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In this paper, using the method of moving planes, we study the monotonicity in some directions and symmetry of the Dirichlet

problem involving the fractional Laplacian

ð−ΔÞα/2uðxÞ = f ðuðxÞÞ, x ∈Ω,
uðxÞ > 0, x ∈Ω,
uðxÞ = 0, x ∈ℝn \Ω,

8>><
>>: in a slab-like domain Ω =ℝn−1 × ð0, hÞ ⊂ℝn.

1. Introduction

The fractional Laplacian in ℝn is a nonlocal pseudo-
differential operator defined by

−Δð Þα/2u xð Þ = Cn,α limε⟶0

ð
ℝn\Bε xð Þ

u xð Þ − u zð Þ
x − zj jn+α dz, ð1Þ

where Cn,α is a normalisation constant and α is any real
number between 0 and 2. Let

Lα = u : ℝn ⟶ℝ1 ∣
ð
ℝn

u xð Þj j
1 + xj jn+α dx <∞

� �
: ð2Þ

Then, it is easy to verify that for u ∈ Lα ∩ C1,1
loc , the integral

on the right-hand side of (1) is well defined. Throughout this
paper, we consider the fractional Laplacian in this setting.

Due to applications in physics, chemistry, biology, prob-
ability, and finance, differential equations involving the frac-
tional Laplacian ð−ΔÞα/2 have received growing attention
from the mathematical communicity in recent years (see
[1–14]). There are many papers devoted to the study of qual-
itative properties of fractional Laplacian equations in

bounded or unbounded domains, but seldom are concerned
with slab-like domains. For example, in [15], the authors
established the symmetry and monotonicity of positive solu-
tions of the following problem with more general nonlinear-
ity on a bounded domain.

−Δð Þα/2u xð Þ = f u xð Þð Þ, x ∈ B1 0ð Þ,
u xð Þ = 0, x ∈ℝn \ B1 0ð Þ,

(
ð3Þ

using a direct method of moving planes. For local elliptic
operators, these kinds of approaches were introduced
decades ago in the paper [16] and then summarized in the
book [17], among which the narrow region principle and
the decay at infinity have been applied extensively by many
researchers to solve various problems. For more articles con-
cerning the method of moving plans for nonlocal equations,
please see [18–20] and the references therein.

However, there are some papers of elliptic second-order
boundary value problems concerned with features like
monotonicity in some directions and symmetry for positive
solutions in slab-like domains. For instance, in [21], using
the “sliding method,” the authors studied monotonicity in
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some directions and symmetry of elliptic second-order
boundary value problems of the type.

Δu + f uð Þ = 0, x ∈Ω,
u xð Þ > 0, x ∈Ω,
u xð Þ = 0, x ∈ ∂Ω,

8>><
>>: ð4Þ

in a slab Ω =ℝ × ð0, hÞ ⊂ℝ2. For more articles concern-
ing the “sliding method,” please see [22, 23] and the refer-
ences therein.

Motivated by the above work, in this paper, using the
direct method of moving planes, we study the monotonicity
in some directions and symmetry of fractional Laplacian
boundary value problems of the type.

−Δð Þα/2u xð Þ = f u xð Þð Þ, x ∈Ω,
u xð Þ > 0, x ∈Ω,
u xð Þ = 0, x ∈ℝn \Ω,

8>><
>>: ð5Þ

in a class of special unbounded domains Ω of ℝn: infinite
cylinders or more generally, product domains of the form

Ω =ℝn−j × ω, ð6Þ

where ω is a smooth bounded domain in ℝ j.
We denote the variables in Ω by ðx′, yÞ, x′ ∈ℝn−j, and

y ∈ ω ⊂ℝ j with j ≥ 1. It is not assumed that Ω is bounded.
The function f appearing in (5) will always be assumed to be
(globally) Lipschitz continuous. We firmly believe that the
result introduced here is of great importance, and the ideals
and methods can be applied to study a variety of nonlocal
problems with more general operators and nonlinearities.

In most of what follows, we consider the case j = 1. In
this case, the proof of monotonicity and symmetry yields
the following statement for j = 1.

Theorem 1. Let

Σ = x′, y
� �

∣ x′ ∈ℝn−1, 0 < y < h
n o

: ð7Þ

Suppose u ∈ Lα ∩ C1,1
locðΣÞ satisfies

−Δð Þα/2u = f uð Þ, inΣ,
u xð Þ > 0, inΣ,
u xð Þ = 0, inℝn \ Σ,

8>><
>>: ð8Þ

with f ð·Þ being Lipschitz continuous. Then, for any positive
l < h/2,

u x′, y
� �

< u x′, 2l − y
� �

, in〠
l

= x′, y
� �

∣ x′ ∈ℝn−1, 0 < y < l
n o

,

ð9Þ

and u is symmetric in y about y = h/2.

