∗
nÞ with ϖ∗

n ⟶ ϖ∗∗ and ξ∗n
⟶ ~ξ

∗
. We claim that ~ξ

∗
∈ ðA∗

2ϖ
∗∗Þ. For every n ≥ 1 and ξ∗n

∈ ðA∗
2ϖ

∗
nÞ, choose bκn ∈ ðSELÞ ~O,ϖ∗

n
such that

ξ∗n zð Þ = 1
Γ σ∗ð Þ

ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1bκn qð Þdq

+ s∗2
~m∗ φ zð Þ − φ að Þð Þ − ~m1 φ zð Þ − φ að Þð Þ

~m∗Γ σ∗ + μ∗ − ~μð Þ
�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1bκn qð Þdq

+ ~m2 φ zð Þ − φ að Þð Þ
~m∗Γ σ∗ + μ∗ − 1ð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2bκn qð Þdq

+ s∗1
~m1 − ~m2

,

ð48Þ

for almost all z ∈ ½a, T�. It is suffices to find that there is a
member κ∧∗ ∈ ðSELÞ ~O,ϖ∗∗ so that

~ξ
∗
zð Þ = 1

Γ σ∗ð Þ
ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1κ∧∗ qð Þdq

+ s∗2
~m∗ φ zð Þ − φ að Þð Þ − ~m1 φ zð Þ − φ að Þð Þ

~m∗Γ σ∗ + μ∗ − ~μð Þ
�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1κ∧∗ qð Þdq

+ ~m2 φ zð Þ − φ að Þð Þ
~m∗Γ σ∗ + μ∗ − 1ð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2κ∧∗ qð Þdq

+ s∗1
~m1 − ~m2

,

ð49Þ

for almost all z ∈ ½a, T�. Define a linear continuous operator
∐ : L1ð½a, T�,ℝÞ⟶W =Cð½a, T�,ℝÞ as

∐bκ zð Þ = ϖ∗ zð Þ = 1
Γ σ∗ð Þ

ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1bκ qð Þdq

+ s∗2
~m∗ φ zð Þ − φ að Þð Þ − ~m1 φ zð Þ − φ að Þð Þ

~m∗Γ σ∗ + μ∗ − ~μð Þ
�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1bκ qð Þdq

+ ~m2 φ zð Þ − φ að Þð Þ
~m∗Γ σ∗ + μ∗ − 1ð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2bκ qð Þdq

+ s∗1
~m1 − ~m2

,

ð50Þ

for almost all z ∈ ½a, T�. Hence,

ξ∗n zð Þ − ~ξ
∗
zð Þ

��� ��� = 1
Γ σ∗ð Þ

ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1

����
� bκn qð Þ − κ∧∗ qð Þð Þdq + s∗2

~m∗ φ zð Þ − φ að Þð Þ

−
~m1 φ zð Þ − φ að Þð Þ
~m∗Γ σ∗ + μ∗ − ~μð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1

� bκn qð Þ − κ∧∗ qð Þð Þdq + ~m2 φ zð Þ − φ að Þð Þ
~m∗Γ σ∗ + μ∗ − 1ð Þ

ðT
a
φ′

� qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2 bκn qð Þ − κ∧∗ qð Þð Þdq
����⟶ 0:

ð51Þ

Application of Theorem 3 shows that ∐∘ðSELÞ ~O has a
closed graph. Besides, since ξ∗n ∈∐ððSELÞ ~O,ϖn

Þ and ϖn ⟶

ϖ∗∗, so there exists κ∧∗ ∈ ðSELÞ ~O,ϖ∗∗ such that

~ξ
∗
zð Þ = 1

Γ σ∗ð Þ
ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1κ∧∗ qð Þdq

+ s∗2
~m∗ φ zð Þ − φ að Þð Þ − ~m1 φ zð Þ − φ að Þð Þ

~m∗Γ σ∗ + μ∗ − ~μð Þ
�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1κ∧∗ qð Þdq

+ ~m2 φ zð Þ − φ að Þð Þ
~m∗Γ σ∗ + μ∗ − 1ð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2κ∧∗ qð Þdq

+ s∗1
~m1 − ~m2

,

ð52Þ

for almost all z ∈ ½a, T�. Hence, ~ξ
∗
∈ ðA∗

2ϖ
∗∗Þ, and so A∗

2 pos-
sesses closed graph which implies that A∗

2 is upper semicon-
tinuous. On the other hand, because of the compactness of
values of A∗

