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Edge theoretic extended contractions are introduced and coincidence point theorems and common fixed-point theorems are
proved for such contraction mappings in a metric space endowed with a graph. As further applications, we have proved the
existence of a solution of a nonlinear integral equation of Volterra type and given a suitable example in support of our result.

1. Introduction and Preliminaries

The celebrated Banach contraction principle is a motivation
for many fixed-point theorems. It guarantees the existence
and uniqueness of solution of various equations arising in
mathematics. The initial generalizations of Banach’s result
came up in the form of Kannan’s contraction, Chatterjea’s
contraction, Reich’s contraction, Ciric’s contraction, Hardy-
Roger’s contraction, and Ciric’s quasicontraction. Among
these, Ciric’s quasicontraction is the most general form in
the sense that any mapping which does not satisfy Ciric’s
quasicontraction does not satisfy any of the previously men-
tioned contractions. Further, these results have been widely
investigated and many interesting applications have been
found by many authors (see [1–7]). F-contraction and
fixed-point theorem for F-contraction mappings were intro-
duced by Wardowski [8] as a generalisation of the Banach
contraction principle.

Definition 1 (see [8]). Consider the collection of functions
F : ð0,∞Þ⟶ℝ satisfying the following:

ðF1ÞF is strictly increasing
ðF2Þ If fαng ⊂ ð0,∞Þ is a sequence, then limn⟶∞αn = 0

iff limn⟶∞FðαnÞ = −∞
ðF2Þ There exists k ∈ ð0, 1Þ such that limγ⟶0+γ

kFðγÞ = 0

An operator T : Xi, di ⟶ Xi is an F-contraction if we
can find τ > 0 such that

∀xi, yi ∈ Xi, di Txi, Tyi
� �

> 0⟹ τ + F di Tx
i, Tyi

� �� �
≤ F di x

i, yi
� �� �

:

ð1Þ

Later, the concept of F-weak contraction and ordered F
-contractions was introduced by Wardowski and Van Dung
[9] and Durmaz et al. [10], respectively. In 2016, Sawangsup
et al. [11] extended the F-contraction using a relation theo-
retic approach which was later generalised by Imdad et al.
[12] and Alfaqih et al. [13]. Espinola and Kirk [14] intro-
duced graph theory in fixed-point theory, and Jachymski
[15] continued this idea by using different views thereby
introducing the G-contraction and proved fixed-point theo-
rem for a G-contraction mapping. These ideas were further
extended and generalised by [16–24].

It is interesting to note that all these contraction condi-
tions ensure the existence of a unique fixed point or com-
mon fixed point of the mappings under consideration.
However, it is observed that a mapping which possesses
nonunique fixed points does not satisfy the above contrac-
tions, for if xi and yi are any two fixed points of a self-map
Ti of a metric space ðXi, diÞ, then
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di Tixi, Tiyi
� �

= di xi, yi
� �

=max di xi, yi
� �

, di xi, Tixi
� �

, di yi, Tiyi
� �

, d
i xi, Tiyi
� �

+ di yi, Tixi
� �

2

( )
,

di Tixi, Tiyi
� �

= di xi, yi
� �

=max di xi, yi
� �

, di xi, Tixi
� �

, di yi, Tiyi
� �

, di xi, Tiyi
� �

, di yi, Tixi
� �n o

,

ð2Þ

and thus, we see that Ti does not satisfy Ciric’s quasicontrac-
tion, Wardowski’s F-contraction, and Wardowski and Van
Dung’s F-weak contraction. Thus, these contraction condi-
tions cannot be used to prove the existence of nonunique
fixed points of a function defined in a metric space. On the
other hand, many equations obtained by modeling various
problems of engineering and science need not necessarily
have a unique solution. Thus, it becomes meaningful to
obtain extended forms of above contractions which will
ensure the existence of nonunique fixed points of self-maps
defined in a metric space.

Motivated by this fact, in this paper, we have introduced
extended JW -contraction (Jungck-Wardowski contrac-
tion), extended CW -contraction (Ciric-Wardowski contrac-
tion), and extended CWQ-contraction (Ciric-Wardowski
quasicontraction) and established fixed-point theorems
which will ensure the existence of nonunique fixed points
of a self-map and coincidence points of a pair of self-maps,
respectively, in a metric space endowed with a graph. As an
application of our result, we have also proven the existence
of solution of a nonlinear integral equation of Volterra type.

Throughout this paper, we consider the metric space
ðXj, djÞ to be endowed with the graph G = ðVðGÞ, EðGÞÞ,
VðGÞ = Xj, and Δ ⊆ EðGÞ; Δ = fðxj, xjÞ: xj ∈ Xjg.

Definition 2 (see [15]). A sequence fxjng ⊆ Xj is edge-
preserving if ðxjn, xjn+1Þ ∈ EðGÞ for all n ∈ℕ0.

Definition 3. Let g : Xj ⟶ Xj. A sequence fxjng ⊆ Xj is g
-edge-preserving if ðgxjn, gxjn+1Þ ∈ EðGÞ for all n ∈ℕ0.

Definition 4. T : Xj ⟶ Xj is edge-preserving if ðxj, yjÞ ∈ E
ðGÞ implies ðTxj, TyjÞ ∈ EðGÞ.

Definition 5. T , g : Xj ⟶ Xj is g-edge-preserving if for all
xj, yj ∈ X, ðgxj, gyjÞ ∈ EðGÞ implies ðTxj, TyjÞ ∈ EðGÞ.

Definition 6 (see [15]). ðXj, djÞ is edge-complete if every

edge-preserving Cauchy sequence in Xj converges to some
point in Xj.