If we further assume that u ∈ C3
locð�Σh/2Þ, then

∂u
∂y

> 0, in〠
h/2

= x′, y
� �

∣ 0 < y < h
2

� �
: ð10Þ

Remark 2. Here, the domain Ω is an infinite cylinder, and it
is more general than the usual unbounded domains. For
instance, if we let h⟶∞ in Theorem 1, we can get mono-
tonicity of positive solutions of the Dirichlet problem involv-
ing the fractional Laplacian in the half space.

2. Preliminaries and Lemmas

Let Tλ be a hyperplane in ℝn. Without loss of generality, we
may assume that

Tλ = x = x′, y
� �

∈ℝn−1 × 0, hð Þ ∣ y = λ
n o

,

〠
λ

= x = x′, y
� �

∈ℝn−1 × 0, hð Þ ∣ 0 < y < λ
n o

:
ð11Þ

And for ðx′, yÞ ∈ Σλ, we let x
λ = ðx′, 2λ − yÞ be the reflec-

tion of x about the plane Tλ. Denote wλðxÞ = uðxλÞ − uðxÞ.
For simplicity of notation, in the following, we denote wλ
by w and Σλ by Σ.

Lemma 3 (Narrow region principle [15]). Let Ω be a
bounded narrow region in Σ, such that it is contained in fx
∣ λ − l < y < λg with small l. Suppose that w ∈ Lα ∩ C1,1

locðΩÞ
and is lower semicontinuous on �Ω. If cðxÞ is bounded from
below in Ω and

−Δð Þα/2w xð Þ + c xð Þw xð Þ ≥ 0 inΩ,
w xð Þ ≥ 0 inΣ \Ω,

w xλ
� �

= −w xð Þ inΣ,

8>>><
>>>:

ð12Þ

then for sufficiently small l, we have

w xð Þ ≥ 0 inΩ: ð13Þ

Furthermore, if w = 0 at some point in Ω, then

w xð Þ = 0 almost every where inℝn: ð14Þ

These conclusions hold for unbounded region Ω if we fur-
ther assume that

lim
∣x∣⟶∞

w xð Þ ≥ 0: ð15Þ

Lemma 4 (A Hopf type lemma for antisymmetric func-
tions [24]). Assume that w ∈ C3

locð�ΣÞ, lim
x⟶∂Σ

cðxÞ = oð1/
½distðx, ∂ΣÞ�2Þ, and
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−Δð Þα/2w xð Þ + c xð Þw xð Þ = 0 inΣ,
w xð Þ ≥ 0 inΣ,

w xλ
� �

= −w xð Þ inΣ:

8>>><
>>>:

ð16Þ

Then,

∂w
∂ν

< 0, x ∈ ∂Σ: ð17Þ

3. Proof of Theorem 1

Proof of Theorem 1. Now we carry on the method of moving
planes on the solution u along y direction.

Step 1. We show that, for sufficiently small λ > 0,

wλ xð Þ > 0, x ∈〠
λ

, ð18Þ

where wλðxÞ = uðxλÞ − uðxÞ.

As usual, we can easily verify that wλ satisfies the following
linear equation

−Δð Þα/2wλ + cλ xð Þwλ = 0, x ∈〠
λ

: ð19Þ

Indeed, uðxλÞ satisfies the same equation in (8) as uðxÞ;
thus, (19) is obtained by subtracting one from the other
and letting

cλ xð Þ =
f u xλ
� �� �

− f u xð Þð Þ
u xð Þ − u xλ

� � , u xð Þ ≠ u xλ
� �

,

0, u xð Þ = u xλ
� �

:

8>>><
>>>:

ð20Þ

By the assumption that f is (globally) Lipschitz continu-
ous, with some Lipschitz constant b, we have

cλk kL∞ Σλð Þ ≤ b,∀λ ∈ 0, h2

� 	
: ð21Þ

From the narrow region principle, we can easily know
that for sufficiently small σ > 0,

wλ xð Þ ≥ 0,∀x ∈〠
λ

, λ ∈ 0, σð Þ: ð22Þ

Furthermore, it follows from wλðx′, 0Þ > 0 that we have

wλ xð Þ > 0,∀x ∈〠
λ

, λ ∈ 0, σð Þ: ð23Þ

Step 2. The proof in Step 1 provides a starting point, from
which we can now move the plane Tλ to the right as long
as (18) holds to its limiting position.

