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In our present investigation, by applying q-calculus operator theory, we define some new subclasses of m-fold symmetric analytic
and bi-univalent functions in the open unit diskU = fz ∈ℂ : jzj < 1g and use the Faber polynomial expansion to find upper bounds
of jamk+1j and initial coefficient bounds for jam+1j and ja2m+1j as well as Fekete-Szego inequalities for the functions belonging to
newly defined subclasses. Also, we highlight some new and known corollaries of our main results.

1. Introduction, Definitions, and Motivation

Let A denote the class of all analytic functions f ðzÞ in the
open unit disk U = fz : jzj < 1g and have the series expan-
sion of the form

f zð Þ = z + 〠
∞

n=2
anz

n: ð1Þ

By S , we mean the subclass of A consisting of univalent
functions. The inverse f −1 of univalent function f can be
defined as

f −1 f zð Þð Þ = z, z ∈U,

f f −1 wð Þ� �
=w,  wj j < r0 fð Þ, r0 fð Þ ≥ 1

4 ,
ð2Þ

where

g1 wð Þ = f −1 wð Þ =w − a2w
2 + 2a22 − a3

� �
w3

− 5a32 − 5a2a3 + a4
� �

w4+:⋯
ð3Þ

According to the Koebe one-quarter theorem [1], an
analytic function f is called bi-univalent in U if both f and
f −1 are univalent in U. Let Σ denote the class all bi-
univalent functions in U. For f ∈ Σ, Lewin [2] showed that
ja2j < 1:51 and Brannan and Cluni [3] proved that ja2j ≤ffiffiffi
2

p
. Netanyahu [4] showed that max ja2j = 4/3: Brannan

and Taha [5] introduced a certain subclass of bi-univalent
functions for class Σ. In recent years, Srivastava et al. [6],
Frasin and Aouf [7], Altinkaya and Yalcin [8, 9], and
Hayami and Owa [10] studied the various subclasses of ana-
lytic and bi-univalent function. For a brief history, see [11].

In [12], Faber introduced Faber polynomials, and after
that, Gong [13] studied Faber polynomials in geometric
function theory. In their published works, some contribu-
tions have been made to finding the general coefficient
bounds ∣an ∣ by applying Faber polynomial expansions. By
using Faber polynomial expansions, very little work has been
done for the coefficient bounds janj for n ≥ 4 of Maclaurin’s
series. For more studies, see [14–17].

A domain U is said to be m-fold symmetric if

f ei 2π/mð Þz
� �

= ei 2π/mð Þ f zð Þ, z ∈U, f ∈A ,m ∈ℕ: ð4Þ
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The univalent function hðzÞ maps the unit disk U into a
region with m-fold symmetry and can be defined as

h zð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffi
f zmð Þm

p
,  f ∈ S: ð5Þ

A function f is said to be m-fold symmetric [18] if it has
the series expansion of the form

f zð Þ = z + 〠
∞

k=1
amk+1z

mk+1: ð6Þ

The class of all m-fold symmetric univalent functions is
denoted by Sm, and for m = 1, then Sm = S .

In [19], Srivastava et al. proved the inverse f −1m series
expansion for f ∈ Σm, which is given as follows:

g wð Þ = f −1m wð Þ =w − am+1w
m+1 + m + 1ð Þa2m+1 − a2m+1

� �
w2m+1

−
1
2 m + 1ð Þ 3m + 2ð Þa3m+1 − 3m + 2ð Þam+1a2m+1 + a3m+1

�� 	
w3m+1

+:⋯

ð7Þ

Here, we will denote m-fold symmetric bi-univalent
functions by Σm. For m = 1, equation (7) coincides with
equation (3) of the class Σ: The coefficient problem for f ∈
Σm is one of the favorite subjects of geometric function the-
ory in these days (see [20–23]).

