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In this paper, the central BMO spaces with Muckenhoupt Ap weight is introduced. As an application, we characterize these spaces
by the boundedness of commutators of Hardy operator and its dual operator on weighted Lebesgue spaces. The boundedness of
vector-valued commutators on weighted Herz spaces is also considered.

1. Introduction

For 1 < p <∞ and a nonnegative locally integrable function
ω on ℝn, it is said that ω is in the Muckenhoupt Ap class if
it satisfies the condition

ω½ �Ap
≔ sup

Q

1
Qj j
ð
Q
ω xð Þdx

� � 1
Qj j
ð
Q
ω xð Þ−1/ p−1ð Þdx

� �p−1
<∞:

ð1Þ

A weight function ω belongs to the class A1 if

ω½ �A1
≔ sup

Q

1
Qj j
ð
Q
ω xð Þdx

� �
ess sup

x∈Q
ω xð Þ−1

� �
<∞: ð2Þ

A weight ω is called an A∞ weight if

ω½ �A∞
≔ sup

Q

1
Qj j
ð
Q
ω xð Þdx

� �
exp 1

Qj j
ð
Q
log ω xð Þ−1dx

� �
<∞:

ð3Þ

It is well-known that A∞ =S1≤p<∞Ap: Let ω ∈ A∞ and

p ∈ ð0,∞Þ; we denote LpðωÞ as the space of all measurable
functions f such that

fk kLp ωð Þ ≔
ð
ℝn

f xð Þj jpω xð Þdx
� �1/p

<∞: ð4Þ

The definition of Ap weight was introduced by Mucken-
houpt [1]. Weighted inequalities arise naturally in Fourier
analysis, but their use is best justified by the variety of appli-
cations in which they appear. For example, the theory of
weights plays an important role in the study of boundary
value problems for the Laplace equation on Lipschitz
domains. Other applications of weighted inequalities include
vector-valued inequalities, extrapolation of operators, and
applications to certain classes of integral equations and non-
linear partial differential equations. There are a number of
classical results which demonstrate that the Muckenhoupt
Ap classes are the right collections of weights to do harmonic
analysis on weighted spaces. The main results along these
lines are the equivalence between the ω ∈ Ap condition and
the LpðωÞ boundedness (or weak boundedness) of maximal
operator and singular integral operators.

A well-known result of Muckenhoupt [1] showed that the
Hardy-Littlewood maximal operator M, that is

Mf xð Þ = sup
Q∋x

1
Qj j
ð
Q
f yð Þj jdy, ð5Þ

is (weak) bounded on weighted Lebesgue spaces LpðωÞ if and
only if ω ∈ Ap for 1 < p <∞ (for the case n = 1). Hunt et al.
[2] proved that the Ap condition also characterizes the Lpðω
Þ boundedness of the Hilbert transform H, where
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Hf xð Þ = 1
π
p:v:
ð
ℝ

f yð Þ
x − y

dy: ð6Þ

Later, Coifman and Fefferman [3] extended the Ap theory
to the case n ≥ 1 and the general Calderón-Zygmund opera-
tors; they also proved that Ap weights satisfy the crucial
reverse Hölder condition.

On the other hand, it is well-known that BMOðℝnÞ is just
the dual space of Hardy space H1ðℝnÞ. Like this, the dual
space of Herz-type Hardy space is the so-called central
BMO space which is defined by

CBMOp ℝnð Þ = f ∈ Lploc ℝnð Þ: fk kCBMOp ℝnð Þ <∞
n o

, ð7Þ

with

fk kCBMOp ℝnð Þ = sup
r>0

1
B 0, rð Þj j

ð
B 0,rð Þ

f xð Þ − f B 0,rð Þ
��� ���pdx

 !1/p

,

ð8Þ

where

f B 0,rð Þ =
1

B 0, rð Þj j
ð
B 0,rð Þ

f xð Þdx: ð9Þ

The space CBMOpðℝnÞ can be regarded as a local version
of BMOðℝnÞ at the origin, that is, BMOðℝnÞ ⊊ CBMOpðℝnÞ
for 1 ≤ p <∞ (see [4]). However, they have quite different
properties. For example, there is no analysis of the famous
John-Nirenberg inequality of BMOðℝnÞ for CBMOpðℝnÞ.
See also [5–9] and [10] for more details. In 2007, Fu et al.
[11] characterized CBMOpðℝnÞ space in terms of the bound-
edness of commutators of the Hardy operator.