2 , it is immediately deduced that A∗
2 is compact

and upper semicontinuous. Utilizing (C3), we get

Ô = A∗
2 Wð Þk k = sup A∗

2ϖ
∗j j: ϖ∗ ∈Wf g

= s∗1
~m1 − ~m2j j +

φ Tð Þ − φ að Þð Þσ∗
Γ σ∗ + 1ð Þ + s∗2

~m∗j j φ Tð Þ − φ að Þð Þ
"

+ ~m1j j φ Tð Þ − φ að Þð Þσ∗+μ∗−~μ+1
~m∗j jΓ σ∗ + μ∗ − ~μ + 1ð Þ + ~m2j j φ Tð Þ − φ að Þð Þσ∗+μ∗

~m∗j jΓ σ∗ + μ∗ð Þ

#
� Yk kL1 =Π∗∥Y∥L1 :

ð53Þ

Put l∗ = χ∗. We have Ôl∗ < 1/2. Utilizing Theorem 4, we
prove that one of the items ðiÞ or ðiiÞ is possible. First, we check
that the item ðiÞ is not the case. From Theorem 4 and the
assumption (C4), consider an arbitrary member ϖ∗

0 of Σ
∗ with

∥ϖ∗
0 ∥ = bε. Then, α0ϖ∗

0 ðzÞ ∈ ðA∗
1ϖ

∗
0 ÞðA∗

2ϖ
∗
0 ÞðzÞ for all α0 > 1.

8 Journal of Function Spaces



Choosing a function bκ ∈ ðSELÞ ~O,ϖ∗
0
, for each α0 > 1, we have

ϖ∗
0 zð Þ = 1

α0
N∗ z, ϖ∗

0 zð Þð Þ s∗1
~m1 − ~m2

+ 1
Γ σ∗ð Þ

ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1bκ	

� qð Þdq + s∗2
~m∗ φ zð Þ − φ að Þð Þ − ~m1 φ zð Þ − φ að Þð Þ

~m∗Γ σ∗ + μ∗ − ~μð Þ
�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1bκ qð Þdq + ~m2 φ zð Þ − φ að Þð Þ

~m∗Γ σ∗ + μ∗ − 1ð Þ
�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2bκ qð Þdq



,

ð54Þ

for almost all z ∈ ½a, T�. Thus, one can write

ϖ∗
0 zð Þj j = 1

α0
N∗ z, ϖ∗

0 zð Þð Þj j s∗1
~m1 − ~m2j j +

1
Γ σ∗ð Þ

	
�
ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1 bκ qð Þj jdq

+ s∗2
~m∗j j φ zð Þ − φ að Þð Þ + ~m1j j φ zð Þ − φ að Þð Þ

~m∗j jΓ σ∗ + μ∗ − ~μð Þ
�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1 bκ qð Þj jdq

+ ~m2j j φ zð Þ − φ að Þð Þ
~m∗j jΓ σ∗ + μ∗ − 1ð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2 bκ qð Þj jdq



≤

1
α0

N∗ z, ϖ∗
0 zð Þð Þ −N∗ z, 0ð Þj j + N∗ z, 0ð Þj j½ �

× s∗1
~m1 − ~m2j j +

1
Γ σ∗ð Þ

ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1 bκ qð Þj jdq

	
+ s∗2

~m∗j j φ zð Þ − φ að Þð Þ + ~m1j j φ zð Þ − φ að Þð Þ
~m∗j jΓ σ∗ + μ∗ − ~μð ÞðT

a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1 bκ qð Þj jdq + ~m2j j φ zð Þ − φ að Þð Þ

~m∗j jΓ σ∗ + μ∗ − 1ð ÞðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2 bκ qð Þj jdq



≤ χ∗bε +F∗½ �Π∗ Yk kL1 :

ð55Þ

Hence, we get

bε ≤ Yk kL1F
∗Π∗

1 −Π∗χ∗ Yk kL1
, ð56Þ

which is a contradiction. Hence, the item ðiiÞ indicated in
Theorem 4 is valid. Thus, ϖ∗ ∈W exists so that ϖ∗ ∈ ðA∗

1ϖ
∗Þ

ðA∗
2ϖ

∗Þ. In consequence, the operator K has a fixed point.
So the φ-hybrid inclusion BVP (2) and (3) has a solution,
and this completes the proof.

