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In this paper, the central BMO spaces with Muckenhoupt A, weight is introduced. As an application, we characterize these spaces
by the boundedness of commutators of Hardy operator and its dual operator on weighted Lebesgue spaces. The boundedness of
vector-valued commutators on weighted Herz spaces is also considered.

1. Introduction

For 1 < p < co and a nonnegative locally integrable function
w on R”, it is said that w is in the Muckenhoupt A, class if
it satisfies the condition

et o7 )G o)

(1)

A weight function w belongs to the class A, if

s = (g o) (st

A weight w is called an A weight if

[w], = sup (@ JQw(x)dx) exp <‘Q‘J log w(x)"ldx> <00
3)

It is well-known that A, =, .4, Let w €A, and

p € (0,00); we denote LP(w) as the space of all measurable
functions f such that

1) <oo. (2)

nmm@=qwmmwvwﬁw<m. (4)

The definition of A, weight was introduced by Mucken-
houpt [1]. Weighted inequalities arise naturally in Fourier
analysis, but their use is best justified by the variety of appli-
cations in which they appear. For example, the theory of
weights plays an important role in the study of boundary
value problems for the Laplace equation on Lipschitz
domains. Other applications of weighted inequalities include
vector-valued inequalities, extrapolation of operators, and
applications to certain classes of integral equations and non-
linear partial differential equations. There are a number of
classical results which demonstrate that the Muckenhoupt
A, classes are the right collections of weights to do harmonic
analysis on weighted spaces. The main results along these
lines are the equivalence between the w € A, condition and
the LP(w) boundedness (or weak boundedness) of maximal
operator and singular integral operators.

A well-known result of Muckenhoupt [1] showed that the
Hardy-Littlewood maximal operator M, that is

MY () =sup 1o Jvmw, (5)

< Q|

is (weak) bounded on weighted Lebesgue spaces L (w) if and
only if w € A, for 1 <p < oo (for the case n=1). Hunt et al.

[2] proved that the A, condition also characterizes the L (w
) boundedness of the Hilbert transform H, where
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Later, Coifman and Fefferman [3] extended the A, theory
to the case # > 1 and the general Calderén-Zygmund opera-
tors; they also proved that A, weights satisfy the crucial
reverse Holder condition.

On the other hand, it is well-known that BMO(RR") is just
the dual space of Hardy space H'(R"). Like this, the dual
space of Herz-type Hardy space is the so-called central
BMO space which is defined by

CBMO?(R") = {f € Ll (R"): ||f cpmiorery <00} (7)

with

f(x) _fB(O,r)

1p
P
dx) ,

(8)

I£1 s 55 J
ny = SUJ
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where

1

=|maodgwf“w” ®)

The space CBMO?(R") can be regarded as a local version
of BMO(IR") at the origin, that is, BMO(RR") ¢ CBMO?(RR")
for 1 <p < oo (see [4]). However, they have quite different
properties. For example, there is no analysis of the famous
John-Nirenberg inequality of BMO(RR") for CBMO?(R").
See also [5-9] and [10] for more details. In 2007, Fu et al.
[11] characterized CBMO?(R") space in terms of the bound-
edness of commutators of the Hardy operator.

In this paper, we will introduce the space of central BMO
with Muckenhoupt A, weight and characterize these spaces
by the boundedness of commutator of the Hardy operator
and its dual operator on weighted Lebesgue spaces. The
boundedness of vector-valued commutators on weighted
Herz spaces is also considered.

Throughout this paper, the letter C denotes constants
which are independent of the main variables and may change
from one occurrence to another. Denote B, = {x € R" : |x|
<2} and C, = B, \ B,_,,and y; is the characteristic function
for k e Z.

fB(O,r)

2. Weighted Central BMO Spaces

In this section, we will introduce the definition of weighted
central BMO spaces and give some properties of CBMO? (w

)-
Let 1 <p < 00, and w is a nonnegative locally integrable
function. A function f € ! (R") is said to belong to the

loc
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weighted central BMO spaces, if

H (f -f B(O,r)) XB(o,r)

7@ 00, (10)

1/ 1l cpapor (@) = SUP
>0

HXB(O”) I (w)

When w=1 is a constant, CBMO?(w) is just CBMO?(
R").

