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Fuzzy set is a modern tool for depicting uncertainty. This paper introduces the concept of fuzzy sub e-group as an extension of
fuzzy subgroup. The concepts of identity and inverse are generalized in fuzzy sub e-groups. Every fuzzy subgroup is proven to
be a fuzzy sub e-group, but the converse is not true. Various properties of fuzzy sub e-groups are established. Moreover, the
concepts of proper fuzzy sub e-group and super fuzzy sub e-group are discussed. Further, the concepts of fuzzy e-coset and
normal fuzzy sub e-group are presented. Finally, we describe the effect of e-group homomorphism on normal fuzzy sub e-groups.

1. Introduction

Many decades ago, researchers developed an algebraic struc-
ture and named it as a group. Various properties of groups
are proposed later on. In group theory, every group contains
a unique identity element and every element has a unique
inverse. In 2018, Saeid et al. [1] generalized the notion of
groups to a new algebraic structure as e-groups. They gener-
alized the notion of the identity of a group. Instead of choos-
ing a single element as an identity element, Saeid et al. [1]
considered a subset of the main set as an identity set. So,
in an e-group, the identity element needs not to be unique.
They proved that every group is an e-group, but the converse
is not true. They defined homomorphism on e-groups in a
different manner. E-group is an important tool for classify-
ing isotopes. It is also a physical background in the unified
Gauge theory.

Uncertainty is a massive component in the life of a per-
son. In 1965, in his pioneer paper, Zadeh [2] first defined
fuzzy set to handle uncertainty in real-life problems. In
1971, utilizing the concept of fuzzy set, Rosenfeld [3] first
defined fuzzy subgroup. In 1979, using the t-norm concept

of the fuzzy subgroup was restructured by Anthony and
Sherwood [4, 5]. In 1981, the idea of fuzzy level subgroup
was introduced by Das [6]. In 1988, Choudhury et al. [7]
proved various properties of fuzzy homomorphism. In
1990, Dixit et al. [8] discussed the union of fuzzy subgroups
and fuzzy level subgroups. The concept of antifuzzy sub-
groups was proposed by Biswas [9]. In 1992, Ajmal and
Prajapati [10] developed fuzzy cosets and fuzzy normal sub-
groups. Chakraborty and Khare [11] studied various proper-
ties of fuzzy homomorphism. Ajmal [12] also studied the
homomorphism of fuzzy subgroups. Later, many researchers
studied various properties of fuzzy subgroups [13–16]. In
2015, Tarnauceanu [17] classified fuzzy normal subgroups
of finite groups. In 2016, Onasanya [18] reviewed some anti-
fuzzy properties of fuzzy subgroups. In 2018, Shuaib and
Shaheryar [19] introduced omicron fuzzy subgroups. In
2018, Addis [20] developed fuzzy homomorphism theorems
on groups. In 2019, Bhunia and Ghorai [21] studied ðα, βÞ-
Pythagorean fuzzy subgroups. In 2021, Bhunia et al. [22,
23] developed Pythagorean fuzzy subgroups. Abuhijleh
et al. [24] worked on complex fuzzy subgroups in 2021.
Alolaiyan et al. [25] studied algebraic structure of ðα, βÞ
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-complex fuzzy subgroups. Alolaiyan et al. [26] developed
bipolar fuzzy subrings in 2021. In 2021, Talafha et al. [27]
studied fuzzy fundamental groups and fuzzy folding of fuzzy
Minkowski space.

In a fuzzy subgroup, the identity element of the group
has the highest membership value. Also, in a fuzzy subgroup,
the membership value of an element and its inverse are
equal. But in an e-group, there is no unique identity element
and no direct concept of the inverse of elements. Till now,
no fuzzification has been done for e-groups. So, it is a chal-
lenge for us to fuzzify e-groups. In this study, we construct
the concept of fuzzy sub e-groups. Here, we show that every
fuzzy subgroup is a fuzzy sub e-group, but the converse is
not true. So, the idea of fuzzy sub e-group is a much more
generalized concept. In the study of isotopes, we notice that
isotopes decay through neutron emission. So, the member-
ship degree of these unstable neutrons must lie in ½0, 1�.
Therefore, fuzzy sub e-group will be more efficient in study-
ing these unstable isotopes rather than a crisp e-group.