The quantum (or q-) calculus has great importance
because of its applications in several fields of mathematics,
physics, and some related areas. The importance of q
-derivative operator ðDqÞ is pretty recognizable by its
applications in the study of numerous subclasses of analytic
functions. Initially, in 1908, Jackson [24] introduced a q
-derivative operator and studied its applications. Further,
in [25], Ismail et al. defined a class of q-starlike functions;
after that, Srivastava [26] studied q-calculus in the context
of univalent function theory; also, numerous mathemati-
cians studied q-calculus in the context of univalent function
theory: Further, the q-analogue of the Ruscheweyh differen-
tial operator was defined by Kanas and Raducanu [27] and
Arif et al. [28] discussed some of its applications for multiva-
lent functions while Zhang et al. in [29] studied q-starlike
functions related with the generalized conic domain. Sri-
vastava et al. published the articles (see [30, 31]) in which
they studied the class of q-starlike functions. For some
more recent investigations about q-calculus, we may refer
to [32–34].

For a better understanding of the article, we recall some
concept details and definitions of the q-difference calculus.
Throughout the article, we presume that

0 < q < 1: ð8Þ

Definition 1. The q-factorial ½n�q! is defined as

n½ �q! =
Yn
k=1

k½ �q  n ∈ℕð Þ, ð9Þ

and the q-generalized Pochhammer symbol ½t�n,q, t ∈ℂ, is
defined as

t½ �n,q = t½ �q t + 1½ �q t + 2½ �q ⋯ t + n − 1½ �q  n ∈ℕð Þ: ð10Þ

Remark 2. For n = 0, then ½n�q! = 1, and ½t�n,q = 1.

Definition 3. The q-number ½t�q for q ∈ ð0, 1Þ is defined as

t½ �q =

1 − qt

1 − q
t ∈ℂð Þ,

〠
n−1

k=0
qk t = n ∈ℕð Þ:

8>>>><
>>>>:

ð11Þ

Definition 4 (see [24]). The q-derivative (or q-difference)
operator Dq of a function f is defined, in a given subset of
ℂ, by

Dqf
� �

zð Þ =
f zð Þ − f qzð Þ

1 − qð Þz , z ≠ 0,

f ′ 0ð Þ, z = 0,

8><
>: ð12Þ

provided that f ′ð0Þ exists.

From Definition 4, we can observe that

lim
q⟶1−

Dqf
� �

zð Þ = lim
q⟶1−

f zð Þ − f qzð Þ
1 − qð Þz = f ′ zð Þ, ð13Þ

for a differentiable function f in a given subset of ℂ. It is also
known from (1) and (12) that

Dqf
� �

zð Þ = 1 + 〠
∞

n=2
n½ �qanzn−1: ð14Þ

Here, in this paper, we use the q-difference operator to
define new subclasses of m-fold symmetric analytic and bi-
univalent functions and then apply the Faber polynomial
expansion technique to determine the general coefficient
bounds jamk+1j and initial coefficient bounds jam+1j and
ja2m+1j as well as Fekete-Szego inequalities.

Definition 5. A function f ∈ Σm is said to be in the class
Rbðφ,m, qÞ if and only if

1 + 1
b

Dqf zð Þ − 1
� �

≺ φ zð Þ,

1 + 1
b

Dqg wð Þ − 1
� �

≺ φ wð Þ,
ð15Þ

where φ ∈P , b ∈ℂ \ f0g, andz,w ∈U, andgðwÞ = f −1m ðwÞ is
defined by (7).
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Remark 6. For q⟶ 1− andm = 1, then the classRbðφ,m, qÞ
reduces into the class RbðφÞ introduced by Hamidi and
Jahangiri in [35].

Definition 7. A function f ∈ Σm is said to be in the class
S∗

Σm
ðφ, qÞ if and only if

zDqf zð Þ
f zð Þ ≺ φ zð Þ,

wDqg wð Þ
g wð Þ ≺ φ wð Þ,

ð16Þ

where φ ∈P , b ∈ℂ \ f0g, andz,w ∈U, andgðwÞ = f −1m ðwÞ is
defined by (7).

Remark 8. For q⟶ 1−, m = 1, and φðzÞ = ð1 + AzÞ/ð1 + BzÞ,
then the class S∗Σm

ðφ, qÞ reduces into the class SðA, BÞ, intro-
duced by Hamidi and Jahangiri in [36].