We recall some properties of the weighted Lebesgue
spaces. Let %" denote the set of all families of disjoint and
open cubes in R”. In [12], Diening et al. obtained the follow-
ing lemma in the general case on Musielak-Orilicz spaces.
But we only describe the special case on the weighted Lebes-
gue spaces NOw.

Lemma 1. If w€ A, then there exist 0<8<1 and C>0
which only depend on the A -constant of w such that

8

Xaq <C

, (11)

Lf (w)

Ztof

Qc@ fQ

Y. toXa

Qe

Lr(w)

forall @ e ¥"; all {to} .0 tq 20 and all f € Ly, (R") with
fQ +0,Qe€ Q.

Lemma 2 (see [1]). Let we€ A, 1<p<o0; then, there exist

constants C;, C,, 8 > 0 such that for all balls B in R" and all
measurable subsets E C B,

In fact, the first inequality of Lemma 2 can be improved as
follows.

Lemma 3. Let w € A, 1 <p <o00. Then, there exist p, with 1

<p, <pand C> 0such that for all balls B in R" and all mea-
surable subsets E C B,

Isllw) (19 (13)
IXelp@w) ~ \JEI

Proof. By the fact that Ay =U,,A, and w €A, (see [13]),

there exist 1 <p, <p such that we A, .
2, there exists a constant C > 0 such that for any ball B and
any measurable set E C B,

Applying Lemma

BN olE)
(wo <Co® (14
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That is,
1/p,
X1l () SC(W> ' (15)
1XEll ) |E]
Therefore we have proved Lemma 3. O

Now, we show the relationship between CBMO? (w) and
central BMO spaces.

Proposition 4. Ifw € A, and 1 <p < g < oo, then CBMO*(w
) € CBMOP (w)SCBMO(R").

Proof. Let f e CBMO?(w). For any B:=B(0, r), by Holder’s
inequality, we have

(a0 =sPatmrin) s (s [ 10 -ffrotarin)

< ClIf llcpmon (w)-

1/q

(16)

On the other hand, Let f € CBMO?(w), For any B:= B(0
,7), by Holder’s inequality and the condition w € A,, we have

i 19 = faldes (1| 170 - fﬂf’w(x)dx)W(ﬁjswwrﬂ’/ﬁdx)”"

< Clf llcpmor e (“J\ﬁ)) tp % .[Bw(x)dx> “ip

< Cllf lcamorw)-

(17)

Therefore, we only need to prove that there exists a func-
tion f such that f € CBMO(R") \ CBMO?(w). Without loss
of generality, we may assume that n=1.

Let A, ={xeR:2F<|x|<2"+1},keZ,. Taking f(x)
= z,;“;oszAk (x) sgn (x), then for any B:= B(0, r),

fp= %Lf(x)dx=0. (18)
When r <1, we have f(x) =0 and
sup | 169 ~folds=0. (19

When r > 1, there exists k, € Z, such that 2k < r < 2kt
then,

ky+1
sup 0 | If (x) = fgldx < supC2™e Y | 2fdaxs<c.
|B| r>1 k=0 JA

(20)

From (19) and (20), it follows that f € CBMO(RR").

When r >4, there exists k; € Z, with k;>2 such that
2k < r < 2ko*1; then,

|(f (%) = fp)xp(x Z szAk )(Ak0 (x) 2 C"XAkO,l(x)’
(21)
which implies that
H(f_fB)XB”U’(w) S l(f _fB)XB“LP(w) prcr”x‘é‘kv*1 P (w)
>0 ||XB||L1’(w) r>4 ||XB||LP(w) |XB||L1’(w)
(22)

Since A _; € B, by Lemma 3, there exists p, with 1< p,
< p; we have

_ =1ip,
u Il(f fB)XBHLP(w) > supCr |B| = supCr' =P = co.
>0 x5 ||LP(w) r>4 | ky=1 | r>4
(23)
Therefore, f ¢ CBMO?(w). O

Proposition 5. If w € A, and 1 < p < 0o, then there exists a
constant q > p such that CBMO1(R") c CBMOP (w).

