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Edge theoretic extended contractions are introduced and coincidence point theorems and common fixed-point theorems are
proved for such contraction mappings in a metric space endowed with a graph. As further applications, we have proved the
existence of a solution of a nonlinear integral equation of Volterra type and given a suitable example in support of our result.

1. Introduction and Preliminaries

The celebrated Banach contraction principle is a motivation
for many fixed-point theorems. It guarantees the existence
and uniqueness of solution of various equations arising in
mathematics. The initial generalizations of Banach’s result
came up in the form of Kannan’s contraction, Chatterjea’s
contraction, Reich’s contraction, Ciric’s contraction, Hardy-
Roger’s contraction, and Ciric’s quasicontraction. Among
these, Ciric’s quasicontraction is the most general form in
the sense that any mapping which does not satisfy Ciric’s
quasicontraction does not satisfy any of the previously men-
tioned contractions. Further, these results have been widely
investigated and many interesting applications have been
found by many authors (see [1-7]). F-contraction and
fixed-point theorem for F-contraction mappings were intro-
duced by Wardowski [8] as a generalisation of the Banach
contraction principle.

Definition 1 (see [8]). Consider the collection of functions
F : (0,00) — R satisfying the following:

(F,)F is strictly increasing

(F,) If {a,} c (0,00) is a sequence, then lim, | a,=0
iff lim, | F(a,)=-00

(F,) There exists k € (0, 1) such that limyﬂoqsz(y) =0

An operator T : X', d; — X' is an F-contraction if we
can find 7 > 0 such that

v,y e X7, di(Txi, Tyi) S0=71+ F(di(Txi, Tyi)) < F(d,. (xi,yi)).

(1)

Later, the concept of F-weak contraction and ordered F
-contractions was introduced by Wardowski and Van Dung
[9] and Durmaz et al. [10], respectively. In 2016, Sawangsup
et al. [11] extended the F-contraction using a relation theo-
retic approach which was later generalised by Imdad et al.
[12] and Alfaqih et al. [13]. Espinola and Kirk [14] intro-
duced graph theory in fixed-point theory, and Jachymski
[15] continued this idea by using different views thereby
introducing the G-contraction and proved fixed-point theo-
rem for a G-contraction mapping. These ideas were further
extended and generalised by [16-24].

It is interesting to note that all these contraction condi-
tions ensure the existence of a unique fixed point or com-
mon fixed point of the mappings under consideration.
However, it is observed that a mapping which possesses
nonunique fixed points does not satisfy the above contrac-
tions, for if x' and y are any two fixed points of a self-map
T of a metric space (X', d’), then


https://orcid.org/0000-0001-9027-0810
https://orcid.org/0000-0002-5402-8960
https://orcid.org/0000-0003-2314-0412
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5157708

di(Tixi’ Tiyi) —d (Xi’yi)

i( i iy i i T
- max {di(xi’yi))di(xi, i), d (y/, T'y'), d(x,Ty)+d (y,Tx)})

2
di(Tixi) Tiyi) _ di(xi)yi)
— max {di (xi,yi), i (xi’ Tixi)) di (yi’ Tiyi)) di (xi) Tiyi)) di (yi) Tixi) })

(2)

and thus, we see that T' does not satisfy Ciric’s quasicontrac-
tion, Wardowski’s F-contraction, and Wardowski and Van
Dung’s F-weak contraction. Thus, these contraction condi-
tions cannot be used to prove the existence of nonunique
fixed points of a function defined in a metric space. On the
other hand, many equations obtained by modeling various
problems of engineering and science need not necessarily
have a unique solution. Thus, it becomes meaningful to
obtain extended forms of above contractions which will
ensure the existence of nonunique fixed points of self-maps
defined in a metric space.

Motivated by this fact, in this paper, we have introduced
extended 7% -contraction (Jungck-Wardowski contrac-
tion), extended €% -contraction (Ciric-Wardowski contrac-
tion), and extended €% @-contraction (Ciric-Wardowski
quasicontraction) and established fixed-point theorems
which will ensure the existence of nonunique fixed points
of a self-map and coincidence points of a pair of self-maps,
respectively, in a metric space endowed with a graph. As an
application of our result, we have also proven the existence
of solution of a nonlinear integral equation of Volterra type.