Definition 9. An absolutely continuous function ϖ∗ : ½a, T�
⟶ℝ is called a solution for the non-φ-hybrid inclusion
BVP (4) in the sense of Caputo if there is bκ ∈L1ð½a, T�,ℝÞ
with bκðzÞ ∈ ~Oðz, ϖ∗ðzÞÞ for almost all z ∈ ½a, T� which
satisfies separated mixed φ-integro-derivative boundary
conditions

~m1ϖ
∗ að Þ = s∗1 + ~m2ϖ

∗ að Þ,
~m1

RLI
μ∗ ;φ
a

CD
~μ;φ
a ϖ∗ Tð Þ = s∗2 + ~m2

RLI
μ∗ ;φ
a

CD
1;φ
a ϖ∗ Tð Þ,

(
ð57Þ

ϖ∗ zð Þ = s∗1
~m1 − ~m2

+ 1
Γ σ∗ð Þ

ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1bκ qð Þdq

+ s∗2
~m∗ φ zð Þ − φ að Þð Þ − ~m1 φ zð Þ − φ að Þð Þ

~m∗Γ σ∗ + μ∗ − ~μð Þ
�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1bκ qð Þdq

+ ~m2 φ zð Þ − φ að Þð Þ
~m∗Γ σ∗ + μ∗ − 1ð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2bκ qð Þdq,

ð58Þ
for almost all z ∈ ½a, T�.

For each ϖ∗ ∈W, the collection of all existing selections
of O is defined as

SELð ÞO,ϖ∗ = bκ ∈L1 a, T½ �ð Þ: bκ zð Þ ∈O z, ϖzð Þ� 

, ð59Þ

for almost all z ∈ ½a, T�. Define F : W⟶P ðWÞ as

F ϖ∗ð Þ = ϑ ∈W : ϑ zð Þ = ρ zð Þf g, ð60Þ

where

ϱ zð Þ = s∗1
~m1 − ~m2

+ 1
Γ σ∗ð Þ

ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1bκ qð Þdq

+ s∗2
~m∗ φ zð Þ − φ að Þð Þ − ~m1 φ zð Þ − φ að Þð Þ

~m∗Γ σ∗ + μ∗ − ~μð Þ
�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1bκ qð Þdq

+ ~m2 φ zð Þ − φ að Þð Þ
~m∗Γ σ∗ + μ∗ − 1ð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2bκ

� qð Þdq, bκ ∈ SELð ÞO,ϖ∗ :

ð61Þ

By making use of endpoints for the multifunction F, we
prove the following theorem.

Theorem 10. Consider O : ½a, T� ×W⟶P cpðWÞ as a set-
valued operator. Let

(C5) ψ : ½0,∞Þ⟶ ½0,∞Þ be increasing and upper semi-
continuous with lim inf z⟶∞ðz − ψðzÞÞ > 0 and z > ψðzÞ, ∀z
> 0

(C6) the multifunction O : ½a, T� ×W⟶P cpðWÞ be
integrable and bounded so that Oð·, ϖ∗Þ: ½a, T�⟶P cpðWÞ
be measurable for each ϖ∗ ∈W

(C7) a function ϱ ∈ Cð½a, T�, ½0,∞ÞÞ exists such that

ℙℍdW O z, ϖ∗
1ð Þ,O z, ϖ′∗1

� �� �
≤ ϱ zð Þψ ϖ∗

1 zð Þ−ϖ′∗1 zð Þ
��� ���� � 1

Ω∗∗ ,

ð62Þ
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for almost all z ∈ ½a, T� and all ϖ∗
1 , ϖ′

∗
1 ∈W, where sup

z∈½a,T�
jϱðzÞj

= kϱk and

Ω∗∗ = 1
Γ σ∗ + 1ð Þ −

∣~m1 ∣ φ Tð Þ − φ að Þð Þσ∗+μ∗−~μ+1
~m∗j jΓ σ∗ + μ∗ − ~μ + 1ð Þ

"

+ ∣~m2 ∣ φ Tð Þ − φ að Þð Þσ∗+μ∗
~m∗j jΓ σ∗ + μ∗ð Þ

#
ϱk k

ð63Þ

(C8) the operator F given by (60) possesses APXEndP-
property

Then, a solution exists to the non-φ-hybrid inclusion
FBVP (4).