Proof. We can take a cube Qg so that Bc Qg C 4/nB. By
Lemma 1, there exists a constant 0 < § < 1 independent of B
such that for all f € L] (R"),

<c(fa) lxal,

bg)? x5 We conclude that

(24)

I,

Letg=1/8and f = (b -

(ng) (|Q1 |J |b(x) - bB|qu> l/qSCHbHCBMOq(]R“)'
(25)

By Lemma 3, there exists a constant 1 < p, < p such that

HXWB B 1/pg
v |V/nB|
X < ——xsllp <Cl —=— Xsll e
L s T L ( ) olve
< Clixsllpw)
(26)
This gives us
18]l camor (@) < CllPllcomon rr)- (27)
Hence, the proof of Proposition 5 is completed. O

Proposition 6. If w € A, and 1 < p < co, then f € CBMOF (w)

if and only if there exist a collection of numbers {cg )} _,



(i.e., for each ball B(0,r), there exists cg,,) € R) such that

sl

Proof. We set cpg,,) = fp(q,,) for all balls B(0, r); the necessity
of the condition in Proposmon 6 holds. Let us check the suf-
ficiency of Proposition 6.

A similar argument as Proposition 4, we have, for any B
= B(0, 1),

sup
>0

< 00. 28
i <@ (28)

’XB(o,r) CB(o,r)> XB(0.r)

157 | L)~ calde = Cllts |0 ol 9

Thus,
”(f_fB)XB”LP(w) ”(f_CB)XBHLP(w) ||(CB_fB)XB||L1’(w)
IXsllry X8l 12 (w) X512 ()
(30)

Therefore, f € CBMO?(w); the proof of Proposition 6 is
completed. d

Proposition 7. If w € A, and 1 < p < 0o, then f € CBMOF (w)
if and only if
-1

L (w)

< 00.
LF(w)

(31)

£l caaeor (@) = Sr‘:g’ Clef}cf HXB(O,r) (f = )Xpon

Proof. The proof of Proposition 7 is similar as that of Propo-
sition 6; we omit the details. O

3. Characterization of CBMO’(w) Spaces via
Commutators

We first review the definitions of the n-dimensional Hardy
operator and its dual operator. For a locally integrable func-
tion f in R", the n-dimensional Hardy operator H is defined
by

%j fo)dy, xR\ {0}  (32)
[yl<|x|

[

Hf(x) =

The dual Hardy operator H* is defined by

. o)
Hf(X) J|y|>|x| |}’| dy’

xeR"\{0}.  (33)

Let b be a locally integrable function on R". The commu-
tators of H and H* are defined by

(b H](f) = b(Hf) — H(bf) (34)
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and

[b, H™](f) = b(H"f) ~ H" (bf)- (35)

The study of the Hardy operator has a very long history,
and a number of papers involved its generalizations, variants,
and applications. For the earlier development of this kind of
integrals and many important applications, we refer the
interested reader to the masterpiece [14]. We are interested
in the characterization of commutator of the Hardy operator.

Now, we give a remarkable result about the commutator
of the Hardy operator; that is, Fu et al. [11] showed the
following.

Theorem 8. Let 1<p<oco, l/p+1/p' =1, and be CBM

omax (I”P,)(]R”). Then, both [b, H] and [b, H*| are bounded
operators on LF(R"). Conversely,

(i) if [b, H| is a bounded operator on LP(R"), then b €
CBMOP (R")

(ii) if [b, H*] is a bounded operator on LP(R"), then b €
CBMOP(R")

The following consequence improves Theorem 8.

Theorem 9. I[fw € A), 1 <p < coand y= w'P'. Then, the fol-
lowing statements are equivalent:

(i) b e CBMOP(w) N CBMO” ()
(ii) [b, H] and [b, H*] are bounded from LP(w) to LF (w)

Proof. (i) = (ii). We focus on the proof of the boundedness
of [b, H], since the arguments of [b, H*] are similar with nec-
essary modifications.