Throughout this paper, we consider the metric space
(X/,d;) to be endowed with the graph G=(V(G), E(G)),
V(G)=X/, and ACE(G); A={(x/,x/): ¥/ € X/}.

Definition 2 (see [15]). A sequence {x,} <X/ is edge-
preserving if (x/,,x/ ;) € E(G) for all n € N,,.

Definition 3. Let g : X/ — X/. A sequence {xkycXiis g
-edge-preserving if (gx/,, g¥’/,.;) € E(G) for all n € IN,,.

Definition 4. T : X) — X/ is edge-preserving if (x/,’) € E
(G) implies (Tx/, Ty/) € E(G).

Definition 5. T, g : X) — X/ is g-edge-preserving if for all
¥,y € X, (gx/, gy') € E(G) implies (Tx/, Ty/) € E(G).

Definition 6 (see [15]). (X/, d;) is edge-complete if every
edge-preserving Cauchy sequence in X/ converges to some
point in X/.

Definition 7 (see [15]). T : X/ — X/ is edge-continuous at
X if {¥,} — x/ implies {Tx/,} — Tx/ for any edge-
preserving sequence {x/,} € X/. If T is edge-continuous at
all x/ € X/, then T is an edge-continuous mapping.

Definition 8. Let T, g : X — X’ and x/ € X/. We say that T
is g-edge continuous at x/ if {gx/,} — gx/ implies {Tx/,}
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— Tx/ for any edge-preserving sequence {x/,} CX/. If T
is g-edge continuous at all x/ € X/, then T is an g-edge con-
tinuous mapping.

Definition 9. (T, g) is edge-compatible if and only if for
any sequence T and g edge-preserving sequence {x/,} C
X, lim, g/, =lim,  Tx/,=xe€X implies lim,

d;(gT«,, Tgx!,) = 0.
We will use the following lemmas taken from [25, 26]:
Lemma 10. (see [25]). Let M be a nonempty set and g : M

— M. Then, there exists a subset S C M such that g(s) =g
(M) and g : S—> S is one-one.

Lemma 11 (see [26]). Let {xﬁ,} be a sequence in metric space
(X7, d;) such that lim xyxl ) =0, If {x)} is not
Cauchy in (X, d;), then there exist & > 0 and sequences {n;}
and {p, } in N such that n, > p, > k, and the sequences

(36 (3 )} 40 )
() W L (o)

n—>+oodj(

tend to be £, as k — +oo0.

2. Edge Theoretic Extended Contractions

Let [F be the collection of all nondecreasing continuous func-
tions & : (0,00) — R.

Example 1. Some examples of function belonging to the class
F are

F(y) =)

F(y)=Iny,

Fip) =y L (4)
Fy)=y >

F(y)=In (%/ + siny).

Let A c [0,00) and Z be the collection of all continuous
functions £ : A x A — [0,00) satisfying the following:

(i) =0 or $=0 implies &(a, ) =0
(i) «>0 and B> 0 implies {(a, ) >0
supg peab (@ f) =¢>0. (5)

Some examples of function & are as follows:

Example 2.
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(i) &(a, B) = k.af3, for some k>0
(ii) &(a, B) = min {a, B}

(iii) &(a, B) =a/(1+1n B)

(iv) &(a B) = (a+ B)/(1 +In (ap))
() &(a B) = aP(a+p)

(vi) &(a, B) = /(1 + apf)

(vii) &(a, ) =In (1 + K.min {a, 8}

Let ® be the family of all functions 0 : [0,00) — R
which satisfy the following conditions:

(0,)0 is strictly increasing

(0,)0(r)=0iff t=0

(03)sup,,,0(t) = A for some A >0

Example 3. Some examples of elements of @ are

()= 1

8() =In (1+ 1t+t> (6)
t

o(1r) = l+In (1+¢)

M/ (¥, y') = max {dj(ng, 9y),d;(gx, Tx)), d;(gy’, Ty'),

Definition 14. A pair of mappings T,g: X/ — X/ is an
-extended €% @-contraction pair provided that there is a
>0, Fe# &€ 5, and L >0 such that for all x/, y/ € X/,

d;(T, Ty)) >0 = 7+ F(d;(T«/, Ty))
< 97(Mj* (xj,yj)) +L&(d;(gy), TX), d;(g¥), TY)),
(10)

where

M (+,y)) = max {d;(gx', gy'), d;(9', T, d

(9, TY) (9 Ty'). dy gy, ') }.
(11)