2. Main Results

Using the Faber polynomial expansion of functions f ∈A of
the form (1), the coefficients of its inverse map g = f −1 may
be expressed as [15] given by

g wð Þ = f −1 wð Þ =w + 〠
∞

n=2

1
n
K−n

n−1 a2, a3,⋯ð Þwn, ð17Þ

for an expansion of K−n
n−1 (see [37]). In particular, the first

three terms of K−n
n−1 are

1
2K

−2
1 = −a2,

1
3K

−3
2 = 2a22 − a3,

1
4K

−4
3 = − 5a32 − 5a2a3 + a4

� �
:

ð18Þ

In general, for any p ∈ℕ and n ≥ 2, an expansion of Kp
n−1

is as (see [15])

Kp
n−1 = pan +

p p − 1ð Þ
2 E2

n−1 +
p!

p − 3ð Þ!3! E
3
n−1+⋯

+ p!
p − n + 1ð Þ! n − 1ð Þ! E

n−1
n−1,

ð19Þ

where Ep
n−1 = Ep

n−1ða2, a3,⋯Þ, and by [37],

Em
n−1 a2,⋯, anð Þ = 〠

∞

n=2

m! a2ð Þμ1 ⋯ anð Þμn−1
μ1!, ⋯ , μn−1!

, form ≤ n,

ð20Þ

while a1 = 1, and the sum is taken over all nonnegative
integers μ1,⋯, μn satisfying

μ1 + μ2+⋯+μn =m,
μ1 + 2μ2+⋯+ n − 1ð Þμn−1 = n − 1:

ð21Þ

Evidently, En−1
n−1ða2,⋯, anÞ = an−12 (see [14]), or equiva-

lently,

Em
n a1,a2,⋯, anð Þ = 〠

∞

n=1

m! a1ð Þμ1 ⋯ anð Þμn
μ1!, ⋯ , μn!

, form ≤ n,

ð22Þ

while a1 = 1, and the sum is taken over all nonnegative inte-
gers μ1,⋯, μn satisfying

μ1 + μ2+⋯+μn =m,
μ1 + 2μ2+⋯+ nð Þμn = n:

ð23Þ

It is clear that En
nða1,⋯, anÞ = En

1 , and the first and last
polynomials are En

n = an1 and E1
n = an:

Similarly, using the Faber polynomial expansion of func-
tions f ∈A of the form (6), that is,

f zð Þ = z + 〠
∞

k=1
K1/m

k a2, a3,⋯, ak+1ð Þzmk+1: ð24Þ

The coefficients of its inverse map g = f −1m may be
expressed as

g zð Þ = f −1m zð Þ =w + 〠
∞

k=1

1
mk + 1ð ÞK

− mk+1ð Þ
k

� am+1, a2m+1,⋯, amk+1ð Þwmk+1:

ð25Þ

Theorem 9. For b ∈ℂ \ f0g, let f ∈Rbðφ,m, qÞbe given by
(6), and ifamj+1 = 0, 1 ≤ j ≤ k − 1, then

amk+1j j ≤ 2 bj j
1 +mk

, for k ≥ 2: ð26Þ

Proof. By definition, for the function f ∈Rbðφ,m, qÞ of the
form (6), we have

1 + 1
b

Dqf zð Þ − 1
� �

= 1 + 〠
∞

k=1

1 +mk½ �q
b

amk+1z
mk, ð27Þ

and for its inverse map g = f −1m , we have

1 + 1
b

Dqg wð Þ − 1
� �

= 1 + 〠
∞

k=1

1 +mk½ �q
b

Amk+1w
mk, ð28Þ

where

Amk+1 =
1

mk + 1K
− mk+1ð Þ
k am+1, a2m+1,⋯, amk+1ð Þ, k ≥ 1:

ð29Þ
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On the other hand, since f ∈Rbðφ,m, qÞ and g = f −1m ∈
Rbðφ,m, qÞ by definition, we have

p zð Þ = c1z
m + c2z

2m+⋯ = 〠
∞

k=1
ckz

mk,

q wð Þ = d1w
m + d2w

2m+⋯ = 〠
∞

k=1
dkw

mk,
ð30Þ

where

φ p zð Þð Þ = 1 + 〠
∞

k=1
〠
k

l=1
φlK

l
k c1, c2,⋯, ckð Þzmk, ð31Þ

φ q wð Þð Þ = 1 + 〠
∞

k=1
〠
k

l=1
φlK

l
k d1, d2,⋯, dkð Þwmk: ð32Þ

Comparing the coefficients of (27) and (31), we have

1
b
1 +mk½ �qamk+1 = 〠

k−1

l=1
φlK

l
k c1, c2,⋯, ckð Þ: ð33Þ

Similarly, comparing coefficients of (28) and (32), we
have

1
b
1 +mk½ �qAmk+1 = 〠

k−1

l=1
φlK

l
k d1, d2,⋯, dkð Þ: ð34Þ

Note that for amj+1 = 0, 1 ≤ j ≤ k − 1, we have

Amk+1 = −amk+1, ð35Þ

and so

1
b
1 +mk½ �qamk+1 = φ1ck, ð36Þ

−
1
b
1 +mk½ �qamk+1 = φ1dk: ð37Þ

Now taking the absolute of (36) and (37) and using the
fact that jφ1j ≤ 2, jckj ≤ 1, and jdkj ≤ 1, we have

amk+1j j ≤ bj j
1 +mk½ �q

φ1ckj j = bj j
1 +mk½ �q

φ1dkj j,

amk+1j j ≤ 2 bj j
1 +mk½ �q

,
ð38Þ

which completes the proof of Theorem 9.

For m = 1 and k = n − 1, in Theorem 9, we obtain the fol-
lowing corollary.

Corollary 10. For b ∈ℂ \ f0g, let f ∈Rbðφ, qÞ, and ifaj+1 = 0,
1 ≤ j ≤ n, then

anj j ≤ 2 bj j
n½ �q

, for n ≥ 3: ð39Þ

For q⟶ 1−, m = 1, and k = n − 1, in Theorem 9, we
obtain the following known corollary.

Corollary 11 (see [35]). For b ∈ℂ \ f0g, let f ∈RbðφÞ, and
ifaj+1 = 0, 1 ≤ j ≤ n, then

anj j ≤ 2 bj j
n

, for n ≥ 3: ð40Þ

Theorem 12. For b ∈ℂ \ f0g, let f ∈Bbðφ,m, qÞ be given by
(6), and then

am+1j j ≤

2 bj j
m + 1½ �q

, if bj j < 8
m + 1ð Þ 2m + 1½ �q

,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 bj j

m + 1ð Þ 2m + 1½ �q

s
, if bj j ≥ 8

m + 1ð Þ 2m + 1½ �q
,

8>>>><
>>>>:

a2m+1j j ≤

2 bj j
2m + 1½ �q

+ 2 m + 1ð Þ bj j2

m + 1½ �q
� �2 , if bj j < 2

2m + 1½ �q
,

4 bj j
2m + 1½ �q

, if bj j ≥ 2
2m + 1½ �q

,

8>>>>><
>>>>>:

a2m+1 − m + 1ð Þa2m+1


 

 ≤ 4 bj j

2m + 1½ �q
,

a2m+1 −
m + 1ð Þ
2

a2m+1










 ≤ 2 bj j

2m + 1½ �q
:

ð41Þ

Proof. Replacing k by 1 and 2 in (33) and (34), respectively,
we have

1
b
m + 1½ �qam+1 = φ1c1, ð42Þ

1
b
2m + 1½ �qa2m+1 = φ1c2 + φ2c

2
1, ð43Þ

−
1
b
m + 1½ �qam+1 = φ1d1, ð44Þ

1
b
2m + 1½ �q m + 1ð Þa2m+1 − a2m+1

� �
= φ1d2 + φ2d

2
1: ð45Þ

From (42) and (44), we have

am+1j j ≤ bj j
m + 1½ �q

φ1c1j j = bj j
m + 1½ �q

φ1d1j j ≤ 2 bj j
m + 1½ �q

: ð46Þ
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Adding (43) and (45), we have

a2m+1 =
b φ1 c2 + d2ð Þ + φ2 c21 + d21

� �� �
m + 1ð Þ 2m + 1½ �q

: ð47Þ

Taking the absolute value (47), we have

am+1j j ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8 bj j
m + 1ð Þ 2m + 1½ �q