For f € LP(w), we have

(116 H] () 12w HXk[b HJ(Hll 1)

=
=
—
~

b j (b() - b))y
| ‘ B(0,]-])

()
k

60 3 j 1b() - b() |1 )|y

IN
i M8

f=eo )
(36)
It is easy to see that
J 1) =00 < [ 8651 10 I~ B0) 101

“J “J

(37)
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By Holder’s inequality, we get

JC 1b(x) — by | LF )|y

J

1/p , 1p'
< Clb(x) - by, | (JC If)IP w(y)dy> (JC w(y) " dy)

< Clb(x) - by |||fx;

)LI’(w)HXj ' ()

(38)

In [11], Fu et al. showed that for b € CBMO(R") and j,
kez,

[b(t) = by, | < [b(t) = by | + Cli = Kl Bllepioqe (39)

By Proposition 4, for b € CBMO?(w) c CBMO(RR") and
j, k € Z, we have

[b(t) = by, | < [b(t) = by | + Cli = Kl [Bllepioray (40)
This gives us
|, 100 - 1701y
< (o) =t L0l [, || 1501y
Cj Cj

) w(y)w(y) Fdy

< L‘ b() - by,

k=) Pl e[ LF OO0y

(41)
e [ Pl 2%
C(k-1{)||b ; i
+ ( J)H HCBMOP(w) fXJ P(w) XJ LP’(y)
SCHb”CBMO"'(H)fof 1P (w) Az, ()
C(k-1{)||b i i
+ Clk = )1l camor(w) || X () Xj ' ()
<Ck-j ;
<C( ])HfX, Pw) X3 N
Combing (38) and (41), we get
1
W07 | 0000170014
G LP(w)
—kn
<2 H(b_ka)XkHLP(w) fXJ () Xj ' (u) (42)
C27*(k—j ;
+ ( ])HXkHLP(w) fX; () X U (W)
—kn/y. _
SCZ (k ])HXBk LP(w) fXJ Lp<w) ‘XBJ LP’(‘M).

From the condition w € AP and Lemma 2, it follows that
for k > j, there exists a constant 8 € (0, 1) such that

X : Slp'
§ H’*ium BN IL7I
®) HXBk |Bil

—kn
XB

XB, Al

L(w)

P ()

(43)
Therefore, generalized Minkowski’s inequality implies

00 k

16 HI(f) |y SC . Y. (k= j)2u-omer’

k=—0c0 j=—oo

<C ¥ Sk py,

=00 k=j
< Cllf Nl )

fXj

()

()

(44)

(ii) = (i). The condition b€ CBMO?(w) N CBMO?' (@)
turns out to be necessary for the conclusion that both [b, H]
and [b, H*] are bounded on L?(w).

For any ball B:= B(0, r) and x € B, we have

1b(x) ~ by - ‘%wa) - b(y))dy]

%J (b(x) - () xa()dy
[y[<|x|

[

+C

[CEL L
i< P

< C[b, H](xp) (x)| + CI[b: H'](fo) (%),

(45)

where f, = |x|"[B| " y5(x).
From [b, H] and [b, H*] that are bounded on L?(w), it fol-
lows that

16~ b3) x5l 1) < ClTB H 08 110y + C H 1)

< Cllxsllpw) + Cllfollirw) < Cllxalrw)-
(46)

Therefore, we obtain that b belongs to CBMO?(w).
Note that (I (w))' = LP (0" (see [15]). We know that
[b,H] and [b, H*] are bounded on L? (). Therefore, we

obtain that b € CBMO?' (u).
This completes the proof of Theorem 9. O

4. Vector-Valued Inequality

In this section, we give the definition of weighted Herz spaces
([16]). Let « € R, 0 < p, g < 00, and w be weight functions on

R". The homogeneous weighted Herz space Kg’q(a)) is



defined by

2 (@)= {F e L RNV (0): [fllges<c0 ), (47)

where

Wl = [ {251 e ) (48)

k=—00

8‘7.

We prove the boundedness of the vector-valued commu-
tator of the Hardy operator on weighted Herz spaces.