This paper is arranged in the following order. In Section
2, we recall some important concepts. In Section 3, utilizing
the concept of e-groups, we generalize fuzzy subgroups. We
develop the concept of fuzzy sub e-group and show that any
fuzzy subgroup is also a fuzzy sub e-group. We also prove
many algebraic properties of fuzzy sub e-groups. Further,
we define fuzzy e-coset and normal fuzzy sub e-group in
Section 4. Moreover, in Section 5, we show that after e-
group homomorphism, a fuzzy sub e-group remains a fuzzy
sub e-group. Finally, the conclusion is given in Section 6.

2. Preliminaries

Here, we will go over some basic definitions and concepts,
which will be useful in the following sections.

Definition 1 (see [2]). A fuzzy set (FS) ðD, κÞ on a crisp set D
is an object having the form ðD, κÞ = fðd, κðdÞÞjd ∈Dg,
where κ⟶ ½0, 1� is the membership function.

Definition 2 (see [3]). Let ðD, κÞ be a FS on a group D. Then,
ðD, κÞ is referred to be a fuzzy subgroup (FSG) of D if the
following conditions hold:

(i) κðd1d2Þ ≥ κðd1Þ ∧ κðd2Þ∀d1, d2 ∈D
(ii) κðd−1Þ ≥ κðdÞ∀d ∈D

Definition 3 (see [2]). Let ðD, κÞ be a FS on D. Then, for any
a ∈ ½0, 1�, the set κa = fd ∣ d ∈D, κðdÞ ≥ ag is called a-cut of
ðD, κÞ.

Clearly, κa is a subset of D.

Proposition 4 (see [28]). Let h be a mapping fromD1 intoD2.
Let ðD1, κ1Þ and ðD2, κ2Þ be the two FSs on D1 and D2, respec-
tively. Then, ðD2, hðκ1ÞÞ and ðD1, h−1ðκ2ÞÞ are FSs on D2 and
D1, respectively, where for all d2 ∈D2

h κ1ð Þ d2ð Þ =
∨ κ1 d1ð Þ d1j ∈D1, h d1ð Þ = d2f g,
when h−1 d2ð Þ ≠∅,
0, elsewhere,

8>><
>>: ð1Þ

and for all d1 ∈D1, ðh−1ðκ2ÞÞðd1Þ = κ2ðhðd1ÞÞ.

Definition 5 (see [1]). Let D be a nonempty crisp set and
L ⊆D. Then, ðD,∘,LÞ is an e-group, where ∘ is the binary
operation on D, which meets the following criteria:

(i) d1 ∘ ðd2 ∘ d3Þ = ðd1 ∘ d2Þ ∘ d3∀d1, d2, d3 ∈D
(ii) For every d ∈D, ∃ an element l ∈ L such that d ∘ l

= l ∘ d = d

(iii) For every d1 ∈D, ∃ an element d2 ∈D such that d1
∘ d2 and d2 ∘ d1 ∈ L

Definition 6 (see [1]). Let ðD1, ∘1, L1Þ and ðD2, ∘2, L2Þ be the
two e-groups. If a mapping h : D1 ⟶D2 meets the follow-
ing criteria, it is referred to as a homomorphism:

(i) hðL1Þ ⊆ L2

(ii) hðd1∘1d2Þ = hðd1Þ∘2hðd2Þ∀d1, d2 ∈D1

3. Fuzzy Sub e-Group and Its Properties

In this section, fuzzy sub e-group is briefly described as a
generalization of fuzzy subgroup. The notions of identity
and inverse are generalized in fuzzy sub e-group. We inves-
tigate its properties. We define super fuzzy sub e-group. We
check whether union and intersections of fuzzy sub e-group
are fuzzy sub e-groups.

Definition 7. A FS ðD, κÞ is referred to be a fuzzy sub e-group
of an e-group ðD,∘,LÞ if the following conditions hold:

(i) κðd1 ∘ d2Þ ≥ κðd1Þ ∧ κðd2Þ∀d1, d2 ∈D
(ii) κðlÞ ≥ κðdÞ∀l ∈ L and d ∈D/L

where κ : D⟶ ½0, 1� is the membership function.

Example 8. Let D = fd1, d2, d3g and L = fd1, d2g. Define a
binary operation ∘ on D as below.

o d1

d2

d3 d3

d3

d3

d3

d2

d2

d2

d2

d1

d1

d1

d1

ð2Þ

Then, ðD,∘,LÞ is an e-group.
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Here, we assign membership degrees to the elements of
D by κðd1Þ = κðd3Þ = 0:8 and κðd2Þ = 0:9.