:

s
ð48Þ

Now, the bounds given for jam+1j can be justified since

bj j <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8 bj j
m + 1ð Þ 2m + 1½ �q

s
, for bj j < 8

m + 1ð Þ 2m + 1½ �q
:

ð49Þ

From (43), we have

a2m+1j j = bj j φ1c2 + φ2c
2
1



 


2m + 1½ �q

≤
4 bj j

2m + 1½ �q
: ð50Þ

Next, we subtract (45) from (43), and we have

2 2m + 1½ �q
b

a2m+1 −
m + 1ð Þ
2 a2m+1

� 	
= φ1 c2 − d2ð Þ + φ2 c21 − d21

� �
= φ1 c2 − d2ð Þ,

ð51Þ

or

a2m+1 =
m + 1ð Þ
2 a2m+1 +

φ1b c2 − d2ð Þ
2 2m + 1½ �q

: ð52Þ

After some simple calculation and by taking the abso-
lute, we have

a2m+1j j ≤ φ1j j bj j c2 − d2j j
2 2m + 1ð Þ + m + 1ð Þ

2 a2m+1


 

: ð53Þ

Using the assertion (46), we have

a2m+1j j ≤ 2 bj j
2m + 1½ �q

+ 2 m + 1ð Þ bj j2

m + 1½ �q
� �2 : ð54Þ

From (50) and (54), we note that

2 bj j
2m + 1½ �q

+ 2 m + 1ð Þ bj j2

m + 1½ �q
� �2 ≤

4 bj j
2m + 1½ �q

, if bj j < 2
2m + 1½ �q

:

ð55Þ

Now, we rewrite (45) as

1
b
2m + 1½ �q m + 1ð Þa2m+1 − a2m+1

� �
= φ1d2 + φ2d

2
1: ð56Þ

Taking the absolute value, we have

a2m+1 − m + 1ð Þa2m+1


 

 ≤ 4 bj j

2m + 1½ �q
: ð57Þ

Finally, from (51), we have

2 2m + 1½ �q
b

a2m+1 −
m + 1ð Þ
2 a2m+1

� 	
= φ1 c2 − d2ð Þ: ð58Þ

Taking the absolute value, we have

a2m+1 −
m + 1ð Þ
2 a2m+1










 ≤ 2 bj j

2m + 1½ �q
: ð59Þ

For m = 1 and k = n − 1, in Theorem 12, we obtain the
following corollary.

Corollary 13. For b ∈ℂ \ f0g, let f ∈Bbðφ, qÞ be given by
(1), and then

a2j j ≤

2 bj j
2½ �q

, if bj j < 4
3½ �q

,

ffiffiffiffiffiffiffiffi
4 bj j
3½ �q

s
, if bj j ≥ 4

3½ �q
,

8>>>><
>>>>:

a3j j ≤

2 bj j
3½ �q

+ 4 bj j2

2½ �q
� �2 , if bj j < 2

3½ �q
,

4 bj j
3½ �q

, if bj j ≥ 2
3½ �q

,

8>>>>><
>>>>>:

a3 − 2a2m+1


 

 ≤ 4 bj j

3½ �q
,

a2m+1 − a2m+1


 

 ≤ 2 bj j

3½ �q
:

ð60Þ

For q⟶ 1−, m = 1, and k = n − 1, in Theorem 12, we
obtain the following corollary.
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Corollary 14 (see [35]). For b ∈ℂ \ f0g, let f ∈BbðφÞ be
given by (1), and then

a2j j ≤
bj j, if bj j < 4

3
,ffiffiffiffiffiffiffiffi

4 bj j
3

r
, if bj j ≥ 4

3
,

8>><
>>:

a3j j ≤
2 bj j
3

+ bj j2, if bj j < 2
3
,

4 bj j
3

, if bj j ≥ 2
3
,

8>><
>>:
a3 − 2a22


 