Definition 15. In Definitions 12, 13, and 14, if conditions (7),
(8), and (10) are satisfied only for all x/, y/ € X/ with (x/, y/)
€ E(G), then the pair (T,g) is an &-extended F% -edge
contraction, &-extended @7 -edge contraction, and &
-extended €7 @-edge contraction, respectively.

Definition 12. A pair of mappings T,g: X/ — X/ is an &
-extended # % -contraction pair if we can find 7> 0, F € &,
&€ 5, and L >0 such that for all x/, y/ € X/,

d;(Tx, Ty') >0 = 7+ F(d;(Tx/, Ty'))
< F(d;(9x ")) + L& (d;(99, T¥). d; (9 TY')),
(7)

Definition 13. A pair of mappings T,g: X/ — X/ is an &
-extended €% -contraction pair if we can find 7> 0, F € &,
& €5, and L >0 such that for all x/, y/ € X/,

d;(Tx, Ty') > 0= 7+ F(d;(Tx, Ty)))
<F(M (<)) + LE(d; (), T). d;(9%, TV)),
(8)

where

d;(gx, Ty') +d;(gy', T¥) }
> :

Definition 16. T, g: X/ — X/ is a O-extended % -edge
contraction if we can find 7> 0, F € %, and 6 € ® such that
for all %/, y/ € X/ with (g«/, gy/) € E(G),

d;(T¥, Ty') > 0= 7+ F(d;(T¥, T'))

i
. . . 12
<F(d;(g¥,gy")) +10(d;(gy, T¥')). (12)
Definition 17. A pair of mappings T,g: X — X/ is a 0
-extended €% -edge contraction if we can find 7> 0, F ¢
F, and 0 € ©® such that

dj(Txf, Tyj) >0=>T+F(dj(ij, Tyj)) (13)

<F(M(d,y))) + LG(dj(gyj, Tx')),
for all &/, y/ € X/ with (gx/, gy/) € E(G) and M/(x/, 7)), is
as in (9).

If g =1 in the above definitions, then T is an &-extended
F-contraction mapping, &-extended €% -contraction map-
ping, O-extended % -edge contraction mapping, and 0
-extended €% -edge contraction mapping, respectively.



Property (*). The space (X/, d;) is said to have
property(*) if for any edge-preserving sequence {x/,} € X
such that {x/,} — x; there exists a subsequence {x}, } of
{x/,} such that (x},,x) € E(G)| for all ke N,
Example 4. Let X =[0,1]J {2}, d;(x",y/) = [x'~y/|, and T
x' =x'"/8 for all x' € X. Then, at x =0 and y/ =2, T does
not satisfy the conditions of Ciric’s quasicontraction, War-
dowski’s F-contraction, and Wardowski and Van Dung’s F
- weak contraction. However, T is an &-extended F-con-
traction with 7 =1n (2), as shown below:
Let F : (0,00) — R be defined by

F(t)=1n (t), (14)
and &(a, §) =1n (1 + K.min {«, 8}).

Case 1. x', y/ €0, 1]. Clearly,

(12, 1) - ¢ =y 7]

P ‘
1[I ] < 5 -y < 5.

(15)

Then, we have In (dj(Txi, Ty/)) <In (1/2dj(xj’}’j)) or

In2+1n (d;(Tx', Ty)) <In (d;(x, ') + LE(d;(gy, T), d; (g, TY')).
(16)

Case 2. x' €[0,1] and y/ =
y)>1.