Definition 7 (see [15]). T : Xj ⟶ Xj is edge-continuous at
xj if fxjng⟶ xj implies fTxjng⟶ Txj for any edge-
preserving sequence fxjng ⊆ Xj. If T is edge-continuous at
all xj ∈ Xj, then T is an edge-continuous mapping.

Definition 8. Let T , g : Xj ⟶ Xj and xj ∈ Xj. We say that T
is g-edge continuous at xj if fgxjng⟶ gxj implies fTxjng

⟶ Txj for any edge-preserving sequence fxjng ⊆ Xj. If T
is g-edge continuous at all xj ∈ Xj, then T is an g-edge con-
tinuous mapping.

Definition 9. ðT , gÞ is edge-compatible if and only if for
any sequence T and g edge-preserving sequence fxjng ⊆
X, limn⟶∞gxjn = limn⟶∞Txjn = x ∈ Xj implies limn⟶∞

djðgTxjn, TgxjnÞ = 0:

We will use the following lemmas taken from [25, 26]:

Lemma 10. (see [25]). Let M be a nonempty set and g : M
⟶M. Then, there exists a subset S ⊆M such that gðsÞ = g
ðMÞ and g : S⟶ S is one-one.

Lemma 11 (see [26]). Let fxjng be a sequence in metric space
ðXj, djÞ such that limn⟶+∞djðxjn, xjn+1Þ = 0: If fxjng is not

Cauchy in ðXj, djÞ, then there exist ξ > 0 and sequences fnkg
and fpkg in ℕ such that nk > pk > k, and the sequences

dj xjnk , x
j
pk

� �n o
, dj xjnk+1, x

j
pk

� �n o
, dj xjnk , x

j
pk−1

� �n o
,

dj xjnk+1, x
j
pk−1

� �n o
, dj xjnk+1, x

j
pk+1

� �n o
,

ð3Þ

tend to be ξ+, as k⟶ +∞:

2. Edge Theoretic Extended Contractions

Let F be the collection of all nondecreasing continuous func-
tions F : ð0,∞Þ⟶ℝ.

Example 1. Some examples of function belonging to the class
F are

F yð Þ = y2,
F yð Þ = ln y,

F yð Þ = y −
1
y
,

F yð Þ = ln y
3 + sin y
� �

:

ð4Þ

Let A ⊂ ½0,∞Þ and Ξ be the collection of all continuous
functions ξ : A × A⟶ ½0,∞Þ satisfying the following:

(i) α = 0 or β = 0 implies ξðα, βÞ = 0
(ii) α > 0 and β > 0 implies ξðα, βÞ > 0

supα,β∈Aξ α, βð Þ = ζ > 0: ð5Þ

Some examples of function ξ are as follows:

Example 2.
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(i) ξðα, βÞ = k:αβ, for some k > 0
(ii) ξðα, βÞ =min fα, βg
(iii) ξðα, βÞ = α/ð1 + ln βÞ
(iv) ξðα, βÞ = ðα + βÞ/ð1 + ln ðαβÞÞ
(v) ξðα, βÞ = αβðα + βÞ
(vi) ξðα, βÞ = αβ/ð1 + αβÞ
(vii) ξðα, βÞ = ln ð1 + K:min fα, βg
Let Θ be the family of all functions θ : ½0,∞Þ⟶ R

which satisfy the following conditions:
ðθ1Þθ is strictly increasing
ðθ2ÞθðtÞ = 0 iff t = 0
ðθ3Þsupt>0θðtÞ = λ for some λ > 0

Example 3. Some examples of elements of Θ are

θ tð Þ = t
1 + t

,

θ tð Þ = ln 1 + t
1 + t

� �
,

θ tð Þ = t
1 + ln 1 + tð Þ :

ð6Þ

Definition 12. A pair of mappings T , g : Xj ⟶ Xj is an ξ
-extended JW -contraction pair if we can find τ > 0, F ∈F ,
ξ ∈ Ξ, and L ≥ 0 such that for all xj, yj ∈ Xj,

dj Tx
j, Tyj

� �
> 0⟹ τ + F dj Tx

j, Tyj
� �� �

≤F dj gx
j, gyj

� �� �
+ Lξ dj gy

j, Txj
� �

, dj gx
j, Tyj

� �� �
,

ð7Þ

Definition 13. A pair of mappings T , g : Xj ⟶ Xj is an ξ
-extended CW -contraction pair if we can find τ > 0, F ∈F ,
ξ ∈ Ξ, and L ≥ 0 such that for all xj, yj ∈ Xj,

dj Tx
j, Tyj

� �
> 0⟹ τ + F dj Tx

j, Tyj
� �� �

≤F Mj xj, yj
� �� �

+ Lξ dj gy
j, Txj

� �
, dj gx

j, Tyj
� �� �

,
ð8Þ

where

Definition 14. A pair of mappings T , g : Xj ⟶ Xj is an ξ
-extended CWQ-contraction pair provided that there is a
τ > 0, F ∈F , ξ ∈ Ξ, and L ≥ 0 such that for all xj, yj ∈ Xj,

dj Tx
j, Tyj

� �
> 0⟹ τ + F dj Tx

j, Tyj
� �� �

≤F Mj∗ xj, yj
� �� �

+ Lξ dj gy
j, Txj

� �
, dj gx

j, Tyj
� �� �

,

ð10Þ

where

Mj∗ xj, yj
� �

=max dj gx
j, gyj

� �
, dj gx

j, Txj
� �

, dj

�
� gyj, Tyj
� �

, dj gx
j, Tyj

� �
, dj gy

j, Txj
� �	

:

ð11Þ

Definition 15. In Definitions 12, 13, and 14, if conditions (7),
(8), and (10) are satisfied only for all xj, yj ∈ Xj with ðxj, yjÞ
∈ EðGÞ, then the pair ðT , gÞ is an ξ-extended JW -edge
contraction, ξ-extended CW -edge contraction, and ξ
-extended CWQ-edge contraction, respectively.