Now, κðd1 ∘ d3Þ = κðd2Þ = 0:9 > 0:8 = κðd1Þ ∧ κðd3Þ.
Similarly, we can check for other elements of D.
Therefore, κðdi ∘ djÞ ≥ κðdiÞ ∧ κðdjÞ for all di, dj ∈D.
Also, κðd1Þ = 0:8 = κðd3Þ and κðd2Þ = 0:9 > 0:8 = κðd3Þ.
Thus, ðD, κÞ forms a fuzzy sub e-group of the e-group

ðD,∘,LÞ.

Theorem 9. Let ðD,∘,LÞ stand for an e-group and ðD, κÞ be a
FS on D. Then, ðD, κÞ is referred to be a fuzzy sub e-group of
ðD,∘,LÞ if for all d1 and d2 ∈D, κðd1 ∘ d2′Þ ≥ κðd1Þ ∧ κðd2Þ for
some d2′ ∈D such that d2 ∘ d2′, d2′ ∘ d2 ∈ L.

Proof. Let ðD, κÞ stand for a fuzzy sub e-group of ðD,∘,LÞ.
Then, for all d1 and d2 in D, κðd1 ∘ d2Þ ≥ κðd1Þ ∧ κðd2Þ.
Let d1, d2 ∈D. Then, ∃ some d2′ ∈D such that d2 ∘ d2′ and

d2′ ∘ d2 ∈ L.
Therefore, κðd1 ∘ d2′Þ ≥ κðd1Þ ∧ κðd2′Þ ≥ κðd1Þ ∧ κðd2Þ.
Conversely, assume that ∀d1, d2 ∈D, κðd1 ∘ d2′Þ ≥ κðd1Þ

∧ κðd2Þ for some d2′ ∈D such that d2 ∘ d2′ and d2′ ∘ d2 ∈ L.
Let d1 ∈D, d2 ∈D/L.

Here, d2 ∘ d2′ ∈ E, then κðd2 ∘ d2′Þ ≥ κðd2Þ ∧ κðd2Þ = κðd2Þ.
Therefore, κðlÞ ≥ κðdÞ, where l ∈ L and d ∈D/L.
Let d2 = ðd2′Þ′ for all d2, d2′ ∈D such that d2 ∘ d2′ and d2′ ∘

d2 ∈ L.
Therefore, ðd1 ∘ d2Þ = κðd1 ∘ ðd2′Þ′Þ ≥ κðd1Þ ∧ κðd2′Þ ≥ κð

d1Þ ∧ κðd2Þ∀d1, d2 ∈D.
Hence, the e-group ðD,∘,LÞ has a fuzzy sub e-group ðD, κÞ.

Remark 10. The above theorem gives the necessary and suf-
ficient condition for a FS of an e-group to be a fuzzy sub e-
group.

Now, we will demonstrate that any FSG within a group
D is also a fuzzy sub e-group of the e-group ðD,∘,flgÞ, where
l is the group’s identity element. But the converse needs not
to be true.

Theorem 11. Any fuzzy subgroup of a group is a fuzzy sub e-
group.

Proof. Let ðD, κÞ stand for a FSG of a group D.
Then, κðd1 ∘ d2Þ ≥ κðd1Þ ∧ κðd2Þ and κðd−11 Þ = κðd1Þ for

all d1 and d2 ∈D.
So, the first condition of fuzzy sub e-group is satisfied.
As D is a group, then there is a unique identity element l

in D.
Since ðD, κÞ is a FSG of D, κðlÞ ≥ κðdÞ∀d ∈D.
Now, we take L = flg; then, L ⊆D.
Therefore, κðlÞ ≥ κðdÞ, where l ∈ L and d ∈D/L:
Hence, the FSG ðD, κÞ of D is a fuzzy sub e-group of the

e-group ðD, ·, LÞ.

Example 12. Let D = fd1, d2, d3, d4g and L = fd1, d2g.

Define ∘ on D as binary operation by the following:

o d1

d2

d3 d3

d3

d1

d3

d2

d1

d2

d1

d1

d1

d1

d1

d4

d3

d1

d1

d4 d4d1 d3 d4

ð3Þ

Then, ðD,∘,LÞ is an e-group.
Now, we assign a membership value to each of the ele-

ments of D by the following:

κ d1ð Þ = 0:8,
κ d2ð Þ = 0:9,
κ d3ð Þ = 0:6,
κ d4ð Þ = 0:7:

ð4Þ

Now, we can verify that ðD, κÞ is a fuzzy sub e-group of
the e-group ðD,∘,LÞ.

But jLj > 1. So, ðD, ∘Þ is not a group. Hence, the FS ðD, κÞ
is not a FSG.