2. Note that in this case, dj(xj,

i4

dj(Txi, TyJ) =|—

i4

X
-2
8}

1 ) .
S+2mm{{x’—2|, 2-
2

e dj(Txi, Tyj))

d;(+,y) (1 +8 min {{x" -2, 12—

= 1In (dj(Txi, Tyj))

i4

g

<

N

i4

<)

<-In2+In (dj(xj,yf)) +1n (1 + 8 min {xi—z{, 2-
—In2+In (dj(Txi, Tyj))
<In (dj(xj,yj)) +1In (1 + 8 min {|xi2, 2-

= 1In2+F(d,(Tx', Ty)))
< F(d (x’ yj)) +&(1+8 min {dj(xj, Tyj), dj(yj, ij) B

(17)

i4

W)

Example 5. Let X/ = [0,00), dj(xj,yj) =|x = yI|, E(G) = {(n,
n),(m,n+1):n=0,1,2,3,---}, and T,g:X — X be
given by
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o [ ifo<x/ <1,
X =
x -1,

g¥ =%/ + (n+1-x/) (¥ —n),

ifx/>1,

whenevern<x’/ <n+1.

(18)
Let F: (0,00) — R be defined by
F(t)=t- % (19)
and 6 € © be defined by 6(t) =¢/(t + 1). Then,
T+F(dj(T(n) (n+1)) ( g(n+1))
+L9(d( (n+1) ( )
=1+ F(d(n-1,n)) <F(d;(n,n+1)) (20)

+L9(d(n+ln 1))
— < F(1) - F(1) + 16(2) = 7 < LO(2).

Hence, for any 0 <7<2/3 and L=1, (13) is satisfied
and thus (T,g) is a O-extended % f-edge contraction
and O-extended 7/'%-edge contraction. However, the pair
(T, g) is neither an &-extended 7 -edge contraction pair
nor an &-extended €% -contraction pair. If we take g to
be the identity mapping, then T is a O-extended F%
-edge contraction mapping and 0-extended €% -edge con-
traction mapping. However, again T is none of Wardows-
ki’s F-contraction, Wardowski and Van Dung’s F- weak
contraction, and Ciric’s quasicontraction.

3. Main Results

We start by proving the following main theorems:

Theorem 18. Suppose (X, d;) be endowed with a graph G
satisfying transitivity property, and the following conditions
hold for T, g : X/ — X.

(a)(gx), Tx)) € E(G) for some x) € X/

(b)T is g-edge preserving

(c)(T, g) is an O-extended GW -edge contraction pair of
mappings

(d)(d,) There exists an edge-complete subset M/ of X for
which T(X7) c M’ ¢ g(X/)

(d,) One of the following conditions holds:

(i) T is g-edge continuous

(ii) T and g are continuous

(iii) E(G)|y; satisfies property(s)

Then, the pair (T, g) has a coincidence point.
Proof. In view of the assumption (a), we have ( gxé, Txé) €

E(G). If Tx) = gx}, then x, is a coincidence point of (T, g),
ie., Coin(T, g) # ¢, and there is nothing to prove. Assume
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that Txé # gx{); then, since T(X/) € g(X7), there exists x/, €
X/ such that gx)| = Tx),. O

Similarly, there is x/, € X/ such that gxé = Tx with (g
x}, gx5) € E(G) and consequently (Txf), Tx)) € E(G). Induc-
tively, one can construct a sequence {x/,} € X/ such that

xj o =T« foralln e N, (21)

with

(gx w gxilﬂ) E(G) foralln € N, (22)

M(x{,,l,xjn> =max < d;(gx/, . g¥,). d (gx’ L Tx ) (9%, TX ),

=max {d;(gx, 1, 9%, ). d;(9%, 9% 1) |
{4( )il )}

G(d(gxn,Tx’ )) 0(d(g«',, g¥,)) =0.

Thus, we get

v+ F(d(99,,9x5,,1) ) = F(max {d; (95 1,9, ), ;99,0 99,1) } ).

(26)

ie.,

F{a(an ) <o i) < H(1(3909%)))

(27)

Since F is nondecreasing, we get d(gx » ngnH) d(g
x’ _1»9%,)). This further means that d. (x’ X )—820

n+1
as n — +00. If §>0, we obtain from (27) that

F(6+)<T+F(8+)<F(6+), (28)

which is a contradiction. Hence, hm d; (x] x/.,)=0. Sup-

pose the sequence { ng }isnota Cauchy sequence. By Lemma
11, there exist £ > 0 and sequences {#, } and {p, } in IN such that

ny. > py > k, such that the sequences d; (xl,k, x] ) and d; (xil e
X

karl) tend to be &¥, as k — +00. By (27) we get

T+FE +)<F(E+), (29)

and consequently, as T is g-edge preserving,
(T, T, ) € E(G). (23)

Now, if Tquo = Txf,o for some n, € Ny, then x,, is a coin-
cidence point (T, g) and we are done. Assume that Tx/,, #
Txl ., forall ne IN,. On using (21), (22), (23), and condi-

n+l>
tion (c), we have

T+ F( <gx , ngM)) —r+ F((d(Tx{H, ijn>>>
< F(M(xi_l,xjn» +L6<d(ngn, Tfo)).