Definition 16. T , g : Xj ⟶ Xj is a θ-extended JW -edge
contraction if we can find τ > 0, F ∈F , and θ ∈Θ such that
for all xj, yj ∈ Xj with ðgxj, gyjÞ ∈ EðGÞ,

dj Tx
j, Tyj

� �
> 0⟹ τ + F dj Tx

j, Tyj
� �� �

≤F dj gx
j, gyj

� �� �
+ Lθ dj gy

j, Txj
� �� �

:
ð12Þ

Definition 17. A pair of mappings T , g : Xj ⟶ Xj is a θ
-extended CW -edge contraction if we can find τ > 0, F ∈
F , and θ ∈Θ such that

dj Tx
j, Tyj

� �
> 0⟹ τ + F dj Tx

j, Tyj
� �� �

≤F Mj xj, yj
� �� �

+ Lθ dj gy
j, Txj

� �� �
,

ð13Þ

for all xj, yj ∈ Xj with ðgxj, gyjÞ ∈ EðGÞ and Mjðxj, yjÞÞ, is
as in (9).

If g = I in the above definitions, then T is an ξ-extended
F-contraction mapping, ξ-extended CW -contraction map-
ping, θ-extended JW -edge contraction mapping, and θ
-extended CW -edge contraction mapping, respectively.

Mj xj, yj
� �

=max dj gx
j, gyj

� �
, dj gx

j, Txj
� �

, dj gy
j, Tyj

� �
,
dj gx

j, Tyj
� �

+ dj gy
j, Txj

� �
2

( )
: ð9Þ
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Property (∗). The space ðXj, djÞ is said to have
propertyð∗Þ if for any edge-preserving sequence fxjng ∈ X
such that fxjng⟶ x; there exists a subsequence fxjnkg of

fxjng such that ðxjnk , xÞ ∈ EðGÞjX for all k ∈ℕ0

Example 4. Let X = ½0, 1�S f2g, djðxi, yjÞ = jxi − yjj, and T

xi = xi4/8 for all xi ∈ X. Then, at xi = 0 and yj = 2, T does
not satisfy the conditions of Ciric’s quasicontraction, War-
dowski’s F-contraction, and Wardowski and Van Dung’s F
- weak contraction. However, T is an ξ-extended F-con-
traction with τ = ln ð2Þ, as shown below:

Let F : ð0,∞Þ⟶ℝ be defined by

F tð Þ = ln tð Þ, ð14Þ

and ξðα, βÞ = ln ð1 + K:min fα, βgÞ.

Case 1. xi, yj ∈ ½0, 1�. Clearly,

dj Tx
i, Tyj

� �
= 1
8 xi

4 − yj
4


 


 ≤ 1

8 xi − yj xi + yj
�� ��xi2 + yj

2


 



≤
1
4 xi − yj xi + yj

�� �� < 1
2





 xi − yj


 

 ≤ 1

2 dj x
j, yj

� �
:

ð15Þ

Then, we have ln ðdjðTxi, TyjÞÞ < ln ð1/2djðxj, yjÞÞ or

ln 2 + ln dj Tx
i, Tyj

� �� �
< ln dj x

j, yj
� �� �

+ Lξ dj gy
j, Txj

� �
, dj gx

j, Tyj
� �� �

:

ð16Þ

Case 2. xi ∈ ½0, 1� and yj = 2. Note that in this case, djðxj,
yjÞ ≥ 1.

dj Tx
i, Tyj

� �
= xi4

8 − 2












 ≤ 1
2 + 2 min xi − 2



 

, 2 − xi4

8














( )

⟹ dj Tx
i, Tyj

� ��
≤
1
2 dj x

j, yj
� �

1 + 8 min xi − 2


 

, 2 − xi4

8














( ) !

⟹ ln dj Tx
i, Tyj

� �� �
≤ − ln 2 + ln dj x

j, yj
� �� �

+ ln 1 + 8 min xi − 2


 

, 2 − xi4

8














( ) !

⟹ ln 2 + ln dj Tx
i, Tyj

� �� �
≤ ln dj x

j, yj
� �� �

+ ln 1 + 8 min xi − 2


 

, 2 − xi4

8














( ) !

⟹ ln 2 + F dj Tx
i, Tyj

� �� �
≤ F dj x

j, yj
� �� �

+ ξ 1 + 8 min dj x
j, Tyj

� �
, dj y

j, Txj
� �� 	� �

:

ð17Þ

Example 5. Let Xj = ½0,∞Þ, djðxj, yjÞ = jxj − yjj, EðGÞ = fðn,
nÞ, ðn, n + 1Þ: n = 0, 1, 2, 3,⋯g, and T , g : Xj ⟶ Xj be
given by

Txj =
0, if 0 ≤ xj ≤ 1,
xj − 1, if xj ≥ 1,

 

gxj = xj + n + 1 − xj
� �

xj − n
� �

, whenever n ≤ xj ≤ n + 1:
ð18Þ

Let F : ð0,∞Þ⟶ℝ be defined by

F tð Þ = t −
1
t
, ð19Þ

and θ ∈Θ be defined by θðtÞ = t/ðt + 1Þ. Then,

τ + F dj

�
T nð Þ, T n + 1ð Þð Þ ≤ F dj

�
g nð Þ, g n + 1ð Þð Þ

+ Lθ dj

�
g n + 1ð Þ, T nð Þð Þ

⟹ τ + F dj n − 1, nð Þ� �
≤ F dj n, n + 1ð Þ� �

+ Lθ dj n + 1, n − 1ð Þ� �
⟹ τ ≤ F 1ð Þ − F 1ð Þ + Lθ 2ð Þ⟹ τ ≤ Lθ 2ð Þ:

ð20Þ

Hence, for any 0 < τ < 2/3 and L = 1, (13) is satisfied
and thus ðT , gÞ is a θ-extended W J -edge contraction
and θ-extended WC-edge contraction. However, the pair
(T , g) is neither an ξ-extended JW -edge contraction pair
nor an ξ-extended CW -contraction pair. If we take g to
be the identity mapping, then T is a θ-extended JW

-edge contraction mapping and θ-extended CW -edge con-
traction mapping. However, again T is none of Wardows-
ki’s F-contraction, Wardowski and Van Dung’s F- weak
contraction, and Ciric’s quasicontraction.

3. Main Results

We start by proving the following main theorems:

Theorem 18. Suppose ðXj, djÞ be endowed with a graph G
satisfying transitivity property, and the following conditions
hold for T , g : Xj ⟶ Xj.

ðaÞðgxj0, Txj0Þ ∈ EðGÞ for some xj0 ∈ Xj

ðbÞT is g-edge preserving
ðcÞðT , gÞ is an θ-extended CW -edge contraction pair of

mappings
ðdÞðd1Þ There exists an edge-complete subset Mj of Xj for

which TðXjÞ ⊆Mj ⊆ gðXjÞ
ðd2Þ One of the following conditions holds:

(i) T is g-edge continuous

(ii) T and g are continuous

(iii) EðGÞjX j satisfies propertyð∗Þ
Then, the pair ðT , gÞ has a coincidence point.

Proof. In view of the assumption (a), we have ðgxj0, Txj0Þ ∈
EðGÞ. If Txj0 = gxj0, then x0 is a coincidence point of ðT , gÞ,
i.e., CoinðT , gÞ ≠ ϕ, and there is nothing to prove. Assume
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that Txj0 ≠ gxj0; then, since TðXjÞ ⊆ gðXjÞ, there exists xj1 ∈
Xj such that gxj1 = Txj0.

Similarly, there is xj2 ∈ Xj such that gxj2 = Txj1 with ðg
xj1, gx

j
2Þ ∈ EðGÞ and consequently ðTxj0, Txj1Þ ∈ EðGÞ. Induc-

tively, one can construct a sequence fxjng ⊆ Xj such that

gxjn+1 = Txjn, for all n ∈ℕ0, ð21Þ

with

gxjn, gx
j
n+1

� �
∈ E Gð Þ for all n ∈ℕ0, ð22Þ

and consequently, as T is g-edge preserving,

Txjn, Tx
j
n+1

� �
∈ E Gð Þ: ð23Þ

Now, if Txjn0 = Txjn0 for some n0 ∈ℕ0, then xn0 is a coin-

cidence point ðT , gÞ and we are done. Assume that Txjn ≠
Txjn+1, for all n ∈ℕ0. On using (21), (22), (23), and condi-
tion ðcÞ, we have

τ + F d gxjn, gx
j
n+1

� �� �
= τ + F d Txjn−1, Txjn

� �� �� �
≤ F M xjn−1, xjn

� �� �
+ Lθ d gxjn, Tx

j
n−1

� �� �
:

ð24Þ

Now,

Thus, we get

τ + F d gxjn, gx
j
n+1

� �� �
≤ F max dj gxjn−1, gxjn

� �
, dj gx

j
n, gxjn+1

� �n o� �
,

ð26Þ

i.e.,

F d gxjn, gx
j
n+1

� �� �
< τ + F d gxjn, gx

j
n+1

� �� �
≤ F d gxjn−1, gxjn

� �� �o�
:

ð27Þ

Since F is nondecreasing, we get dðgxjn, gxjn+1Þ < dðg
xjn−1, gxjnÞÞ. This further means that djðxjn, xjn+1Þ⟶ δ ≥ 0
as n⟶ +∞: If δ>0, we obtain from (27) that

F δ +ð Þ ≤ τ + F δ +ð Þ ≤ F δ +ð Þ, ð28Þ

which is a contradiction. Hence, lim
n⟶+∞

djðxjn, xjn+1Þ = 0: Sup-
pose the sequence fgxjng is not a Cauchy sequence. By Lemma
11, there exist ξ > 0 and sequences fnkg andfpkg inℕ such that

nk > pk > k, such that the sequences djðxjnk , xjpkÞ and djðxjnk+1,
xjpk+1Þ tend to be ξ

+, as k⟶ +∞: By (27) we get

τ + F ξ+ +
� �

≤ F ξ+ +
� �

, ð29Þ

which is a contradiction. So sequence fgxjng is a Cauchy
sequence.

By (21) and (22), fgxjng is an edge-preserving Cauchy
sequence in TðXjÞ ⊂Mj, and since Mj is edge-complete,
there exists yj ∈Mj such that fgxjng⟶ yj. As Mj ⊆ gðXjÞ,
there exists uj ∈ Xj such that yj = guj. Hence, on using
(21), we obtain

lim
n⟶∞

gxjn = lim
n⟶∞

Txjn = guj: ð30Þ

Now, suppose condition ðd2ðiÞÞ is true. Using (22) and
(30), we obtain

lim
n⟶∞

Txjn = Tuj: ð31Þ

By (30) and (31), we have

Tuj = guj: ð32Þ

Suppose condition (d2ðiiÞ) is true. By Lemma 10, there is
S ⊆ Xj for which gðSÞ = gðXjÞ and g : S⟶ S is one-one.
Consider the function f : gðSÞ⟶ gðXjÞ given by

f gsð Þ = Ts gs ∈ g Sð Þ, s ∈ Sð Þ: ð33Þ

As g : S⟶ Xj is one-one and TðXjÞ ⊆ gðXjÞ, f is well-

M xjn−1, xjn
� �

=max dj gx
j
n−1, gxjn

� �
, dj gxjn−1, Tx

j
n−1

� �
, dj gx

j
n, Txjn

� �
,
dj gxjn−1, Txjn
� �

+ dj gxjn, Tx
j
n−1

� �
2

8<
:

9=
;

=max dj gxjn−1, gxjn
� �

, dj gx
j
n, gxjn+1

� �n o
,

θ d gxjn, Tx
j
n−1

� �� �
= θ d gxjn, gxjn

� �� �
= 0: ð25Þ
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defined. Since T and g are continuous, f is also continuous
by condition ðd1Þ of the hypothesis TðXjÞ ⊆Mj ⊆ gðSÞ.
Thus, we have fxjng ⊆ S and uj ∈ S. Therefore,

Tuj = f guj� �
= f lim

n⟶∞
gxjn

� �
= lim

n⟶∞
f gxjn
� �

= lim
n⟶∞

Txjn = guj:

ð34Þ

Suppose condition (d2ðiiiÞ) is true; that is, EðGÞjXj

satisfied Propertyð∗Þ. Since fgxjng ⊆ X, it follows that fg
xjng is EðGÞjX j-preserving (due to (22)) and fgxjng⟶
guj (by (30)) and so we have a subsequence fgxjnkg ⊆ fg
xjng such that

gxjnk , gu
j

� �
∈ E Gð Þ





X
, for all k ∈ℕ0: ð35Þ

Using (35) and condition ðbÞ of the hypothesis, we
have

Txjnk , Tu
j

� �
∈ E Gð Þ





Xj
⊆ S, for all k ∈ℕ0: ð36Þ

Now, let Pj = fk ∈ℕ : Txjnk = Tug.
If Pj is finite, then fTxjnkg has a subsequence fTxjnkig

such that Txjnki ≠ Tu for all i ∈ℕ. Also,

ðgxjnki , gujÞ ∈ EðGÞj
X
⊂ EðGÞ. Thus, we have

Letting i⟶∞, we obtain Mðxjnki , ujÞ = djðguj, TujÞ
and θðdðguj, Txjnki ÞÞ = 0. Thus, we get

τ + F dj gu
j, Tuj� �� �

≤ F d guj, Tuj� �� �
, ð38Þ

which is a contradiction. Hence, Pj is not finite. Thus, Pj

is infinite and so fTxjnkg has a subsequence fTxjnki g such

that Txjnki = Tuj for all i ∈ℕ. Thus, limi⟶∞Txjnki = Tuj. As

limn⟶∞Txjn = guj (by (30)), we get Tuj = guj.

Theorem 19. If, in addition to hypothesis ðaÞ - ðdÞ of Theo-
rem 18, we assume the following:

(i) For all uj, vj ∈ CoinðT , gÞ,

dj Tu
j, Tvj

� �
> 0⟹ τ + F dj Tu

j, Tvj
� �� �

≤F Mj uj, vj
� �� �

+ Lθ dj gu
i, Tui

� �� �
,

ð39Þ

(ii) One of T or g is one-one

(iii) T and g are weakly compatible

then ðT , gÞ has a unique common fixed point.

Proof. In view of Theorem 18, the set CoinðT , gÞ is non-
empty. Let uj, vj ∈ CoinðT , gÞ. If djðTuj, vjÞ = 0, then we

have Tuj = guj = gvj = Tvj, and hence, uj = vj as one of T
and g is one-one. Otherwise, using condition (39), we obtain

τ + F d Tuj, Tvj
� �� �

≤ F d guj, gvj
� �� �

+ Lθ d guj, Tuj� �� �
,

= F d Tuj, Tvj
� �� �

,
ð40Þ

which is a contradiction. So the coincidence point of T
and g is unique.

Let uj be the unique coincidence point of T and g, and
let zj ∈ X such that zj = Tuj = guj. As T and g are weakly
compatible, we have Tzj = Tguj = gTuj = gzj. Thus, zj is a
coincidence point of T and g. By the uniqueness of the coin-
cidence point, we conclude uj = zj; that is, u is a common
fixed point of the pair ðT , gÞ which is indeed unique. as
the coincidence point of T and g is unique.

Remark 20. If we replace condition ðdÞ of Theorem 18 with
the following alternate condition:

ðd∗Þðd∗1 Þ There exists a subset Y j of Xj such that TðXjÞ
⊆ gðXjÞ ⊆ Y j and Y j is edge-complete

ðd∗2 ÞðT , gÞ is an edge-compatible pair
ðd∗3 ÞT and g are edge-continuous
the conclusions of Theorems 18 and 19 still hold.

Proof. Clearly, fgxjng is an edge-preserving Cauchy
sequence in Y j, and by edge-completeness of Y , we get vj

∈ Y j such that

τ + F d Txjnki
, Tuj

� �� �
≤ F M xjnki

, uj
� �� �

+ Lθ d guj, Txjnki
� �� �

,

M xjnki
, uj

� �
=max dj gxjnki

, guj
� �

, dj gxjnki
, Txjnki

� �
, dj gu

j, Tuj� �
,
dj gxjnki

, Tuj
� �

+ dj guj, Tgxjnki
� �

2

8<
:

9=
;:

ð37Þ
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lim
n⟶∞

gxjn = vj, ð41Þ

and then, by (21), we have

lim
n⟶∞

Txjn = vj: ð42Þ

Using the edge continuity of g and T , we also have

lim
n⟶∞

T gxjn
� �

= T lim
n⟶∞

gxjn
� �

= Tvj, ð43Þ

lim
n⟶∞

g Txjn
� �

= g lim
n⟶∞

Txjn
� �

= gvj: ð44Þ

Then, by edge-compatibility of g and T , we get

lim
n⟶∞

d gTxjn, Tgxjn
� �

= 0: ð45Þ

Finally from (44), (45), and (43), we get

d gvj, Tvj
� �

= d lim
n⟶∞

gTxjn, lim
n⟶∞

Tgxjn
� �

= lim
n⟶∞

gTxjn, Tgxjn
� �

= 0:

ð46Þ

Hence, vj is a coincidence point of the pair ðT , gÞ.