Remark 13. A fuzzy sub e-group of an e-group is not neces-
sarily a FSG.

Definition 14. A fuzzy sub e-group of an e-group which is
not a FSG is said to be a proper fuzzy sub e-group.

The fuzzy sub e-group ðD, κÞ in Example 12. is a proper
fuzzy sub e-group.

Now, we will check about union and intersection of
fuzzy sub e-groups.

Theorem 15. Intersection of fuzzy sub e-groups of an e-group
is also a fuzzy sub e-group of that e-group.

Proof. Let ðD, κ1Þ and ðD, κ2Þ be the two fuzzy sub e-groups
of an e-group ðD,∘,LÞ.

Then, ∀d1, d2 ∈D, κ1ðd1 ∘ d2Þ ≥ κ1ðd1Þ ∧ κ1ðd2Þ and κ1
ðlÞ ≥ κ1ðdÞ, where l ∈ L and d ∈D/L.

Also, ∀d1, d2 ∈D, κ2ðd1 ∘ d2Þ ≥ κ2ðd1Þ ∧ κ2ðd2Þ and κ2ðlÞ
≥ κ2ðdÞ, where l ∈ L and d ∈D/L.

Let ðD, κÞ be the intersection of ðD, κ1Þ and ðD, κ2Þ,
where κ = κ1 ∩ κ2 is given by κðdÞ = κ1ðdÞ ∧ κ2ðdÞ∀d ∈D.
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Now for all d1, d2 ∈D,

κ d1 ∘ d2ð Þ = κ1 d1 ∘ d2ð Þ ∧ κ2 d1 ∘ d2ð Þ
≥ κ1 d1ð Þ ∧ κ1 d2ð Þð Þ ∧ κ2 d1ð Þ ∧ κ2 d2ð Þð Þ
= κ1 d1ð Þ ∧ κ2 d1ð Þð Þ ∧ κ1 d2ð Þ ∧ κ2 d2ð Þð Þ
= κ d1ð Þ ∧ κ d2ð Þ:

ð5Þ

Therefore, κðd1 ∘ d2Þ ≥ κðd1Þ ∧ κðd2Þ for all d1, d2 ∈D.
Again for l ∈ L and d ∈D/L, we have the following:

κ lð Þ = κ1 lð Þ ∧ κ2 lð Þ ≥ κ1 dð Þ ∧ κ2 dð Þ = κ dð Þ: ð6Þ

Therefore, ðD, κÞ is a fuzzy sub e-group of the e-group
ðD,∘,LÞ.

Hence, the intersection of two fuzzy sub e-groups of an
e-group is also a fuzzy sub e-group of that e-group.

Corollary 16. Intersection of any fuzzy sub e-groups of an e-
group ðD,∘,LÞ is also a fuzzy sub e-group of that e-group
ðD,∘,LÞ.

Remark 17. Union of two fuzzy sub e-groups of an e-group
may not be a fuzzy sub e-group of that e-group.

Example 18. Let us take the e-group ðD,∘,LÞ, where D =ℤ,
L = 2ℤ, and ∘ is the addition of integers.

Let ðD, κ1Þ and ðD, κ2Þ be the two fuzzy sub e-groups of
the e-group ðD,∘,LÞ, where κ1 and κ2 are presented by the
following:

κ1 dð Þ =
0:6, when d ∈ 2ℤ,
0:3, when d ∈ 5ℤ/2ℤ,
0, elsewhere,

8>><
>>:

κ2 dð Þ =
0:8, when d ∈ 2ℤ,
0:2, when d ∈ 3ℤ/2ℤ,
0, elsewhere:

8>><
>>:

ð7Þ

Let ðD, κÞ be the union of ðD, κ1Þ and ðD, κ2Þ, where κ
= κ1 ∪ κ2 is given by κðdÞ = κ1ðdÞ∨κ2ðdÞ∀d ∈D.

Therefore,

κ dð Þ =

0:8, when d ∈ 2ℤ,
0:3, when d ∈ 5ℤ/2ℤ,
0:2, when d ∈ 3ℤ/ 2ℤ ∩ 5ℤð Þ,
0, elsewhere:

8>>>>><
>>>>>:

ð8Þ

Now, κð5 + ð−4ÞÞ = κð1Þ = 0, but κð5Þ ∧ κð−4Þ =min f
0:3,0:8g = 0:3.

So, κð5 + ð−4ÞÞ ≱ κð5Þ ∧ κð−4Þ.
Hence, ðD, κÞ is not a fuzzy sub e-group of the e-group

ðD,∘,LÞ.