(24)

Now,

j(gxim’ ijn) + dj (ngn’ Txiﬂ)
2

which is a contradiction. So sequence { gxi,} is a Cauchy
sequence.

By (21) and (22), {gx/,} is an edge-preserving Cauchy
sequence in T(X/) c M/, and since M’ is edge-complete,
there exists y/ € M/ such that {gx/,} — y/. As M/ € g(X/),
there exists u/ € X/ such that y/ = gu/. Hence, on using
(21), we obtain

lim gx/, = hm Tx, = g (30)

n—=aoo

Now, suppose condition (d,(i)) is true. Using (22) and
(30), we obtain

lim ijn =Tul. (31)

n—c0
By (30) and (31), we have

T = gu/. (32)
Suppose condition (d, (ii)) is true. By Lemma 10, there is

Sc X/ for which g(S)=g(X’) and g:S— S is one-one.
Consider the function f : g(S) — g(X/) given by

f(gs)=

As g: S— X/ is one-one and T(X’) € g(X/), f is well-

Ts(gse g(S),s€S). (33)



defined. Since T and g are continuous, f is also continuous
by condition (d;) of the hypothesis T(X/) < M/ ¢ g(S).
Thus, we have {x/,} €S and u/ € S. Therefore,

Tw' =f(gw/) = ( im g¥/,) = lim f(g',) = lim T, = gu.
(34)

Suppose condition (d,(iil)) is true; that is, E(G)|y,
satisfied Property(#). Since {gx/,} € X, it follows that {g
x/,} is E(G)|yi-preserving (due to (22)) and {gx/,} —
gw (by (30)) and so we have a subsequence {gx{,k} c{yg
%/} such that

(95}, 9 ) € E(G)

, forallk e N,. (35)
X
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Using (35) and condition (b) of the hypothesis, we
have

(Tx{,k, Tuf) € E(G)

¢S, forallkeN,. (36)

X/

Now, let P/={keN: ij,;k =Tu}.
If P/ is finite, then {Tx), } has a subsequence {Tx), }

e p{a(reg 1)) < F((s, o)) 0(aa 7).

M(x{fk,.’ uj) =max { d, (ngnk,.’ guf), d; (ng"k,’ Txfnkf), d; (guj, Tuj),

Letting i—> co, we obtain M(xy, ,u/)=d;(gw, Tu)
and 0(d(gw/, Txlm)) =0. Thus, we get

T+ F(d;(g/, TW)) < F(d(gu/, TW/)), (38)

which is a contradiction. Hence, P/ is not finite. Thus, P/
is infinite and so {Tx}, } has a subsequence {Tx}, } such

that Tquki =T for all i € N. Thus, limiﬁme{,k[ =Tu. As
lim, ., Tx/, = gu’ (by (30)), we get T/ = gul.

Theorem 19. If, in addition to hypothesis (a) - (d) of Theo-
rem 18, we assume the following:

(i) For all w/,v/ € Coin(T, g),

dj(Tuj, ij) >0=T+ F(dj(Tuj, ij))

T 59
< F (M (W, V))) + LO(d; (gud', Tu')),

(ii) One of T or g is one-one
(iii) T and g are weakly compatible

then (T, g) has a unique common fixed point.

Proof. In view of Theorem 18, the set Coin(T, g) is non-
empty. Let w/,v/ € Coin(T, g). If d;(Tw/,v/)=0, then we

such that Txi,kt +Tu for all i€ N. Also,
(g%, » guw)) € E(G)|_ < E(G). Thus, we have
d; (ngﬂk,’ Tuj> +d, <guj, Tngﬂk,) (37)

have Tw = guw/ = gv/ = TV, and hence, w/ =v/ as one of T
and g is one-one. Otherwise, using condition (39), we obtain

T+ F(d(Tw, TV')) < F(d(gw/, gv/)) + LO(d (g, Tw)),
= F(d(Tw, TV))),
(40)

which is a contradiction. So the coincidence point of T
and g is unique.