In this paper, we will introduce the space of central BMO
with Muckenhoupt Ap weight and characterize these spaces
by the boundedness of commutator of the Hardy operator
and its dual operator on weighted Lebesgue spaces. The
boundedness of vector-valued commutators on weighted
Herz spaces is also considered.

Throughout this paper, the letter C denotes constants
which are independent of the main variables and may change
from one occurrence to another. Denote Bk = fx ∈ℝn : jxj
≤ 2kg and Ck = Bk \ Bk−1, and χk is the characteristic function
for k ∈ℤ.

2. Weighted Central BMO Spaces

In this section, we will introduce the definition of weighted
central BMO spaces and give some properties of CBMOpðω
Þ.

Let 1 ≤ p <∞, and ω is a nonnegative locally integrable
function. A function f ∈ LplocðℝnÞ is said to belong to the

weighted central BMO spaces, if

fk kCBMOp ωð Þ ≔ sup
r>0

f − f B 0,rð Þ
� �

χB 0,rð Þ
��� ���

Lp ωð Þ

χB 0,rð Þ
��� ���

Lp ωð Þ

<∞: ð10Þ

When ω ≡ 1 is a constant, CBMOpðωÞ is just CBMOpð
ℝnÞ.

We recall some properties of the weighted Lebesgue
spaces. Let Yn denote the set of all families of disjoint and
open cubes in ℝn. In [12], Diening et al. obtained the follow-
ing lemma in the general case on Musielak-Orilicz spaces.
But we only describe the special case on the weighted Lebes-
gue spaces now.

Lemma 1. If ω ∈ A∞, then there exist 0 < δ < 1 and C > 0
which only depend on the A∞-constant of ω such that

〠
Q∈Q

tQ
f
f Q

����
����
δ

χQ

�����
�����
Lp ωð Þ

≤ C 〠
Q∈Q

tQχQ

�����
�����
Lp ωð Þ

, ð11Þ

for all Q ∈Yn; all ftQgQ∈Q, tQ ≥ 0; and all f ∈ L1locðℝnÞ with
f Q ≠ 0,Q ∈Q.

Lemma 2 (see [1]). Let ω ∈ Ap, 1 ≤ p <∞; then, there exist
constants C1, C2, δ > 0 such that for all balls B in ℝn and all
measurable subsets E ⊂ B,

C1
Ej j
Bj j

� �p

≤
ω Eð Þ
ω Bð Þ ≤ C2

Ej j
Bj j

� �δ

: ð12Þ

In fact, the first inequality of Lemma 2 can be improved as
follows.

Lemma 3. Let ω ∈ Ap, 1 < p <∞. Then, there exist p0 with 1
< p0 < p and C > 0 such that for all balls B inℝn and all mea-
surable subsets E ⊂ B,

χBk kLp ωð Þ
χEk kLp ωð Þ

≤ C
Bj j
Ej j

� �1/p0
: ð13Þ

Proof. By the fact that Ap = ∪q<pAq and ω ∈ Ap (see [13]),
there exist 1 < p0 < p such that ω ∈ Ap/p0 . Applying Lemma
2, there exists a constant C > 0 such that for any ball B and
any measurable set E ⊂ B,

Ej j
Bj j

� �p/p0
≤ C

ω Eð Þ
ω Bð Þ : ð14Þ
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That is,

χBk kLp ωð Þ
χEk kLp ωð Þ

≤ C
Bj j
Ej j

� �1/p0
: ð15Þ

Therefore we have proved Lemma 3. ☐

Now, we show the relationship between CBMOpðωÞ and
central BMO spaces.

Proposition 4. If ω ∈ Ap and 1 < p < q <∞, then CBMOqðω
Þ ⊂ CBMOpðωÞ⊊CBMOðℝnÞ.