 ≤ 4 bj j

3
,

a3 − a22


 

 ≤ 2 bj j

3
:

ð61Þ

Theorem 15. Let f ∈ S∗
Σm
ðφ, qÞbe given by (6), and

ifamj+1 = 0, 1 ≤ j ≤ k − 1, then

amk+1j j ≤ 2
mk½ �q

, for k ≥ 2: ð62Þ

Proof. By definition, for the function f ∈ S∗
Σm
ðφ, qÞ of the

form (6), we have

zDqf zð Þ
f zð Þ = 1 − 〠

∞

k=1
Fk am+1, a2m+1,⋯, amk+1ð Þzmk, ð63Þ

where the first few coefficients of Fkðam+1, a2m+1,⋯, amk+1Þ
are

F1 = −am+1,
F2 = a2m+1 − m + 1ð Þa2m+1,

F3 = −a3m+1 + 2m + 1ð Þam+1a2m+1 − 2m + 1ð Þa3m+1
� �

:

ð64Þ

In general,

Fk am+1, a2m+1,⋯, amk+1ð Þ
= 〠

i1+2i2+⋯kink=k
A i1, i2, i2,⋯, ikð Þ am+1ð Þi1 a2m+1ð Þi2 ⋯ amk+1ð Þik� �

,

ð65Þ

where

A i1, i2, i2,⋯, ikð Þ = −1ð Þ kð Þ+2i1+⋯ k+1ð Þik i1 + i2 + i2 ⋯ +ik − 1ð Þ!k
i1!ð Þ i2!ð Þ⋯ ik!ð Þ :

ð66Þ

For the inverse map g = f −1m ∈ S∗
Σm
ðφ, qÞ, we obtain

zDqg wð Þ
g wð Þ = 1 − 〠

∞

k=1
Fk bm+1, b2m+1,⋯, bmk+1ð Þwmk, ð67Þ

where

Amk+1 =
1

mk + 1K
− mk+1ð Þ
k am+1, a2m+1,⋯, amk+1ð Þ, k ≥ 1:

ð68Þ

On the other hand, since f ∈ S∗
Σm
ðφ, qÞ and g = f −1m ∈

S∗
Σm
ðφ, qÞ by definition, we have

p zð Þ = c1z
m + c2z

2m+⋯ = 〠
∞

k=1
ckz

mk,

q wð Þ = d1w
m + d2w

2m+⋯ = 〠
∞

k=1
dkw

mk,
ð69Þ

where

φ p zð Þð Þ = 1 + 〠
∞

k=1
〠
k

l=1
φlK

l
k c1, c2,⋯, ckð Þzmk, ð70Þ

φ q wð Þð Þ = 1 + 〠
∞

k=1
〠
k

l=1
φlK

l
k d1, d2,⋯, dkð Þwmk: ð71Þ

Comparing the coefficients of (63) and (70), we have

− mk½ �qamk+1 = 〠
k−1

l=1
φlK

l
k c1, c2,⋯, ckð Þ: ð72Þ

Similarly, comparing the coefficients of (67) and (71), we
have

− mk½ �qbmk+1 = 〠
k−1

l=1
φlK

l
k d1, d2,⋯, dkð Þ: ð73Þ

Note that for amj+1 = 0, 1 ≤ j ≤ k − 1, we have

Amk+1 = −amk+1, ð74Þ

and so

− mk½ �qamk+1 = φ1ck, ð75Þ

mk½ �qamk+1 = φ1dk: ð76Þ

Taking the absolute values of (75) and (76) and using the
fact that jφ1j ≤ 2, jckj ≤ 1, and jdkj ≤ 1, we have
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amk+1j j ≤ 1
mk½ �q

φ1ckj j = 1
mk½ �q

φ1dkj j,

amk+1j j ≤ 2
mk½ �q

:

ð77Þ

Hence, Theorem 15 is complete.

For q⟶ 1−, m = 1, and k = n − 1, in Theorem 15, we
obtain the following corollary.