Let v/ be the unique coincidence point of T and g, and
let z/ € X such that z/ = Tw/ = gu/. As T and g are weakly
compatible, we have Tz/ = Tgu/ = gTw/ = gz/. Thus, z/ is a
coincidence point of T and g. By the uniqueness of the coin-
cidence point, we conclude W =7J; that is, u is a common
fixed point of the pair (T, g) which is indeed unique. as
the coincidence point of T' and g is unique. O

Remark 20. If we replace condition (d) of Theorem 18 with
the following alternate condition:

(d*)(d}) There exists a subset Y/ of X/ such that T(X/)
€ g(X’) Y/ and Y7 is edge-complete

(d;)(T, g) is an edge-compatible pair

(d;)T and g are edge-continuous

the conclusions of Theorems 18 and 19 still hold.

Proof. Clearly, {gx’,} is an edge-preserving Cauchy
sequence in Y7, and by edge-completeness of Y, we get v/
€ Y/ such that
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lim ngn =, (41)
n—=a~oo

and then, by (21), we have

lim Tx/, =/ (42)

n—~oo

Using the edge continuity of g and T, we also have

lim T(gx/,) = T( lim ngn) =TV, (43)
lim g(Tx,) = g( lim ijn> =gvl. (44)

Then, by edge-compatibility of g and T, we get

lim d(gTx',, Tgx',) =0. (45)

n—=oo

Finally from (44), (45), and (43), we get

d(gvj, ij) = d(n&nmngjn, nliﬁr)nQQTgxﬁ) = nli*}rnoo (ngjn, Tngn) =0.
(46)

Hence, v/ is a coincidence point of the pair (T, g). O

Remark 21. Since every &-extended contraction mapping is a
0-extended contraction, the conclusions of Theorems 18 and
19 remain true for an edge theoretic £-extended €% -con-
traction pair of mappings also.

On setting g =1 in Theorem 18, we deduce the following
corresponding fixed-point result.

Theorem 22. Let (M, d) be a metric space endowed with a
directed graph G and T : M — M. Assume that the follow-
ing conditions are fulfilled:

(a) There exists x, € M such that (x,, Tx}) € E(G)
(b) T is edge-preserving
(c) T is a O-extended GW -edge contraction mapping

(d) (d,) There exists a subset X of M such that T(M) € X
and X is edge-complete

(d,) One of the following conditions is satisfied:
(i) T is edge-continuous

(ii)) E(G)|y satisfies Property(s)

Then, T has a fixed point.

Example 6. Let {X/,d,}, E(G), T, and g be as in Example 5.
Then, we have the following:

(1) (g0, T0) € E(G)

(2) T is g-edge-preserving. In fact, we see that (gx/, gy/)
€ E(G) implies either X' =n,y/ =n or ¥’ =n,y/ =n

+1.If n=0, then (T0,T0) € E(G) and (T0,T1) €
E(G). If n=1, then (T1,T1)€ E(G) and (T1,T2)
€E(G). If n=k>1, then (Tk, Tk) € E(G) and (T
k,T(k+1))=(k-1,k) € E(G)

3) (T.g) is
mapping
(4) T(X)) c g(x)

a 0O-extended @7 -edge contraction

(5) T is g-edge-continuous

Thus, all conditions of Theorem 18 are satisfied and 0 is
a coincidence point of T and g. Moreover, we see that T and
g satisfy conditions (i), (ii) (g is one-one), and (iii) of Theo-
rem 19, and 0 is the unique common fixed point of T and g.

Remark 23 (an open problem). Prove Theorems 18, 19, and
22 for &-extended € Q7 -contraction mappings.

4. Application to Nonlinear Integral Equations

Consider the Banach space M = C(]0, 1], R) of all continuous
functions x : [0, 1] — R equipped with norm

= . 47
| x]] ggg}ﬁlx(S)I (47)

Define a metric d; on M by d;(«/, y/) = ||x/ - y/|| for all
x/,y/ € M. Then, (M, d;) is a complete metric space.