Proof. Let f ∈ CBMOqðωÞ. For any B≔ Bð0, rÞ, by Hölder’s
inequality, we have

1
ω Bð Þ

ð
B
f xð Þ − f Bj jpω xð Þdx

� �1/p
≤

1
ω Bð Þ

ð
B
f xð Þ − f Bj jqω xð Þdx

� �1/q

≤ C fk kCBMOq ωð Þ:

ð16Þ

On the other hand, Let f ∈ CBMOpðωÞ, For any B≔ Bð0
, rÞ, by Hölder’s inequality and the condition ω ∈ Ap, we have

1
Bj j
ð
B
f xð Þ − f Bj jdx ≤ 1

Bj j
ð
B
f xð Þ − f Bj jpω xð Þdx

� �1/p 1
Bj j
ð
B
ω xð Þ−p′/pdx

� �1/p′

≤ C fk kCBMOp ωð Þ
ω Bð Þ
Bj j

� �1/p 1
Bj j
ð
B
ω xð Þdx

� �−1/p

≤ C fk kCBMOp ωð Þ:

ð17Þ

Therefore, we only need to prove that there exists a func-
tion f such that f ∈ CBMOðℝnÞ \ CBMOpðωÞ. Without loss
of generality, we may assume that n = 1.

Let Ak = fx ∈ℝ : 2k < jxj ≤ 2k + 1g, k ∈ℤ+. Taking f ðxÞ
=∑∞

k=02kχAk
ðxÞ sgn ðxÞ, then for any B≔ Bð0, rÞ,

f B =
1
Bj j
ð
B
f xð Þdx = 0: ð18Þ

When r ≤ 1, we have f ðxÞ ≡ 0 and

sup
0<r≤1

1
Bj j
ð
B
f xð Þ − f Bj jdx = 0: ð19Þ

When r > 1, there exists k0 ∈ℤ+ such that 2k0 < r ≤ 2k0+1;
then,

sup
r>1

1
Bj j
ð
B
f xð Þ − f Bj jdx ≤ sup

r>1
C2−k0 〠

k0+1

k=0

ð
Ak

2kdx ≤ C:

ð20Þ

From (19) and (20), it follows that f ∈ CBMOðℝnÞ.

When r > 4, there exists k0 ∈ℤ+ with k0 ≥ 2 such that
2k0 < r ≤ 2k0+1; then,

f xð Þ − f Bð ÞχB xð Þj j ≥ 〠
k0−1

k=0
2kχAk

xð Þ ≥ 2k0−1χAk0−1
xð Þ ≥ CrχAk0−1

xð Þ,

ð21Þ

which implies that

sup
r>0

f − f Bð ÞχBk kLp ωð Þ
χBk kLp ωð Þ

≥ sup
r>4

f − f Bð ÞχBk kLp ωð Þ
χBk kLp ωð Þ

≥ sup
r>4

Cr
χAk0−1

��� ���
Lp ωð Þ

χBk kLp ωð Þ
:

ð22Þ

Since Ak0−1 ⊂ B, by Lemma 3, there exists p0 with 1 < p0
< p; we have

sup
r>0

f − f Bð ÞχBk kLp ωð Þ
χBk kLp ωð Þ

≥ sup
r>4

Cr
Bj j

Ak0−1
�� ��
 !−1/p0

= sup
r>4

Cr1−1/p0 =∞:

ð23Þ

Therefore, f ∉ CBMOpðωÞ. ☐

Proposition 5. If ω ∈ Ap and 1 < p <∞, then there exists a
constant q > p such that CBMOqðℝnÞ ⊂ CBMOpðωÞ.