Definition 19. Let ðD, κ1Þ and ðD, κ2Þ be the two fuzzy sub e-
groups of an e-group ðD,∘,LÞ such that κ2ðlÞ ≥ κ1ðlÞ for all l
∈ L and κ2ðdÞ ≤ κ1ðdÞ for all d ∈D/L, then ðD, κ2Þ is referred
to be a super fuzzy sub e-group of ðD, κ1Þ.

Example 20. In Example 12., we take another FS ðD, κ1Þ on
ðD,∘,LÞ, where

κ1 d1ð Þ = 0:85,
κ1 d2ð Þ = 0:93,
κ1 d3ð Þ = 0:57,
κ1 d4ð Þ = 0:68:

ð9Þ

Then, we can simply verify that ðD,∘,LÞ has a fuzzy sub e-
group ðD, κ1Þ.

Now, we can see that for all l ∈ L, κ1ðlÞ ≥ κðlÞ and for all
d ∈D/L, κ1ðdÞ ≤ κðdÞ.

Hence, ðD, κ1Þ is a super fuzzy sub e-group of ðD, κÞ.

Theorem 21. Let ðD, κÞ stand for a fuzzy sub e-group of an e-
group ðD,∘,LÞ. Then, the set K = fd ∣ d ∈D, κðdÞ = pg forms a
sub e-group ðK ,∘,LÞ of the e-group ðD,∘,LÞ, where p = ∧fκðlÞ
jl ∈ Lg.

Proof. Given K = fd ∣ d ∈D, κðdÞ = pg, where p = ∧fκðlÞjl ∈
Lg.

To show that the e-group ðD,∘,LÞ has a sub e-group
ðK ,∘,LÞ, we have to show that ðK ,∘,LÞ itself forms an e-group.

Since ðD,∘,LÞ is an e-group, the associative law holds.
Clearly, K is a subset of D. Then, associative law also

holds in K . Instead of showing the other two conditions of
e-group, we will show that for all k1 and k2 ∈ K , ∃ a k2′ ∈ K
such that k1 ∘ k2′ and k2′ ∘ k1 ∈ L.

Let k1, k2, and k2′ ∈ K . Then, κðk1Þ = κðk2Þ = κðk2′Þ = p.
Since ðD, κÞ is a fuzzy sub e-group of ðD,∘,LÞ, by Theo-

rem 9, we have the following:

κ k1 ∘ k2′
� �

≥ κ k1ð Þ ∧ κ k2ð Þ = p: ð10Þ

Similarly, we can show that κðk2′ ∘ k1Þ ≥ p.
Since p = ∧fκðlÞjl ∈ Lg, k1 ∘ k2′ and k2′ ∘ k1 ∈ L.
Hence, ðK ,∘,LÞ forms a sub e-group of ðD,∘,LÞ.

4. Normal Fuzzy Sub e-Group and Level Fuzzy
Sub e-Group

This section will describe fuzzy e-cosets and normal fuzzy
sub e-groups. We will also introduce the concept of level
fuzzy sub e-groups.

Definition 22. Let ðD, κÞ stand for a fuzzy sub e-group of an
e-group ðD,∘,LÞ. Then, ∀s, d ∈D, the left fuzzy e-coset sκ =
κðlÞfsg ∘ κ is defined by sκðdÞ = κðs′ ∘ dÞ and the right fuzzy
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e-coset κs = κ ∘ κðlÞfsg is defined by κsðdÞ = κðd ∘ s′Þ, where l
is any element of L and s′ ∈D such that s ∘ s′ and s′ ∘ s ∈ L.

If a left fuzzy e-coset is also a right fuzzy e-coset, then we
will simply call it is a fuzzy e-coset.

Definition 23. Let ðd, κÞ stand for a fuzzy sub e-group of an
e-group ðD,∘,LÞ. Then, ðD, κÞ forms a normal fuzzy sub e-
group of the e-group ðD,∘,LÞ if every left fuzzy e-coset of
ðD, κÞ is a right fuzzy e-coset of ðD, κÞ in ðD,∘,LÞ.

Equivalently, sκ = κs for all s ∈D.

Example 24. Let us take the e-group ðℤ,+,2ℤÞ. Now, ðℤ, κÞ
forms a fuzzy sub e-group on ℤ, where κ is presented by
the following:

κ zð Þ =
0:9, when z ∈ 2ℤ,
0:6, elsewhere:

(
ð11Þ

Let us take s = 3 ∈ℤ.
Then, ∀d ∈ℤ, the left fuzzy e-coset ð3κÞ is presented by

ð3κÞðdÞ = κð3′ + dÞ = κð−3 + dÞ and the right fuzzy e-coset
ðκ3Þ is presented by ðκ3ÞðdÞ = κðd + 3′Þ = κðd − 3Þ.