In this section, we show the applicability of Theorem 19
by investigating the existence and uniqueness of a solution
for the following nonlinear integral equation of Volterra

type:

) 1(s) )
xl(s) = J K(s, v, (xf) (q(v)))dv
' o(s) ) (48)
+J0 J (5, v (%) (C(v)))dv + f(s5), s € [0, 1],

where K,J:[0,1] x[0,1]xR—> R, f:[0,1] — R, and g,
o,1,¢:[0,1] — [0, 1].

Definition 24. A lower solution for (48) is a function x € M
such that

(s) .

' K(s,v, () (n(v)))dv

' a(s) . (49)
+J J (s, v, () (C(v)))dv +f(s),s €[0,1].

0

x(s) SJ

Definition 25. An upper solution for (48) is a function x € M
such that

’ (50)



Consider the operator T : M — M defined by

o(s) )
+J J(s;v, (&) ({(v)))dv + f(s), forall x € M.
(51)

M°(x/, y/) = max {|xj — Y| |¥ =T (¥ (s

o)l = <51 o = ) <70 2T

Theorem 26. Assume that K and ] are nondecreasing in the
third variable, u(t) + o(t) < 1 for all t € [0, 1, and the follow-
ing conditions hold:

K (s, v, gx/) -

)| [ = T (7 (s)
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Then, ¥/ is a fixed point of the operator T if and only if it
is a solution of the integral equation (48).

Let

) T - (MH}

K(svgy')| <

(s 9¢) = I (v, 99") | <

for all s,ve[0,1], x/,y' € M with x/(s) <y/(s) and L>0. If
(48) has a lower solution, e.g., x/,(s), then a solution exists
for the integral equation (48).

Proof. Consider the graph G in M, with edges E(G) given by
E(G)={(«,y)) eMxM:x(s)<y/(s)}.  (54)

For any (x/, y/) € E(G), we have (for all s € [0, 1])

H(s) ,
K(s,v, () (n(v)))dv

0

T(¥(s)) =J
o(s) .
+J J (s, v (+) (C(v)))dv + f(5)

0

S Ju(s) ’ 4 (55)

[1M° (%, ) {7 = L ||y =

2
' , (52)
%mHHW—Hﬂ®W}
2
There exists T > 0 such that
M"(xj,yj)
1M (el ) [ {7 = (L1l = T ()N + [y = T (s)) D)} + 17
My (53)

T(xI(s))||/1+ |y = T(x(s))|} +1°

which shows that (Tx/, Ty/) € E(G). Thus, T is edge-
preserving. Now, for all (x/, /) € E(G) and s € [0, 1], we have

T609) = T0/6)] = || 1Ko () 1))
(s ) v [ 106 69)99) = s () o)
- Jy(s) (xj yj) o
=)o M- E = T@OI = TEEI) +1
oo w(5.) "
[ T aTEO Ty TEe
<J#(S) Maxe)o (xj,yj) o
<)o @G- =T I+ = TE@E))) + 1
. (9 (s) maxeo M° (¥, ) 0
|, e T - TEE
I+ o
< — . S . _ J dv
I = (= T @)+ b= T @)+ 1y
SN 50V R—
MG, ) (e = (L = TSI+ = T@E)N] + 1o
_ [[M° (. ) |
W @y - T T} +1 ¢ )
- M A _
MGy (= (L = T+ b= T} +1
(56)
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Taking the supremum, we get

IT(x) - TR € ~or— M@l ,
M (o, ) {w = (LY = T (s)) (1 + [y = T(¥(s))]) } +1
(57)
or
SP S L= T) |
(M )| ITC) =T 1+ =T (s))]
(58)
or
g et
[T@x) =T~ M) 1+ |y =T((s))|
(59)
That is,
1 -1 Ldj(yj,ij(s))H (60)

T (T, Tyl S M )]
J(Tod, Tyl) = ||MI(x, || L+ di (], T (s)

Thus, inequality (13) is satisfied with F(«) =-1/a and
0(B) = /(1 + B), so that A =sup,.,0(¢) = 1. Also, by Defini-
tion 24, we have (x/, Tx/)) € E(G). Therefore, all the
assumptions of Theorem 22 are satisfied, and thus, problem
(48) has a solution. O

Theorem 27. Assume that K is nonincreasing in the third
variable and there exists T > 0 such that

i _ Ne l99-9|
K (s, v, gx') K(s,v,gy)‘gT||ng_gyj”+1, (61)

for all s,vel0,1] and x,y € M. Then, the existence of an
upper solution of the integral equation (48) ensures the exis-
tence of a solution of (48).