Let

λ0 = sup λ ∈ 0, h2

� 	
∣wμ xð Þ > 0,∀x ∈〠

μ

, μ ≤ λ

( )
: ð24Þ

In this part, we show that

λ0 =
h
2 ,

wλ0
xð Þ ≡ 0, x ∈〠

λ0

:
ð25Þ

Suppose that λ0 < h/2, we show that the plane Tλ can be
moved further. To be more rigorous, we only need to prove
that there exists ε > 0, such that for any λ ∈ ðλ0, λ0 + εÞ, we
have

wλ0
xð Þ > 0, x ∈〠

λ0

: ð26Þ

This is a contradiction with the definition of λ0. Hence,
we have λ0 = h/2.

Now we prove (26) by the narrow region principle
(Lemma 3). By the definition of λ0, we can easily have

wλ0
xð Þ ≥ 0, x ∈〠

λ0

: ð27Þ

In fact, when λ0 < h/2, we have

xð Þ > 011wλ0
xð Þ > 0, x ∈〠

λ0

: ð28Þ

If not, there exists x̂ such that

wλ0
x̂ð Þ =min

Σλ0
wλ0

xð Þ = 0: ð29Þ

Then, we have

−Δð Þα/2wλ0
x̂ð Þ = Cn,αPV

ð
ℝn

−wλ0
zð Þ

x̂ − zj jn+α dz

= Cn,αPV
ð
Σλ0

−wλ0
zð Þ

x̂ − zj jn+α dz +
ð
ℝn\Σλ0

−wλ0
zð Þ

x̂ − zj jn+α dz

= Cn,αPV
ð
Σλ0

−wλ0
zð Þ

x̂ − zj jn+α dz +
ð
Σλ0

wλ0
zð Þ

x̂ − zλ


 

n+α dz

= Cn,αPV
ð
Σλ0

1
x̂ − zλ


 

n+α dz − 1

x̂ − zj jn+α
 !

� wλ0
zð Þdz < 0:

ð30Þ
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On the other hand,

−Δð Þα/2wλ0
x̂ð Þ = −Δα/2� �

u x̂λ0
� �

− −Δα/2� �
u x̂ð Þ

= f u x̂λ0
� �� �

− f u x̂ð Þð Þ = 0:
ð31Þ

This is a contradiction with (30). Thus, (28) holds.
Then, it follows from (28) that there exists a constant

c0 > 0 and δ > 0, such that

wλ0
xð Þ ≥ c0, x ∈ �Σλ0−δ: ð32Þ

Since wλ depends on λ continuously, there exists ε ∈
ð0, δÞ, such that for all λ ∈ ðλ0, λ0 + εÞ, we have

wλ xð Þ > 0, x ∈ �Σλ0−δ: ð33Þ

Then, from the narrow region principle (Lemma 3), we
conclude that for all λ ∈ ðλ0, λ0 + εÞ,

wλ xð Þ > 0, x ∈ �Σλ: ð34Þ

This is a contradiction with the definition of λ0.
Therefore, we must have λ0 = h/2, and

wλ0
xð Þ ≡ 0, x ∈〠

λ0

: ð35Þ

Consequently, for all λ: 0 < λ < h/2, we have wλ > 0 in Σλ.
Therefore, (9) holds, and u is symmetric in y about y = h/2.

Further, if we assume u ∈ C3
locð�Σh/2Þ, we now prove (10)

holds. Indeed, wλ satisfies the following linear equation

−Δð Þα/2wλ + cλ xð Þwλ = 0, x ∈〠
λ

, ð36Þ

with wλðx′, λÞ = 0. Also, by the former proof, we know that
wλ > 0 in Σλ. Here, we consider the distance from x to the
upper boundary fy = λg of Σλ, denoted by distðx, ∂ΣλÞ≕ d.
Then, dðx, ∂ΣλÞ = λ − y. Thus, by (20) we know that

lim
x⟶∂Σλ

c xð Þ d x, ∂〠
λ

 !" #2
= lim

x⟶∂Σλ

c xð Þ d λ − x2ð Þ½ �2 = 0:

ð37Þ

Therefore,

lim
x⟶∂Σλ

c xð Þ = o
1

d x, ∂Σλð Þ½ �2
 !

: ð38Þ

Consequently, the Hopf type lemma for antisymmetric
functions (Lemma 4) leads to

−2 ∂u
∂y

x′, λ
� �

≡
∂wλ

∂y
x′, λ
� �

< 0,∀x′ ∈ℝn−1, λ ∈ 0, h2

� 	
,

ð39Þ

which implies that (10) holds. This completes the proof.
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