Since addition is commutative on ℤ, then ð3κÞ = ðκ3Þ.
Similarly, we can check for other elements of ℤ. Hence,
ðℤ, κÞ forms a normal fuzzy sub e-group of ðℤ,+,2ℤÞ.

In the next theorem, we represent the necessary and suf-
ficient condition for a fuzzy sub e-group to be a normal
fuzzy sub e-group.

Theorem 25. Let ðD, κÞ stand for a fuzzy sub e-group of an e-
group ðD,∘,LÞ. Then, ðD, κÞ forms a normal fuzzy sub e-group
of the e-group ðD,∘,LÞ iff κðd1 ∘ d2Þ = κðd2 ∘ d1Þ∀d1, d2 ∈D.

Proof. Let ðD, κÞ stand for a normal fuzzy sub e-group of the
e-group ðD,∘,LÞ.

Then, every left fuzzy e-coset of ðD, κÞ is also a right
fuzzy e-coset of ðD, κÞ in ðD,∘,LÞ.

Therefore, ðtκÞ = ðκtÞ for all t ∈D. That is ðtκÞðd2Þ = ðκ
tÞðd2Þ∀d2, t ∈D.

This suggests that κðt ′ ∘ d2Þ = κðd2 ∘ t ′Þ∀t, t ′, d2 ∈D
such that t ∘ t ′, t ′ ∘ t ∈ L.

Now, we put t ′ = d1 ∈D. Therefore, κðd1 ∘ d2Þ = κðd2 ∘
d1Þ∀d1, d2 ∈D.

Conversely, let κðd1 ∘ d2Þ = κðd2 ∘ d1Þ∀d1, d2 ∈D.
Let s ∈D. Since ðD,∘,LÞ is an e-group, then ∃ a s′ ∈D

such that s ∘ s′, s′ ∘ s ∈ L.
Suppose s′ = d1. Then, κðs′ ∘ d2Þ = κðd2 ∘ s′Þ∀d2, s′ ∈D.
Therefore, ðsκÞðd2Þ = ðκsÞðd2Þ∀s, d2 ∈D. Thus, ðsκÞ = ðκ

sÞ∀s ∈D.
Hence, ðD, κÞ forms a normal fuzzy sub e-group of

ðD,∘,LÞ.

Theorem 26. Let ðD, κÞ stand for a fuzzy sub e-group of an e-
group ðD,∘,LÞ. Then, the a-cut κa of ðD, κÞ forms a sub e-group
ðκa,∘,LÞ of the e-group ðD,∘,LÞ, where a ≤ ∧fκðlÞ ∣ l ∈ Lg.

Proof. We have κa = fd ∣ d ∈D, κðdÞ ≥ ag, where a ∈ ½0, 1�
and a ≤ ∧fκðlÞ ∣ l ∈ Lg.

Clearly, κa is nonempty as L ⊆ κa.
To show that ðκa,∘,LÞ is an e-subgroup of ðD,∘,LÞ, we

need to prove that for d1, d2, d2′ ∈ κa, d1 ∘ d2′ ∈ κa, where d2
∘ d2′ , d2′ ∘ d2 ∈ L.

Let d1, d2, d2′ ∈ κa and d2 ∘ d2′ , d2′ ∘ d2 ∈ L. Then, κðd1Þ ≥ a
and κðd2Þ ≥ a.

Since ðD, κÞ forms a fuzzy sub e-group of the e-group
ðD,∘,LÞ,

κ d1 ∘ d2′
� �

≥ κ d1ð Þ ∧ κ d2′
� �

≥ κ d1ð Þ ∧ κ d2ð Þ ≥ a ∧ a = a: ð12Þ

Therefore, d1 ∘ d2′ ∈ κa, where d2 ∘ d2′ , d2′ ∘ d2 ∈ L. Hence,
ðκa,∘,LÞ forms a sub e-group of the e-group ðD,∘,LÞ.

Definition 27. The sub e-group ðκa,∘,LÞ of the e-group ðD,∘,
LÞ is referred to as a level fuzzy sub e-group of ðD, κÞ.

Example 28.We consider the fuzzy sub e-group ðD, κÞ of the
e-group ðD,∘,LÞ in Example 12..