Corollary 16. f ∈ S∗ðφÞ, and ifaj+1 = 0, 1 ≤ j ≤ n, then

anj j ≤ 2
n − 1

, for n ≥ 3: ð78Þ

Theorem 17. Let f ∈ S∗
Σm
ðφ, qÞbe given by (6), and then

am+1j j ≤ 2
m½ �q

,

a2m+1j j ≤ 4 m + 1ð Þ
m 2m½ �q

+ 2
2m½ �q

,

a2m+1 −
m½ �q 2m + 1ð Þ

2m½ �q
a2m+1












 ≤ 4

2m½ �q
,

a2m+1 −
m½ �q m + 1ð Þ

2m½ �q
a2m+1












 ≤ 2

2m½ �q
:

ð79Þ

Proof. Replacing k by 1 and 2 in (72) and (73), respectively,
we have

m½ �qam+1 = φ1c1, ð80Þ

2m½ �qa2m+1 − m½ �qa2m+1 = φ1c2 + φ2c
2
1, ð81Þ

− m½ �qam+1 = φ1d1, ð82Þ

m½ �q 2m + 1ð Þa2m+1 − 2m½ �qa2m+1 = φ1d2 + φ2d
2
1: ð83Þ

From (80) and (82), we have

am+1j j ≤ 1
m½ �q

φ1c1j j = 1
m½ �q

φ1d1j j ≤ 2
m½ �q

: ð84Þ

Adding (81) and (83), we have

a2m+1 =
φ1 c2 + d2ð Þ + φ2 c21 + d21

� �
2m m½ �q

: ð85Þ

Taking the absolute value (85), we have

am+1j j ≤ 2ffiffiffiffiffiffiffiffiffiffiffiffi
m m½ �q

q : ð86Þ

Next, we subtract (83) from (81), and we have

2 2m½ �qa2m+1 − 2 m½ �q m + 1ð Þa2m+1

n o
= φ1 c2 − d2ð Þ + φ2 c21 − d21

� �
,

ð87Þ

or

a2m+1 =
m½ �q m + 1ð Þ

2m½ �q
a2m+1 +

φ1 c2 − d2ð Þ
2 2m½ �q

: ð88Þ

After some simple calculation of (88) and by taking the
absolute, we have

a2m+1j j ≤ φ1j j c2 − d2j j
2 2m½ �q

+
m½ �q m + 1ð Þ

2m½ �q
a2m+1


 

: ð89Þ

Using the assertion (86), we have

a2m+1j j ≤ 4 m + 1ð Þ
m 2m½ �q

+ 2
2m½ �q

: ð90Þ

For the third part, we rewrite (83) as

m½ �q 2m + 1ð Þa2m+1 − 2m½ �qa2m+1




 


 = φ1d2 + φ2d
2
1



 

: ð91Þ

Taking the absolute value, we have

a2m+1 −
m½ �q 2m + 1ð Þ

2m½ �q
a2m+1












 ≤ 4

2m½ �q
: ð92Þ

Finally, from (87), we have

2 2m½ �q a2m+1 −
m½ �q m + 1ð Þ

2m½ �q
a2m+1












 = φ1 c2 − d2ð Þj j: ð93Þ

Taking the absolute value, we have

a2m+1 −
m½ �q m + 1ð Þ

2m½ �q
a2m+1












 ≤ 2

2m½ �q
: ð94Þ

For q⟶ 1−,m = 1, and k = n − 1, in Theorem 17, we get
the following corollary.
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Corollary 18. Let f ∈ S∗ðφÞ be given by (1), and then

a2j j ≤ 2,
a3j j ≤ 5,

a3 −
3
2
a22










 ≤ 2,

a3 − a22


 

 ≤ 1:

ð95Þ

3. Conclusion

In this paper, we have applied q-calculus operator theory to
define some new subclasses of m-fold symmetric analytic
and bi-univalent functions in open unit disk U and used
the Faber polynomial expansion to find upper bounds j
amk+1j and initial coefficient bounds jam+1j and ja2m+1j as
well as Fekete-Szego inequalities for the functions belonging
to newly defined subclasses of m-fold symmetric analytic
and bi-univalent function. Also, we highlighted some new
and known consequences of our main results.
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