Proof. We can take a cube QB so that B ⊂QB ⊂
ffiffiffi
n

p
B. By

Lemma 1, there exists a constant 0 < δ < 1 independent of B
such that for all f ∈ L1locðℝnÞ,

fj jδχQB

��� ���
Lp ωð Þ

≤ C fj jQB

� �δ
χQB

��� ���
Lp ωð Þ

: ð24Þ

Let q = 1/δ and f = ðb − bBÞqχB. We conclude that

fj jQB

� �δ
= 1

QBj j
ð
B
b xð Þ − bBj jqdx

� �1/q
≤ C bk kCBMOq ℝnð Þ:

ð25Þ

By Lemma 3, there exists a constant 1 < p0 < p such that

χQB

��� ���
Lp ωð Þ

≤
χ ffiffi

n
p

B

��� ���
Lp ωð Þ

χBk kLp ωð Þ
χBk kLp ωð Þ ≤ C

ffiffiffi
n

p
B

�� ��
Bj j

 !1/p0
χBk kLp ωð Þ

≤ C χBk kLp ωð Þ:

ð26Þ

This gives us

bk kCBMOp ωð Þ ≤ C bk kCBMOq ℝnð Þ: ð27Þ

Hence, the proof of Proposition 5 is completed. ☐

Proposition 6. If ω ∈ Ap and 1 < p <∞, then f ∈ CBMOpðωÞ
if and only if there exist a collection of numbers fcBð0,rÞgr>0
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(i.e., for each ball Bð0, rÞ, there exists cBð0,rÞ ∈ℝÞ such that

sup
r>0

χB 0,rð Þ
��� ���−1

Lp ωð Þ
f − cB 0,rð Þ
� �

χB 0,rð Þ
��� ���

Lp ωð Þ
<∞: ð28Þ

Proof. We set cBð0,rÞ = f Bð0,rÞ for all balls Bð0, rÞ; the necessity
of the condition in Proposition 6 holds. Let us check the suf-
ficiency of Proposition 6.

A similar argument as Proposition 4, we have, for any B
≔ Bð0, rÞ,

1
Bj j
ð
B
f xð Þ − cBj jdx ≤ C χBk k−1Lp ωð Þ f − cBð ÞχBk kLp ωð Þ: ð29Þ

Thus,

f − f Bð ÞχBk kLp ωð Þ
χBk kLp ωð Þ

≤
f − cBð ÞχBk kLp ωð Þ

χBk kLp ωð Þ
+

cB − f Bð ÞχBk kLp ωð Þ
χBk kLp ωð Þ

≤ C + cB − f Bj j ≤ C:

ð30Þ

Therefore, f ∈ CBMOpðωÞ; the proof of Proposition 6 is
completed. ☐

Proposition 7. If ω ∈ Ap and 1 < p <∞, then f ∈ CBMOpðωÞ
if and only if

fk kCBMOp
∗ ωð Þ ≔ sup

r>0
inf
c∈ℂ

χB 0,rð Þ
��� ���−1

Lp ωð Þ
f − cð ÞχB 0,rð Þ

��� ���
Lp ωð Þ

<∞:

ð31Þ

Proof. The proof of Proposition 7 is similar as that of Propo-
sition 6; we omit the details. ☐

3. Characterization of CBMOpðωÞ Spaces via
Commutators

We first review the definitions of the n-dimensional Hardy
operator and its dual operator. For a locally integrable func-
tion f in ℝn, the n-dimensional Hardy operator H is defined
by

Hf xð Þ = 1
xj jn
ð
∣y∣≤ xj j

f yð Þdy,  x ∈ℝn \ 0f g: ð32Þ

The dual Hardy operator H∗ is defined by

H∗ f xð Þ =
ð
∣y∣> xj j

f yð Þ
yj jn dy, x ∈ℝn \ 0f g: ð33Þ

Let b be a locally integrable function onℝn. The commu-
tators of H and H∗ are defined by

b,H½ � fð Þ = b Hfð Þ −H bfð Þ ð34Þ

and

b,H∗½ � fð Þ = b H∗ fð Þ −H∗ bfð Þ: ð35Þ

The study of the Hardy operator has a very long history,
and a number of papers involved its generalizations, variants,
and applications. For the earlier development of this kind of
integrals and many important applications, we refer the
interested reader to the masterpiece [14]. We are interested
in the characterization of commutator of the Hardy operator.

Now, we give a remarkable result about the commutator
of the Hardy operator; that is, Fu et al. [11] showed the
following.