Choose a = 0:65. Then, κa = fd1, d2, d4g and L = fd1, d2g.
Clearly, κa ⊆D.
We can easily check that ðκa,∘,LÞ is a sub e-group of the

e-group ðD,∘,LÞ.
Therefore, ðκa,∘,LÞ is a level fuzzy sub e-group of ðD, κÞ.

5. Homomorphism of Fuzzy Sub e-Groups

We shall demonstrate some important theorems on fuzzy
sub e-group homomorphism in this section.

Theorem 29. Let ðD1, ∘1, L1Þ and ðD2, ∘2, L2Þ be the two e-
groups. Let h be a bijective homomorphism from ðD1, ∘1, L1Þ
to ðD2, ∘2, L2Þ and ðD2, κÞ be a fuzzy sub e-group of ðD2, ∘2,
L2Þ. Then, ðD1, h−1ðκÞÞ forms a fuzzy sub e-group of ðD1, ∘1
, L1Þ.

Proof. Let d1 and l1 be the two elements of D1. Now,

h−1 κð Þ� �
d1∘1l1ð Þ = κ h d1∘1l1ð Þð Þ = κ h d1ð Þ∘2h l1ð Þð Þ

≥ κ h d1ð Þð Þ ∧ κ h l1ð Þð Þ
= h−1 κð Þ� �

d1ð Þ ∧ h−1 κð Þ� �
l1ð Þ:

ð13Þ

Therefore, ðh−1ðκÞÞðd1∘1l1Þ ≥ ðh−1ðκÞÞðd1Þ ∧ ðh−1ðκÞÞðl1Þ
for all d1 and l1 ∈D1.

Let l ∈ L1 and d ∈D1/L1.
Since h is a homomorphism, hðlÞ ∈ L2 as hðL1Þ ⊆ L2. Now,

h−1 κð Þ� �
lð Þ = κ h lð Þð Þ ≥ κ h dð Þð Þ = h−1 κð Þ� �

dð Þ:: ð14Þ

5Journal of Function Spaces



Therefore, ðh−1ðκÞÞðlÞ ≥ ðh−1ðκÞÞðdÞ for all l ∈ L1 and d
∈D1/L1.

Hence, ðD1, h−1ðκÞÞ forms a fuzzy sub e-group of ðD1,
∘1, L1Þ.

Theorem 30. Let ðD1, ∘1, L1Þ and ðD2, ∘2, L2Þ be the two e-
groups. Let h be a homomorphism from ðD1, ∘1, L1Þ to ðD2,
∘2, L2Þ and ðD1, κÞ be a fuzzy sub e-group of ðD1, ∘1, L1Þ.
Then, ðD2, hðκÞÞ forms a fuzzy sub e-group of ðD2, ∘2, L2Þ.

Proof. Let d2 and l2 be the two elements of D2.
If either d2 ∉ hðD1Þ or l2 ∉ hðD1Þ then,

h κð Þð Þ d2ð Þ ∧ h κð Þð Þ l2ð Þ = 0 ≤ h κð Þð Þ d2∘2l2ð Þ: ð15Þ

Suppose d2 = hðd1Þ and l2 = hðl1Þ for some d1, l1 ∈D1.
Now,

h κð Þð Þ d2∘2l2ð Þ = ∨ κ pð Þ h pð Þj = d2∘2l2f g
≥ ∨ κ d1∘1l1ð Þ d1j , l1 ∈D1, h d1ð Þ = d2, h l1ð Þ = l2f g
≥ ∨ κ d1ð Þ ∧ κ l1ð Þ d1j , l1 ∈D1, h d1ð Þ = d2, h l1ð Þ = l2f g
= ∨ κ d1ð Þ d1j ∈D1, h d1ð Þ = d2f gð Þ ∧
� ∨ κ l1ð Þ l1j ∈D1, h l1ð Þ = l2f gð Þ

= h κð Þð Þ d2ð Þ ∧ h κð Þð Þ l2ð Þ:
ð16Þ

Therefore ðhðκÞÞðd2∘2l2Þ ≥ ðhðκÞÞðd2Þ ∧ ðhðκÞÞðl2Þ for all
d2 and l2 ∈D2.

Let l2 ∈ L2 and d2 ∈D2/L2.
Since h is a homomorphism, hðL1Þ ⊆ L2. Now,

h κð Þð Þ l2ð Þ = ∨ κ l1ð Þ l1j ∈D1, h l1ð Þ = l2f g
≥ ∨ κ d1ð Þ d1j ∈D1, h d1ð Þ = d2f g = h κð Þð Þ d2ð Þ:

ð17Þ

Therefore, ðhðκÞÞðl2Þ ≥ ðhðκÞÞðd2Þ for all l2 ∈ L2 and d2
∈D2/L2.