Remark 21. Since every ξ-extended contraction mapping is a
θ-extended contraction, the conclusions of Theorems 18 and
19 remain true for an edge theoretic ξ-extended CW -con-
traction pair of mappings also.

On setting g = I in Theorem 18, we deduce the following
corresponding fixed-point result.

Theorem 22. Let ðM, dÞ be a metric space endowed with a
directed graph G and T : M⟶M. Assume that the follow-
ing conditions are fulfilled:

(a) There exists x0 ∈M such that ðx0, Txj0Þ ∈ EðGÞ
(b) T is edge-preserving

(c) T is a θ-extended CW -edge contraction mapping

(d) ðd1Þ There exists a subset X ofM such that TðMÞ ⊆ X
and X is edge-complete

ðd2Þ One of the following conditions is satisfied:

(i) T is edge-continuous

(ii) EðGÞjX satisfies Propertyð∗Þ
Then, T has a fixed point.

Example 6. Let fXj, djg, EðGÞ, T , and g be as in Example 5.
Then, we have the following:

(1) ðg0, T0Þ ∈ EðGÞ
(2) T is g-edge-preserving. In fact, we see that ðgxj, gyjÞ

∈ EðGÞ implies either xj = n, yj = n or xj = n, yj = n

+ 1. If n = 0, then ðT0, T0Þ ∈ EðGÞ and ðT0, T1Þ ∈
EðGÞ. If n = 1, then ðT1, T1Þ ∈ EðGÞ and ðT1, T2Þ
∈ EðGÞ. If n = k > 1, then ðTk, TkÞ ∈ EðGÞ and ðT
k, Tðk + 1ÞÞ = ðk − 1, kÞ ∈ EðGÞ

(3) ðT , gÞ is a θ-extended CW -edge contraction
mapping

(4) TðXjÞ ⊂ gðXjÞ
(5) T is g-edge-continuous

Thus, all conditions of Theorem 18 are satisfied and 0 is
a coincidence point of T and g. Moreover, we see that T and
g satisfy conditions (i), (ii) (g is one-one), and (iii) of Theo-
rem 19, and 0 is the unique common fixed point of T and g.

Remark 23 (an open problem). Prove Theorems 18, 19, and
22 for ξ-extended CQW -contraction mappings.

4. Application to Nonlinear Integral Equations

Consider the Banach spaceM = Cð½0, 1�, RÞ of all continuous
functions x : ½0, 1�⟶ R equipped with norm

xk k = max
s∈ 0,1½ �

x sð Þj j: ð47Þ

Define a metric dj on M by djðxj, yjÞ = kxj − yjk for all

xj, yj ∈M. Then, ðM, djÞ is a complete metric space.
In this section, we show the applicability of Theorem 19

by investigating the existence and uniqueness of a solution
for the following nonlinear integral equation of Volterra
type:

xj sð Þ =
ðμ sð Þ

0
K s, v, xj

� �
η vð Þð Þ� �

dv

+
ðσ sð Þ

0
J s, v, xj

� �
ζ vð Þð Þ� �

dv + f sð Þ, s ∈ 0, 1½ �,
ð48Þ

where K , J : ½0, 1� × ½0, 1� × R⟶ R, f : ½0, 1�⟶ R, and μ,
σ, η, ζ : ½0, 1�⟶ ½0, 1�.

Definition 24. A lower solution for (48) is a function x ∈M
such that

xj sð Þ ≤
ðμ sð Þ

0
K s, v, xj

� �
η vð Þð Þ� �

dv

+
ðσ sð Þ

0
J s, v, xj

� �
ζ vð Þð Þ� �

dv + f sð Þ, s ∈ 0, 1½ �:
ð49Þ

Definition 25. An upper solution for (48) is a function x ∈M
such that

xj sð Þ ≥
ðμ sð Þ

0
K s, v, xj

� �
η vð Þð Þ� �

dv

+
ðσ sð Þ

0
J s, v, xj

� �
ζ vð Þð Þ� �

dv + f sð Þ, s ∈ 0, 1½ �:
ð50Þ
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Consider the operator T : M⟶M defined by

T xj sð Þ� �
=
ðμ sð Þ

0
K s, v, xj

� �
η vð Þð Þ� �

dv

+
ðσ sð Þ

0
J s, v, xj

� �
ζ vð Þð Þ� �

dv + f sð Þ, for all x ∈M:

ð51Þ

Then, xj is a fixed point of the operator T if and only if it
is a solution of the integral equation (48).

Let

Theorem 26. Assume that K and J are nondecreasing in the
third variable, μðtÞ + σðtÞ ≤ 1 for all t ∈ ½0, 1�, and the follow-
ing conditions hold:

There exists τ > 0 such that

for all s, v ∈ ½0, 1�, xj, yj ∈M with xjðsÞ ≤ yjðsÞ and L ≥ 0. If
(48) has a lower solution, e.g., xj0ðsÞ, then a solution exists
for the integral equation (48).