Proof. In such an argument, we try to prove the existence of
endpoint to the set-valued operator F : W⟶P ðWÞ
defined by (60). To proceed this, we first investigate that F
ðϖ∗Þ is closed for each ϖ∗ ∈W. By taking into account the
hypothesis (C6), z↦Oðz, ϖ∗ðzÞÞ is a closed-valued measur-
able multifunction for each ϖ∗ ∈W. In consequence, O has
a measurable selection ðSELÞO,ϖ∗ ≠ ∅. Now, we show that
Fðϖ∗Þ ⊆W is closed for all ϖ∗ ∈W. Consider the sequence
ðϖ∗

nÞn≥1 contained in Fðϖ∗Þ with ϖ∗
n ⟶ μ. For each n, there

exists bκn ∈ ðSELÞO,ϖ∗ such that

ϖ∗
n zð Þ = s∗1

~m1 − ~m2
+ 1
Γ σ∗ð Þ

ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1bκn qð Þdq

+ s∗2
~m∗ φ zð Þ − φ að Þð Þ − ~m1 φ zð Þ − φ að Þð Þ

~m∗Γ σ∗ + μ∗ − ~μð Þ
�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1bκn qð Þdq

+ ~m2 φ zð Þ − φ að Þð Þ
~m∗Γ σ∗ + μ∗ − 1ð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2bκn qð Þdq,

ð64Þ

for almost all z ∈ ½a, T�. Since O is compact multifunction,
we acquire a subsequence ðbκnÞn≥1 tending to bκ ∈L1ð½a, T�Þ.
Hence, we have bκ ∈ ðSELÞO,ϖ∗ and

lim
n⟶∞

ϖ∗
n zð Þ = s∗1

~m1 − ~m2
+ 1
Γ σ∗ð Þ

ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1bκ qð Þdq

+ s∗2
~m∗ φ zð Þ − φ að Þð Þ − ~m1 φ zð Þ − φ að Þð Þ

~m∗Γ σ∗ + μ∗ − ~μð Þ
�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1bκ qð Þdq

+ ~m2 φ zð Þ − φ að Þð Þ
~m∗Γ σ∗ + μ∗ − 1ð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2bκ

� qð Þdq = ϖ∗ zð Þ,
ð65Þ

for almost all z ∈ ½a, T�. Hence, ϖ∗ ∈F which indicates
that F is closed-valued. In addition, Fðϖ∗Þ is bounded for
each ϖ∗ ∈W since O is compact. Finally, we investigate if ℙ

ℍdWðFðϖ∗Þ,Fð~ϖ∗ÞÞ ≤ ψðkϖ∗ − ~ϖ
∗kÞ holds. Let ϖ∗, ~ϖ∗ ∈W,

and x1 ∈Fð~ϖ∗Þ. Choose bκ1 ∈ ðSELÞO,~ϖ∗ such that

x1 zð Þ = s∗1
~m1 − ~m2

+ 1
Γ σ∗ð Þ

ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1bκ1 qð Þdq

+ s∗2
~m∗ φ zð Þ − φ að Þð Þ − ~m1 φ zð Þ − φ að Þð Þ

~m∗Γ σ∗ + μ∗ − ~μð Þ
�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1bκ1 qð Þdq

+ ~m2 φ zð Þ − φ að Þð Þ
~m∗Γ σ∗ + μ∗ − 1ð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2bκ1 qð Þdq,

ð66Þ

for almost all z ∈ ½a, T�. Since

ℙℍdW O z, ϖ∗ð Þ,O z, ~ϖ∗� �� �
≤ ϱ zð Þ�ψ�ϖ∗ zð Þ − ϖ~∗ zð Þ�� 1

Ω∗∗ ,

ð67Þ

for almost all z ∈ ½a, T�, so there exists k∗ ∈Oðz, ϖ∗Þ such that

bκ1 zð Þ − k∗j j ≤ �ψ�ϖ∗ zð Þ − ϖ~∗ zð Þ�� ϱ zð Þ
Ω∗∗ , ð68Þ

for almost all z ∈ ½a, T�. Define the multifunction A : ½a, T�
⟶P ðWÞ given by

A zð Þ = k∗ ∈W : bκ1 zð Þ − k∗j j ≤ ϱ zð Þ�ψ�ϖ∗ zð Þ − ϖ~∗ zð Þ�� 1
Ω∗∗

)
:

(
ð69Þ

Since bκ and σ = ϱðψðϖ∗ − ~ϖ
∗ÞÞ1/Ω∗∗ are measurable, thus

we choose bκ2ðzÞ ∈Oðz, ϖ∗ðzÞÞ such that

bκ1 zð Þ − bκ2 zð Þj j ≤ �ψ�ϖ∗ zð Þ − ϖ~∗ zð Þ�� ϱ zð Þ
Ω∗∗ , ð70Þ

for almost all z ∈ ½a, T�. Select x2 ∈Fðϖ∗Þ such that

x2 zð Þ = s∗1
~m1 − ~m2

+ 1
Γ σ∗ð Þ

ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1bκ2 qð Þdq

+ s∗2
~m∗ φ zð Þ − φ að Þð Þ − ~m1 φ zð Þ − φ að Þð Þ

~m∗Γ σ∗ + μ∗ − ~μð Þ
�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1bκ2 qð Þ dq

+ ~m2 φ zð Þ − φ að Þð Þ
~m∗Γ σ∗ + μ∗ − 1ð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2bκ2 qð Þdq,

ð71Þ
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for almost all z ∈ ½a, T�. Hence, we get

x1 zð Þ − x2 zð Þj j ≤ 1
Γ σ∗ð Þ

ðz
a
φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1 bκ1 qð Þ − bκ2 qð Þj jdq

+ ~m1j j φ zð Þ − φ að Þð Þ
~m∗j jΓ σ∗ + μ∗ − ~μð Þ

ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−~μ−1

� bκ1 qð Þ − bκ2 qð Þj jdq + ~m2j j φ zð Þ − φ að Þð Þ
~m∗j jΓ σ∗ + μ∗ − 1ð Þ

�
ðT
a
φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+μ∗−2 bκ1 qð Þ − bκ2 qð Þj jdq

≤
1

Γ σ∗ + 1ð Þ ϱk kψ ϖ∗ − ~ϖ
∗�� ��� � 1

Ω∗∗ −
~m1j j φ Tð Þ − φ að Þð Þσ∗+μ∗−~μ+1
~m∗j jΓ σ∗ + μ∗ − ~μ + 1ð Þ

� ϱk kψ ϖ∗ − ~ϖ
∗�� ��� � 1

Ω∗∗ + ~m2j j φ Tð Þ − φ að Þð Þσ∗+μ∗
~m∗j jΓ σ∗ + μ∗ð Þ ϱk kψ

� ϖ∗ − ~ϖ
∗�� ��� � 1

Ω∗∗ = 1
Γ σ∗ + 1ð Þ −

~m1j j φ Tð Þ − φ að Þð Þσ∗+μ∗−~μ+1
~m∗j jΓ σ∗ + μ∗ − ~μ + 1ð Þ

"

+ ~m2j j φ Tð Þ − φ að Þð Þσ∗+μ∗
~m∗j jΓ σ∗ + μ∗ð Þ

#
ϱk kψ ϖ∗ − ~ϖ

∗�� ��� � 1
Ω∗∗

=Ω∗∗ψ ∥ϖ∗ − ~ϖ
∗∥

� � 1
Ω∗∗ = ψ ∥ϖ∗ − ~ϖ

∗∥
� �

:

ð72Þ

This gives kx1 − x2k ≤ ψðkϖ∗ − ~ϖ
∗kÞ and shows that ℙ

ℍdWðFðϖ∗Þ,Fð~ϖ∗ÞÞ ≤ ψðkϖ∗ − ~ϖ
∗kÞ for all ϖ∗, ~ϖ∗ ∈W.

Also from (C8), we realize that F has approximate endpoint
property. Application of Theorem 5 gives thatK has a unique
endpoint, i.e., there exists ϖ∗∗ ∈W such thatFðϖ∗∗Þ = fϖ∗∗g.
In conclusion, ϖ∗∗ is a solution to the non-φ-hybrid inclusion
BVP (4).

4. Some Examples

This section involves two different numerical simulation
examples corresponding to the relevant φ-hybrid and non-
φ-hybrid fractional inclusion boundary problems to guaran-
tee the applicability of proved theorems.