Theorem 8. Let 1 < p <∞, 1/p + 1/p′ = 1, and b ∈ CBM
Omax ðp,p′ÞðℝnÞ. Then, both ½b,H� and ½b,H∗� are bounded
operators on LpðℝnÞ. Conversely,

(i) if ½b,H� is a bounded operator on LpðℝnÞ, then b ∈
CBMOp′ðℝnÞ

(ii) if ½b,H∗� is a bounded operator on LpðℝnÞ, then b ∈
CBMOpðℝnÞ

The following consequence improves Theorem 8.

Theorem 9. If ω ∈ Ap, 1 < p <∞ and μ = ω1−p′. Then, the fol-
lowing statements are equivalent:

(i) b ∈ CBMOpðωÞ ∩ CBMOp′ðμÞ
(ii) ½b,H� and ½b,H∗� are bounded from LpðωÞ to LpðωÞ

Proof. ðiÞ⇒ ðiiÞ. We focus on the proof of the boundedness
of ½b,H�, since the arguments of ½b,H∗� are similar with nec-
essary modifications.

For f ∈ LpðωÞ, we have

b,H½ � fð Þk kLp ωð Þ = 〠
∞

k=−∞
χk b,H½ � fð Þk kLp ωð Þ

= 〠
∞

k=−∞

χk ·ð Þ
·j jn
ð
B 0,∣·∣ð Þ

b ·ð Þ − b yð Þð Þf yð Þdy
�����

�����
Lp ωð Þ

≤ 〠
∞

k=−∞
χk ·ð Þ 〠

k

j=−∞

1
·j jn
ð
Cj

b ·ð Þ − b yð Þj j f yð Þj jdy
�����

�����
Lp ωð Þ

:

ð36Þ

It is easy to see that

ð
Cj

b xð Þ − b yð Þj j f yð Þj jdy ≤
ð
Cj

b xð Þ − bBk
�� �� f yð Þj jdy +

ð
Cj

bBk
− b yð Þ�� �� f yð Þj jdy:

ð37Þ
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By Hölder’s inequality, we get

ð
Cj

b xð Þ − bBk

�� �� f yð Þj jdy

≤ C b xð Þ − bBk

�� �� ð
Cj

f yð Þj jpω yð Þdy
 !1/p ð

Cj

ω yð Þ−p′/pdy
 !1/p′

≤ C b xð Þ − bBk

�� �� fχj

��� ���
Lp ωð Þ

χj

��� ���
Lp ′ μð Þ

:

ð38Þ

In [11], Fu et al. showed that for b ∈ CBMOðℝnÞ and j,
k ∈ℤ,

b tð Þ − bBk

�� �� ≤ b tð Þ − bBj

��� ��� + C j − kj j bk kCBMO ℝnð Þ: ð39Þ

By Proposition 4, for b ∈ CBMOpðωÞ ⊂ CBMOðℝnÞ and
j, k ∈ℤ, we have

b tð Þ − bBk

�� �� ≤ b tð Þ − bBj

��� ��� + C j − kj j bk kCBMOp ωð Þ: ð40Þ

This gives us

ð
Cj

b yð Þ − bBk

�� �� f yð Þj jdy

≤
ð
Cj

b yð Þ − bBj

��� ��� f yð Þj jdy + bBk
− bBj

��� ���ð
Cj

f yð Þj jdy

≤
ð
Cj

b yð Þ − bBj

��� ��� f yð Þj jω yð Þ1pω yð Þ−1
pdy

+ C k − jð Þ bk kCBMOp ωð Þ

ð
Cj

f yð Þj jω yð Þ1pω yð Þ−1
pdy

≤ C b − bBj

� �
χj

��� ���
Lp ′ μð Þ

fχj

��� ���
Lp ωð Þ

+ C k − jð Þ bk kCBMOp ωð Þ fχj

��� ���
Lp ωð Þ

χj

��� ���
Lp ′ μð Þ

≤ C bk kCBMOp ′ μð Þ fχj

��� ���
Lp ωð Þ

χBj

��� ���
Lp ′ μð Þ

+ C k − jð Þ bk kCBMOp ωð Þ fχj

��� ���
Lp ωð Þ

χj

��� ���
Lp ′ μð Þ

≤ C k − jð Þ fχj

��� ���
Lp ωð Þ

χBj

��� ���
Lp ′ μð Þ

:

ð41Þ

Combing (38) and (41), we get

χk ·ð Þ 1
·j jn
ð
Cj

b ·ð Þ − b yð Þð Þ ∣ f yð Þ ∣ dy
�����

�����
Lp ωð Þ

≤ C2−kn b − bBk

	 

χk

�� ��
Lp ωð Þ fχj

��� ���
Lp ωð Þ

χj

��� ���
Lp′ μð Þ

+ C2−kn k − jð Þ χkk kLp ωð Þ f χj

��� ���
Lp ωð Þ

χBj

��� ���
Lp ′ μð Þ

≤ C2−kn k − jð Þ χBk

��� ���
Lp ωð Þ

fχj

��� ���
Lp ωð Þ

χBj

��� ���
Lp′ μð Þ

:

ð42Þ

From the condition ω ∈ Ap and Lemma 2, it follows that
for k ≥ j, there exists a constant δ ∈ ð0, 1Þ such that

2−kn χBk

��� ���
Lp ωð Þ

χBj

��� ���
Lp′ μð Þ

≤ C
χBj

��� ���
Lp′ μð Þ

χBk

��� ���
Lp′ μð Þ

≤ C
Bj

�� ��
Bkj j

 !δ/p′

≤ C2 j−kð Þnδ/p′:

ð43Þ

Therefore, generalized Minkowski’s inequality implies

b,H½ � fð Þk kLp ωð Þ ≤ C 〠
∞

k=−∞
〠
k

j=−∞
k − jð Þ2 j−kð Þnδ/p′ fχj

��� ���
Lp ωð Þ

≤ C 〠
∞

j=−∞
〠
∞

k=j
k − jð Þ2 j−kð Þnδ/p′ fχj

��� ���
Lp ωð Þ

≤ C fk kLp ωð Þ:

ð44Þ

ðiiÞ⇒ ðiÞ. The condition b ∈ CBMOpðωÞ ∩ CBMOp′ðμÞ
turns out to be necessary for the conclusion that both ½b,H�
and ½b,H∗� are bounded on LpðωÞ.

For any ball B≔ Bð0, rÞ and x ∈ B, we have

b xð Þ − bBj j = 1
Bj j
ð
B
b xð Þ − b yð Þð Þdy

����
����

≤ C
1
xj jn
ð

yj j≤ xj j
b xð Þ − b yð Þð ÞχB yð Þdy

�����
�����

+ C
ð

xj j≤ yj j

b xð Þ − b yð Þð ÞχB yð Þ yj jn Bj j−1
yj jn dy

�����
�����

≤ C b,H½ � χBð Þ xð Þj j + C b,H∗½ � f0ð Þ xð Þj j,
ð45Þ

where f0 = jxjnjBj−1χBðxÞ.
From ½b,H� and ½b,H∗� that are bounded on LpðωÞ, it fol-

lows that

b − bBð ÞχBk kLp ωð Þ ≤ C b,H½ � χBð Þk kLp ωð Þ + C b,H∗½ � f0ð Þk kLp ωð Þ
≤ C χBk kLp ωð Þ + C f0k kLp ωð Þ ≤ C χBk kLp ωð Þ:

ð46Þ

Therefore, we obtain that b belongs to CBMOpðωÞ.
Note that ðLpðωÞÞ′ = Lp′ðω1−p′Þ (see [15]). We know that

½b,H� and ½b,H∗� are bounded on Lp′ðμÞ. Therefore, we
obtain that b ∈ CBMOp′ðμÞ.