Hence, ðD2, hðκÞÞ forms a fuzzy sub e-group of ðD2, ∘2,
L2Þ.

Theorem 31. Let ðD1, ∘1, L1Þ and ðD2, ∘2, L2Þ be the two e-
groups. Let h be a bijective homomorphism from ðD1, ∘1, L1Þ
to ðD2, ∘2, L2Þ and ðD2, κÞ be a normal fuzzy sub e-group of
ðD2, ∘2, L2Þ. Then, ðD1, h−1ðκÞÞ forms a normal fuzzy sub e-
group of ðD1, ∘1, L1Þ.

Proof. From Theorem 29, we can say that ðD1, h−1ðκÞÞ forms
a fuzzy sub e-group of ðD1, ∘1, L1Þ.

Since ðD2, κÞ forms a normal fuzzy sub e-group of ðD2,
∘2, L2Þ, κðd2∘2l2Þ = κðl2∘2d2Þ for all d2, l2 ∈D2.

Let d1 and l1 be the two elements of D1. Then,

h−1 κð Þ� �
d1∘1l1ð Þ = κ h d1∘1l1ð Þð Þ = κ h d1ð Þ∘2h l1ð Þð Þ

= κ h l1ð Þ∘2h d1ð Þð Þ = κ h l1∘1d1ð Þð Þ
= h−1 κð Þ� �

l1∘1d1ð Þ:
ð18Þ

Therefore, ðh−1ðκÞÞðd1∘1l1Þ = ðh−1ðκÞÞðl1∘1d1Þ for all d1
and l1 ∈D1.

Hence, ðD1, h−1ðκÞÞ forms a normal fuzzy sub e-group of
ðD1, ∘1, L1Þ.

Theorem 32. Let ðD1, ∘1, L1Þ and ðD2, ∘2, L2Þ be the two e-
groups. Let h be a bijective homomorphism from ðD1, ∘1, L1Þ
to ðD2, ∘2, L2Þ and ðD1, κÞ be a normal fuzzy sub e-group of
ðD1, ∘1, L1Þ. Then, ðD2, hðκÞÞ forms a normal fuzzy sub e-
group of ðD2, ∘2, L2Þ.

Proof. From Theorem 30, we can say that ðD2, hðκÞÞ is a
fuzzy sub e-group of ðD2, ∘2, L2Þ.

Since ðD1, κÞ forms a normal fuzzy sub e-group of ðD1, ∘1
, L1Þ, κðd1∘1l1Þ = κðl1∘1d1Þ for all d1, l1 ∈D1.

Let d2 and l2 be the two elements of D2.
Suppose that there are unique d1 and l1 ∈D1, such that

d2 = hðd1Þ and l2 = hðl1Þ. Now,

h κð Þð Þ d2∘2l2ð Þ = ∨ κ pð Þ h pð Þj = d2∘2l2f g
= ∨ κ d1∘1l1ð Þ d1j , l1 ∈D1, h d1ð Þ = d2, h l1ð Þ = l2f g∨
� κ l1∘1d1ð Þ d1j , l1 ∈D1, h d1ð Þ = d2, h l1ð Þ = l2f g

= ∨ κ pð Þ h pð Þj = l2∘2d2f g = h κð Þð Þ l2∘2d2ð Þ:
ð19Þ

Therefore, ðhðκÞÞðd2∘2l2Þ = ðhðκÞÞðl2∘2d2Þ∀d2, l2 ∈D2.
Hence, ðD2, hðκÞÞ forms a normal fuzzy sub e-group of

ðD2, ∘2, L2Þ.

6. Conclusion

In this paper, we presented a brief demonstration of fuzzy
sub e-groups and its properties. A condition is given for a
FS of an e-group to be a fuzzy sub e-group. We have demon-
strated that any fuzzy sub e-group forms a fuzzy subgroup.
However, the reverse is not always true. Therefore, fuzzy
sub e-group is the generalization of fuzzy subgroup. We have
presented the difference between FSG and fuzzy sub e-
group. We have discussed about the idea of normal fuzzy
sub e-groups and level fuzzy e-subgroups. Finally, we have
explained the effect of e-group homomorphism on fuzzy
sub e-groups. In future, we will work on important theorems
like Lagrange’s theorem and Sylow theorem in fuzzy sub e-
groups.
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