Proof. Consider the graph G in M, with edges EðGÞ given by

E Gð Þ = xj, yj
� �

∈M ×M : xj sð Þ ≤ yj sð Þ� 	
: ð54Þ

For any ðxj, yjÞ ∈ EðGÞ, we have (for all s ∈ ½0, 1�)

T xj sð Þ� �
=
ðμ sð Þ

0
K s, v, xj

� �
η vð Þð Þ� �

dv

+
ðσ sð Þ

0
J s, v, xj

� �
ζ vð Þð Þ� �

dv + f sð Þ

≤
ðμ sð Þ

0
K s, v, yj

� �
η vð Þð Þ� �

dv

+
ðσ sð Þ

0
J s, v, yj

� �
ζ vð Þð Þ� �

dv + f sð Þ

= T yj sð Þ� �
,

ð55Þ

which shows that ðTxj, TyjÞ ∈ EðGÞ. Thus, T is edge-
preserving. Now, for all ðxj, yjÞ ∈ EðGÞ and s ∈ ½0, 1�, we have

T xj sð Þ� �
− T yj sð Þ� �

 

 ≤ ðs

0
K s, v, xj

� �
η vð Þð Þ� ��



− K s, v, yj
� �

η vð Þð Þ� �Þ

dv + ðs
0

J s, v, xj
� �

η vð Þð Þ� �
− J s, v, yj

� �
η vð Þð Þ� �� �

 

dv

≤
ðμ sð Þ

0

M⋄ xj, yj
� �

M⋄ xj, yjð Þ τ − L yj − T xj sð Þð Þk k/ 1 + yj − T xj sð Þð Þj jð Þð Þf g + 1 dv

+
ðσ sð Þ

0

M⋄ xj, yj
� �

M⋄ xj, yjð Þ τ − L yj − T xj sð Þð Þk k/ 1 + yj − T xj sð Þð Þj jð Þð Þf g + 1 dv

≤
ðμ sð Þ

0

maxs∈ 0,1½ �M
⋄ xj, yj
� �

M⋄ xj, yjð Þk k τ − L yj − T xj sð Þð Þk k/ 1 + yj − T xj sð Þð Þj jð Þð Þf g + 1 dv

+
ðσ sð Þ

0

maxs∈ 0,1½ �M
⋄ xj, yj
� �

M⋄ xj, yjð Þ τ − L yj − T xj sð Þð Þk k/ 1 + yj − T xj sð Þð Þj jð Þð Þf g + 1 dv

≤
M⋄ xj, yj
� ��� ��

M⋄ xj, yjð Þk k τ − L yj − T xj sð Þð Þk k/ 1 + yj − T xj sð Þð Þj jð Þð Þf g + 1

ðμ sð Þ

0
dv

+ M⋄ xj, yj
� ��� ��

M⋄ xj, yjð Þ τ − L yj − T xj sð Þð Þk k/ 1 + yj − T xj sð Þð Þj jð Þð Þf g + 1

ðσ sð Þ

0
dv

= M⋄ xj, yj
� ��� ��

M⋄ xj, yjð Þ τ − L yj − T xj sð Þð Þk k/ 1 + yj − T xj sð Þð Þj jð Þð Þf g + 1 μ sð Þ + σ sð Þð Þ

≤
M⋄ xj, yj
� ��� ��

M⋄ xj, yjð Þ τ − L yj − T xj sð Þð Þk k/ 1 + yj − T xj sð Þð Þj jð Þð Þf g + 1 :

ð56Þ

M⋄ xj, yj
� �

=max xj − yj


 

, xj − T xj sð Þ� �

 

, yj − T yj sð Þ� �

 

, xj − T yj sð Þ� �

 

 + yj − T xj sð Þ� �

 



2

( )
,

M⋄ xj, yj
� ��� �� =max xj − yj

�� ��, xj − T xj sð Þ� ��� ��, yj − T yj sð Þ� ��� ��, xj − T yj sð Þ� ��� �� + yj − T xj sð Þ� ��� ��
2

( )
:

ð52Þ

K s, v, gxj
� �

− K s, v, gyj
� �

 

 ≤ M⋄ xj, yj

� �
M⋄ xj, yjð Þk k τ − L yj − T xj sð Þð Þk kð Þ/ 1 + yj − T xj sð Þð Þk kð Þð Þf g + 1 ,

J s, v, gxj
� �

− J s, v, gyj
� �

 

 ≤ M⋄ xj, yj

� �
M⋄ xj, yjð Þk k τ − L yj − T xj sð Þð Þk k/1 + yj − T xj sð Þð Þj jf g + 1 , ð53Þ
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Taking the supremum, we get

T xð Þ − T yð Þk k ≤ M⋄ xj, yj
� ��� ��

M⋄ xj, yjð Þ τ − L yj − T xj sð Þð Þk k/ 1 + yj − T xj sð Þð Þj jð Þð Þf g + 1 ,

ð57Þ

or

τ + 1
M⋄ xj, yjð Þk k ≤

1
T xð Þ − T yð Þk k + L yj − T xj sð Þ� ��� ��

1 + yj − T xj sð Þð Þj j ,

ð58Þ

or

τ −
1

T xð Þ − T yð Þk k ≤
−1

M⋄ xj, yjð Þk k + L yj − T xj sð Þ� ��� ��
1 + yj − T xj sð Þð Þj j :

ð59Þ

That is,

τ −
1

dj Txj, Tyjð Þ ≤
−1

Mj xj, yjð Þ�� �� +
L dj y

j, Txj sð Þ� ���
1 + dj yj, Txj sð Þð Þ : ð60Þ

Thus, inequality (13) is satisfied with FðαÞ = −1/α and
θðβÞ = β/ð1 + βÞ, so that λ = supt>0θðtÞ = 1. Also, by Defini-
tion 24, we have ðxj0, Txj0Þ ∈ EðGÞ. Therefore, all the
assumptions of Theorem 22 are satisfied, and thus, problem
(48) has a solution.