Example 1. With due attention to (2) and (3), we design the
Caputo φ-hybrid differential inclusion BVP as

CD
1:62;z+2
0

ϖ∗ zð Þ
z sin ϖ∗ zð Þ/42 + 1/4

� �
∈

� sin ϖ∗ zð Þ
z 2 + sin zj jð Þ ,

cos ϖ∗ zð Þj j
4 1 + cos ϖ∗ zð Þj jð Þ +

3
5

	 

,

ð73Þ

supplemented with separated mixed φ-integro-derivative
boundary conditions

where z ∈ ½0, 1�, σ∗ = 1:62, ~μ = 0:4, μ∗ = 1:4, ~m1 = 0:8, ~m2 =
0:4, s∗1 = 1:2, s∗2 = 0:9, and φðzÞ = z + 2. We define N∗ : ½0, 1
� ×ℝ⟶ℝ f0g by N∗ðz, ϖ∗ðzÞÞ = z sin ϖ∗ðzÞ/42 + 1/4
which is nonzero and continuous. Notice that F∗ =
supz∈½0,1�j ~N∗ðz, 0Þj = 1/4. Moreover, the function N∗ is
Lipschitz, that is, for each φ∗

1 , φ∗
2 ∈ℝ, we have

N∗ z, ϖ∗
1 zð Þð Þ −N∗ z, ϖ∗

2 zð Þð Þj j = z sin ϖ∗
1 zð Þ
42 − z sin ϖ∗

2 zð Þ
42

���� ����
≤

z
42 ϖ∗

1 zð Þ − ϖ∗
2 zð Þj j:

ð75Þ

If χðzÞ = z/42, then χ∗ = supz∈½0,1�jχðzÞj = 1/42. Now,

define ~O : ½0, 1� ×ℝ⟶ PðℝÞ by

~O z, ϖ∗ zð Þð Þ = sin ϖ∗ zð Þ
z sin zj j + 2z ,

cos ϖ∗ zð Þj j
4 cos ϖ∗ zð Þj j + 1ð Þ + 3

5

	 

:

ð76Þ

Since

ζj j ≤max sin ϖ∗ zð Þ
z sin zj j + 2zÞ ,

cos ϖ∗ zð Þj j
4 cos ϖ∗ zð Þj j + 1ð Þ + 3

5

	 

≤ 1,

ð77Þ

therefore, we have

~O z, ϖ∗ zð Þð Þ
��� ��� = sup bκj j: bκ ∈ ~O z, ϖ∗ zð Þð Þ

n o
≤ Y zð Þ = 1:

ð78Þ

Then, kYkL1
= Ð 10jYðqÞjdq = Ð 101 · dq = 1. By using above

values, we have Π∗ = 20:1356266. Also, we can find bε withbε > 9:67254. Finally, we have χ∗Π∗kYkL1 = 0:47949 < 1/2.
Thus, all assertions of Theorem 8 are verified. Hence, the φ
-hybrid Caputo differential inclusion BVP (73) supple-
mented with separated mixed φ-integro-derivative boundary
conditions (74) has a solution.

0:8 ϖ∗ zð Þ
z sin ϖ∗ zð Þ/42 + 1/4

� �
z=0 = 1:2 + 0:4ð Þ ϖ∗ zð Þ

z sin ϖ∗ zð Þ/42 + 1/4

� ����� ����
z=0

,

0:8RLI
1:4;z+2
0

CD
0:4;z+2
0

ϖ∗ zð Þ
z sin ϖ∗ zð Þ/42 + 1/4

� �
z=1 = 0:9 + 0:4RLI

1:4;z+2
0

CD
1;z+2
0

ϖ∗ zð Þ
z sin ϖ∗ zð Þ/42 + 1/4

� ����� ����
z=1

,

8>>><>>>: ð74Þ
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Example 2. With due attention to (4), we design the Caputo
non-φ-hybrid differential inclusion BVP as

CD
1:4;2z+3/2
0 ϖ∗ zð Þ ∈ 0, 2 ϖ∗ zð Þj j

3 1/2 + zð Þ 2 + ϖ∗ zð Þj jð Þ
	 


, ð79Þ

supplemented with separated mixed φ-integro-derivative
boundary

0:73ð Þϖ∗ 0ð Þ = 0:7 + 0:3ϖ∗ 0ð Þ,
0:73RLI 1:6;2z+3/2

0
CD

0:73;2z+3/2
0 ϖ∗ 1ð Þ = 0:6 + 0:3RLI

1:6;2z+3/2
0

CD
1;2z+3/2
0 ϖ∗ 1ð Þ:

(

ð80Þ

where CD
1:4;2z+3/2
0 denotes the φ-CF derivative of order

σ∗ = 1:4, z ∈ ½0, 1�, ~μ = 0:6, μ∗ = 1:6, ~m1 = 0:73, ~m2 = 0:3,
s∗1 = 0:7, s∗2 = 0:6, and φðzÞ = 2z + 3/2. Using these values,
we have ~m∗ = 0:15516. We consider the Banach space W

= fϖ∗ðzÞ: ϖ∗ðzÞ ∈Cð½0, 1�,ℝÞg equipped with kϖ∗kW =
supz∈½0,1�jϖ∗ðzÞj. Now, we define a multivalued map ~O : ½0,
1� ×W⟶P ðWÞ by

~O z, ϖ∗ zð Þð Þ = 0, 2 ϖ∗ zð Þj j
36 1/2 + zð Þ 2 + ϖ∗ zð Þj jð Þ

	 

, ð81Þ

for almost all z ∈ ½0, 1�. We define ψ : ;½0,∞Þ⟶ ½0,∞Þ by
ψðzÞ = z/3, ∀z > 0. Obviously, lim inf z⟶∞ðz − ψðzÞÞ > 0
and ψðzÞ < z for all z > 0. Now, for each ϖ∗

1 , ϖ∗
2 ∈W, we have

ℙℍdW
~O z, ϖ∗

1 zð Þð Þ, ~O z, ϖ∗
2 zð Þð Þ

� �
≤

2
36 1/2 + zð Þ ϖ∗

1 zð Þ − ϖ∗
2 zð Þj jð Þ ≤ ψ ϖ∗

1 zð Þ−ϖ∗
2 zð Þj jð Þ ρ zð Þ

Ω∗∗ ,

ð82Þ

where Ω∗∗ = 0:21377 and ϱ ∈Cð½0, 1�, ½0,∞ÞÞ is defined
as ϱðzÞ = 2/12ð1/2 + zÞ for all z. Then, kϱk = supz∈½0,1� = 1/3.
Lastly, we introduce F : W⟶P ðWÞ by

F ϖ∗ð Þ = ϑ ∈W : there exists ~κ ∈ SELð Þ ~O,ϖ∗s:t:ϑ zð Þ = ρ zð Þ,∀z ∈ 0, 1½ �� 

,

ð83Þ

in which

ρ zð Þ = 0:7
0:43 + 1

Γ 1:4ð Þ
ðz
0
φ′ qð Þ φ zð Þ − φ qð Þð Þ0:4bκ qð Þdq

+ 0:6
0:15516 φ zð Þ − φ 0ð Þð Þ − 0:73 φ zð Þ − φ 0ð Þð Þ

0:15516Γ 2:4ð Þ
�
ðT
0
φ′ qð Þ φ 1ð Þ − φ qð Þð Þ1:4bκ qð Þdq + 0:3 φ zð Þ − φ 0ð Þð Þ

0:15516Γ 2ð Þ
�
ðT
0
φ′ qð Þ φ 1ð Þ − φ qð Þð Þbκ qð Þdq:

ð84Þ

Thus, all assertions of Theorem 10 are verified. Hence,
the non-φ-hybrid Caputo differential inclusion BVP (79)

with separated mixed φ-integro-derivative boundary (80)
has a solution.

5. Conclusion

In the current research study, we derived some theoretical
criteria to prove the existence results to a new φ-hybrid frac-
tional differential inclusion in the Caputo settings depending
on the increasing function φ with separated mixed φ-hybrid-
integro-derivative boundary conditions. The applied method
to achieve desired purposes is based on Dhage’s fixed point
result. In addition, we discussed a special case of the pro-
posed φ-inclusion problem in the non-φ-hybrid structure
with the help of the endpoint notion. To confirm the appli-
cability of our theoretical findings, two specific numerical
examples are provided which simulate both φ-hybrid and
non-φ-hybrid cases. Hence, this research work can motivate
other researchers in this field to concentrate on various
investigations of different φ-hybrid structures formulated
by other fractional operators.
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