Theorem 10. Let w € Ap,

CBMO?(w) N CBMO” (u).
(i) Ifa < nlp', then there exists a constant C such that
L

‘ (E [b,H](f])’r> ' (00 jr> r
Jj=1 j=1
(49)

for all sequences of functions {f]};jl satisfying ""{fj}j"er

I<r,p<oo, 0<g<oo, and be

-

K, (w)

||I'<;nq(w) <00

(ii) If « > —nlp, then there exists a constant C such that

© . 1r © . H
(Blem)l) | =aEwl)]
! &y(@) = K

(w)
0,

(50)

for all
17,

sequences of  functions

satisfying

<00
o

In order to prove Theorem 10, we additionally introduce
the next lemma well-known as the generalized Minkowski
inequality.

Lemma 11. If 1 <r <00, then there exists a constant C> 0

such that for all sequences of functions {f j}}fl satisfying
s},

<00,
e (w)

{Z(Jw\fjww}“’sclw{iffmr}”'dy-
| J (51)

Proof of Theorem 10. We focus on the proof of the bounded-
ness of [b, H|, since the arguments of [b, H*] are similar with
necessary ~modifications. ~For every {f; };:1 with

< 00, we obtain

JU
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[CIO

ek ()
00 00 1 v
= ) 2|y, {[b,H]<Z f,m)}
k=—00 I=—00 ille ()
o q 1/q
<9 > 2y, Z H o.H](f0) }
k=-co Tlle P (w)

(52)

For convenience, below, we denote F:= |{f j} |lgr. For x
j

€ Cy, generalized Holder’s inequality and generalized Min-
kowski’s inequality (51) imply

[{m ()} < { o | e
{J -b)I[f,) \dy}

< cz-k"J |b(x) -

G

<Ccr k”{|b BI|J F(y)dy+J I
G G

~b(y)|E(y)dy}
< COM[Fxy 0 { b) -

+|]b- by, ’XIHLP'(M)}’

-b)I|f) \dy}

o

Jller

<C2 kn

Jller

bO)IF()dy

bB,|HXlHLP'(M)

(53)
from the fact that
[b(x) = by, | <[b() = by, [ + Cll =KDl coyiorwp  (54)

which gives us

b,H||(f;
Xk {[ }(f,Xl) },‘ el
< COM Bty { k=D Blcmmoni e I
 Wlenso 1, Wi}
sC(k—l)HFXlHLP(w)Z’k” Xs||, (M)”XkHLP(w)
-1
5C(k—I)HFXIHLP(w)TknHXkHzf(w)<|BI|HXBI Lp(w))‘
(55)

By Lemma 3 and a/n < 1/p’, there exists a constant 1 <
po < p such that a/n < 1/p; and
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Xl 2 ) - HXBk

< P < conlk-Dipo, (56)
HXB’ P(w HXBI P(w
Then,
b, H(f, < C(k - 12"-R1P'y||
(e m(r)} | o ST
(57)
This implies that
(b H](f;)
HH{ ( J) }J el (w)
© k 9y Vq
< C{ Z 2mk< Z (k =120k |FXI|I}’(w)) }
k=—00 I=
0 k , ay Vg
_ C{ Z < Z 2al(k_ l)z(lfk)((n/l?o )’0‘) |FXI|LP(w)> } .
k=—0co \I=
(58)

If 0 < g <1, then we obtain

o)
o5 5o

=-00 [=—00

o0

K% (w)

1/q
a 1-k)( (n, 0' -
2940 F |8 )2 “<”>>%k—w}

o

o © ) 1/q
C{ Z ZaquFXlngp 22(1*")(("/170 )*W)Q(k _ l)fi}
I

<
= k=l
00 1/q
i
< C( Z aq ||FX1HZP ) < C”F”k;"”(w)
I=—c0

(59)

If 1 < g < 0o, then we use Holder’s inequality and obtain

lltea6i) ...,
sC{ i (i Zaql”FXIZp(w)z(lk)((,,/%r)a)qQ)
ko0 \l=—o0

k arg’ ) M
(3 ey }

I=—0c0

I

k 1/q (60)
2aquFX ”q l k)(n/p Ua)q/2>

IN

c<k§

=—00 I=—

o o 1/q
c( Y 29Fxlly, Y 2O
I=—co k=1

I/\

SC( > 2 Ex ) < ClIF|[geao)
I=—co

This completes the proof of Theorem 10.
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