This completes the proof of Theorem 9. ☐

4. Vector-Valued Inequality

In this section, we give the definition of weighted Herz spaces
([16]). Let α ∈ℝ, 0 < p, q <∞, and ω be weight functions on
ℝn. The homogeneous weighted Herz space _K

α,q
p ðωÞ is
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defined by

_K
α,q
p ωð Þ≔ f ∈ Lploc ℝn \ 0f gð Þ: fk k _K

α,q
p ωð Þ<∞

n o
, ð47Þ

where

fk k _K
α,q
p ωð Þ ≔ 2αk fχkk kLp ωð Þ

n o∞

k=−∞

��� ���
ℓq
: ð48Þ

We prove the boundedness of the vector-valued commu-
tator of the Hardy operator on weighted Herz spaces.

Theorem 10. Let ω ∈ Ap, 1 < r, p <∞, 0 < q <∞, and b ∈
CBMOpðωÞ ∩ CBMOp′ðμÞ.

(i) If α < n/p′, then there exists a constant C such that

〠
∞

j=1
b,H½ � f j

� ���� ���r
 !1/r�����

�����
_K
α,q
p ωð Þ

≤ C 〠
∞

j=1
f j
��� ���r

 !1/r�����
�����

_K
α,q
p ωð Þ

,

ð49Þ

for all sequences of functions f f jg∞j=1 satisfying ∥∥f f jg j∥ℓr
∥ _Kα,q

p ðωÞ <∞

(ii) If α > −n/p, then there exists a constant C such that

〠
∞

j=1
b,H∗½ � f j

� ���� ���r
 !1/r�����

�����
_K
α,q
p ωð Þ

≤ C 〠
∞

j=1
f j
��� ���r

 !1
r

������
������

_K
α,q
p ωð Þ

,

ð50Þ

for all sequences of functions f f jg∞j=1 satisfying

kkf f jgjkℓrk _K
α,q
p ðωÞ

<∞

In order to prove Theorem 10, we additionally introduce
the next lemma well-known as the generalized Minkowski
inequality.

Lemma 11. If 1 < r <∞, then there exists a constant C > 0
such that for all sequences of functions f f jg∞j=1 satisfying

kkf f jgjkℓrk _K
α,q
p ðωÞ

<∞,

〠
∞

j=1

ð
ℝn

f j yð Þ
��� ���dy� �r

( )1/r

≤ C
ð
ℝn

〠
∞

j=1
f j yð Þ
��� ���r

( )1/r

dy:

ð51Þ

Proof of Theorem 10.We focus on the proof of the bounded-
ness of ½b,H�, since the arguments of ½b,H∗� are similar with
necessary modifications. For every f f jg∞j=1 with

kkf f jgjkℓrk _K
α,q
p ðωÞ

<∞, we obtain

b,H½ � f j
� �n o

j

����
����
ℓr

����
����

_K
α,q
p ωð Þ

= 〠
∞

k=−∞
2αqk χk b,H½ � 〠

∞

l=−∞
f jχl

 !( )
j

������
������
ℓr

������
������
q

Lp ωð Þ

8><
>:

9>=
>;

1/q

≤ 〠
∞

k=−∞
2αqk χk 〠

k

l=−∞
b,H½ � f jχl

� �n o
j

����
����
ℓr

�����
�����
q

Lp ωð Þ

8<
:

9=
;

1/q

:

ð52Þ

For convenience, below, we denote F ≔ ∥f f jgj∥ℓr . For x
∈ Ck, generalized Hölder’s inequality and generalized Min-
kowski’s inequality (51) imply