Theorem 27. Assume that K is nonincreasing in the third
variable and there exists τ > 0 such that

K s, v, gxj
� �

− K s, v, gyj
� �

 

 ≤ gxj − gyj



 


τ gxj − gyjk k + 1

, ð61Þ

for all s, v ∈ ½0, 1� and x, y ∈M. Then, the existence of an
upper solution of the integral equation (48) ensures the exis-
tence of a solution of (48).

Proof. Define set EðGÞ of edges on M by

E Gð Þ = x, yð Þ ∈M ×M : x sð Þ ≥ y sð Þf g: ð62Þ

Now, following the steps of the proof of Theorem 26
with an analogous procedure, one can check that all the
hypotheses of Theorem 22 are validated, and thus, Theorem
22 ensures the existence of a unique solution of the integral
equation (48).

We now furnish a numerical example to validate the
hypothesis of Theorem 27.

Example 7. Consider the function x ∈M defined by xðsÞ =
s2, s ∈ ½0, 1�. We show that this function is an upper solution
in M for the following integral equation:

x sð Þ = −
1
2 s + 2s2 + arctan 1

2 s
� �

− 3 arctan 1
2 s

2
� �

−
1
2 s

2 ln 1 + 1
4 s

4
� �

+
ðs2/2
0

ln 1 + x vð Þð Þdv +
ðs/2
0

x vð Þ
1 + x vð Þ dv, s ∈ 0, 1½ �:

ð63Þ

Finally, we see that xuðsÞ = s2 − arctan ðs2/2Þ is the
unique solution of (63).

Proof. Define the operator T : M⟶M as

Tx sð Þ = −
1
2 s + 2s2 + arctan 1

2 s
� �

− 3 arctan 1
2 s

2
� �

−
1
2 s

2 ln 1 + 1
4 s

4
� �

+
ðs2/2
0

ln 1 + x vð Þð Þdv

+
ðs/2
0

x vð Þ
1 + x vð Þ dv, s ∈ 0, 1½ �:

ð64Þ

1.0

0.5

0.0
1.0

0.5

0.0
0.0

0.5
x

y

1.0

|log (1+x)−log (1+y)|
|x−y|

1+0.01 |x−y|

Figure 1: Inequality in (66).

1.0

0.5

0.0
1.0

0.5

0.0
0.0

0.5
x

y

1.0

x – y
log (1+x) log (1+y)

|x−y|
1+|x−y|

|x−y|
1+0.01 |x−y|

Figure 2: Inequality in (67).
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Now, set Kðs, v, xðvÞÞ = ln ð1 + xðvÞÞ, Jðs, v, xðvÞÞ = xðvÞ
/ð1 + xðvÞÞ, μðsÞ = ð1/2Þs2, σðsÞ = ð1/2Þs, f ðsÞ = −ð1/2Þs + 2s2
+ arctan ðð1/2ÞsÞ − 3 arctan ðð1/2Þs2Þ − ð1/2Þs2 ln ð1 + ð1/4Þ
s4Þ, and τ ≤ 0:01. We observe the following:

(i) Both the functions Kðs, v, xðvÞÞ = ln ð1 + xðvÞÞ and
Jðs, v, xðvÞÞ = xðvÞ/ð1 + xðvÞÞ are nondecreasing in
the third variable

(ii) By actual computation, we have

ðs2/2
0

ln 1 + x vð Þð Þdv = −s2 + 2 arctan 1
2 s

2
� �

+ 1
2 s

2 ln 1 + 1
4 s

4
� �

, s ∈ 0, 1½ �,
ðs/2
0

x vð Þ
1 + x vð Þ dv =

1
2 s − arctan 1

2 s
� �

, s ∈ 0, 1½ �:

ð65Þ

(iii) s2 ≥ −ð1/2Þs + 2s2 + arctan ðð1/2ÞsÞ − 3 arctan ðð1/2Þ
s2Þ − ð1/2Þs2 ln ð1 + ð1/4Þs4Þ + Ð s2/20 ln ð1 + xðvÞÞdv
+
Ð s/2
0 xðvÞ/ð1 + xðvÞÞdv, s ∈ ½0, 1� so that xðsÞ = s2 is

an upper solution for (63)

(iv) The following inequalities hold true for all x, y
∈ ½0, 1� (see Figures 1 and 2):

ln 1 + xð Þ − ln 1 + yð Þj j ≤ x − yj j
1 + 0:01 x − yj j , ð66Þ

x
1 + x

−
y

1 + y










 ≤ x − yj j

1 + x − yj j ≤
x − yj j

1 + 0:01 x − yj j : ð67Þ

Furthermore, using the nondecreasing function s↦ s/
ð1 + 0:01sÞ, we have

ln 1 + xð Þ − ln 1 + yð Þj j ≤ x − yj j
1 + 0:01 x − yj j

≤
max
s∈ 0,1½ �

x − yj j
1 + 0:01 max

s∈ 0,1½ �
x − yj j

= x − yk k
1 + 0:01 x − yk k :

ð68Þ

Similarly, for all x, y ∈ ½0, 1�, we have

x
1 + x

−
y

1 + y










 ≤ x − yk k

1 + 0:01 x − yk k : ð69Þ

Hence, all the conditions of Theorem 27 are satisfied.
It is evident that the integral equation (63) has a unique
solution xu ∈M defined by xuðsÞ = s2 − arctan ðs2/2Þ.
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