Proof. Define set E(G) of edges on M by
E(G)={(xy) e MxM :x(s) = y(s)} (62)

Now, following the steps of the proof of Theorem 26
with an analogous procedure, one can check that all the
hypotheses of Theorem 22 are validated, and thus, Theorem
22 ensures the existence of a unique solution of the integral
equation (48). O

We now furnish a numerical example to validate the
hypothesis of Theorem 27.

Example 7. Consider the function x € M defined by x(s) =
s%,5 €0, 1]. We show that this function is an upper solution
in M for the following integral equation:

L] log (1+x)-log (1+y)|
n |X—}/|
1+0.01 |x—y|

FIGURE 1: Inequality in (66).

X _y

D log (1+x)7 log (1+y)
n x|

L+|x—y|
n x|

1+0.01 |x—y|

FIGURE 2: Inequality in (67).

1 1 1 1 1
xX(s)=—=s+ 2s* +arctan (~s | —3arctan {-s* ) — =s*In {1+ —s*
2 2 2 2 4

522 12 (y
+ JO In (1+x(v))dv+ '[0 I +(x()v)

dv, s€l0,1].

(63)

Finally, we see that x,(s)=s®—arctan (s*/2) is the
unique solution of (63).

Proof. Define the operator T : M — M as

1 1 1
Tx(s) = —5st 2s* + arctan (i s) -3 arctan <§ 52)

212
- %52 In <1 + is‘*) +J In (1+x(v))dv (64)

0
s/2
+ J *(v) dv,

o 1+x(v)

s€0,1].
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Now, set K(s, v, x(v)) =In (1 +x(v)), J(s, v, x(v)) = x(v)
I(1+x(v)), p(s) = (1/2)s%, a(s) = (1/2)s, f(s) =—(1/2)s + 25?
+arctan ((1/2)s) — 3 arctan ((1/2)s?) = (1/2)s? In (1 + (1/4)

s*), and 7 <0.01. We observe the following:

(i) Both the functions K(s,v,x(v)) =1n (1 +x(v)) and
J(s,v,x(v)) =x(v)/(1 + x(v)) are nondecreasing in
the third variable

(ii) By actual computation, we have

5212 1 1 1
J In (1 +x(v))dv=—s" +2 arctan <552) + E52 In (1 + ZS4>’ se(o,1],

0
s/2 1 1

[ () dv=_s—arctan | =s |, s€[0,1].
Jo 1+x(v) 2 2

(65)

>—(1/2)s + 2s* + arctan ((1/2)) 3 arctan ((1/2)
) (1/2)21n(1+ 1/4)s f’z In (1+x(v))dv

+ f/z [(1+x(v))dv,s€ [O, 1] so that x(s) = s is
an upper solutlon for (63)

(iii) s

(iv) The following inequalities hold true for all x,y
€ [0, 1] (see Figures 1 and 2):

In (1 In(ey) <2 (6

I (o)<l (L)< om0

X _ y |x_y| |x_y‘ (67)
l+x 1+y|” 1+[x—y|  1+0.01]x—y|

O

Furthermore, using the nondecreasing function s s/
(1+0.01s), we have

[~y
1+0.01|x—y|

;ggflx ¥l

In (I+x)-In(1+y)|<

< (68)
1+0.01 max|x ¥

s€[0,1

R Ly
1+0.01x -y

Similarly, for all x, y € [0, 1], we have

b=yl
T 1+0.01|x -y

x )
1+x 1+y

(69)

Hence, all the conditions of Theorem 27 are satisfied.
It is evident that the integral equation (63) has a unique
solution x, € M defined by x,(s) =s* — arctan (s*/2).
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