b,H½ � f jχl

� �
xð Þ

n o
j

����
����
ℓr
≤ C

1
xj jn
ð
Cl

b xð Þ − b yð Þj j f j yð Þ
��� ���dy

( )
j

������
������
ℓr

≤ C2−kn
ð
Cl

b xð Þ − b yð Þj j f j yð Þ
��� ���dy

( )
j

������
������
ℓr

≤ C2−kn
ð
Cl

b xð Þ − b yð Þj jF yð Þdy

≤ C2−kn b xð Þ − bBl
�� ��ð

Cl

F yð Þdy +
ð
Cl

bBl
��(

− b yð ÞjF yð Þdyg
≤ C2−kn Fχlk kLp ωð Þ b xð Þ − bBl

�� �� χlk kLp ′ μð Þ
n

+ b − bBl

�� ��χl

�� ��
Lp ′ μð Þ

o
,

ð53Þ

from the fact that

b xð Þ − bBl
�� �� ≤ b tð Þ − bBk

�� �� + C l − kj j bk kCBMOp ωð Þ, ð54Þ

which gives us

χk b,H½ � f jχl

� �n o
j

����
����
ℓr

����
����
Lp ωð Þ

≤ C2−kn Fχlk kLp ωð Þ × k − lð Þ bk kCBMOp ωð Þ χkk kLp ωð Þ χlk kLp ′ μð Þ
n

+ bk kCBMOp ′ μð Þ χBl

��� ���
Lp ′ μð Þ

χkk kLp ωð Þ

�

≤ C k − lð Þ Fχlk kLp ωð Þ2
−kn χBl

��� ���
Lp′ μð Þ

χkk kLp ωð Þ

≤ C k − lð Þ Fχlk kLp ωð Þ2
−kn χkk kLp ωð Þ Blj j χBl

��� ���−1
Lp ωð Þ

� �
:

ð55Þ

By Lemma 3 and α/n < 1/p′, there exists a constant 1 <
p0 < p such that α/n < 1/p′0 and
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χkk kLp ωð Þ

χBl

��� ���
Lp ωð Þ

≤
χBk

��� ���
Lp ωð Þ

χBl

��� ���
Lp ωð Þ

≤ C2n k−lð Þ/p0 : ð56Þ

Then,

χk b,H½ � f jχl

� �n o
j

����
����
ℓr

����
����
Lp ωð Þ

≤ C k − lð Þ2n l−kð Þ/p′0 Fχlk kLp ωð Þ:

ð57Þ

This implies that

b,H½ � f j
� �n o

j

����
����
ℓr

����
����

_K
α,q
p ωð Þ

≤ C 〠
∞

k=−∞
2αqk 〠

k

l=−∞
k − lð Þ2n l−kð Þ/p0′ Fχlk kLp ωð Þ

 !q( )1/q

= C 〠
∞

k=−∞
〠
k

l=−∞
2αl k − lð Þ2 l−kð Þ n/p0′ð Þ−αð Þ Fχlk kLp ωð Þ

 !q( )1/q

:

ð58Þ

If 0 < q ≤ 1, then we obtain

b,H½ � f j
� �n o

j

����
����
ℓr

����
����

_K
α,q
p ωð Þ

≤ C 〠
∞

k=−∞
〠
k

l=−∞
2αql Fχlk kqLp ωð Þ2

l−kð Þ n/p0′ð Þ−αð Þq k − lð Þq
( )1/q

≤ C 〠
∞

l=−∞
2αql Fχlk kqLp ωð Þ 〠

∞

k=l
2 l−kð Þ n/p0′ð Þ−αð Þq k − lð Þq

( )1/q

≤ C 〠
∞

l=−∞
2αql Fχlk kqLp ωð Þ

 !1/q

≤ C Fk k _K
α,q
p ωð Þ:

ð59Þ

If 1 < q <∞, then we use Hölder’s inequality and obtain

b,H½ � f j
� �n o

j

����
����
ℓr

����
����

_K
α,q
p ωð Þ

≤ C 〠
∞

k=−∞
〠
k

l=−∞
2αql Fχlk kqLp ωð Þ2

l−kð Þ n/p0′ð Þ−αð Þq/2
 !(

× 〠
k

l=−∞
k − lð Þq′2 l−kð Þ n/p0′ð Þ−αð Þq′/2

 !q/q′
9=
;

1/q

≤ C 〠
∞

k=−∞
〠
k

l=−∞
2αql Fχlk kqLp ωð Þ2

l−kð Þ n/p′0−αð Þq/2
 !1/q

≤ C 〠
∞

l=−∞
2αql Fχlk kqLp ωð Þ 〠

∞

k=l
2 l−kð Þ n/p′0−αð Þq/2

 !1/q

≤ C 〠
∞

l=−∞
2αql Fχlk kqLp ωð Þ

 !1/q

≤ C Fk k _K
α,q
p ωð Þ:

ð60Þ

This completes the proof of Theorem 10.
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