Hindawi

Journal of Function Spaces

Volume 2021, Article ID 5424284, 9 pages
https://doi.org/10.1155/2021/5424284

Hindawi

Research Article

Notes on Solutions for Some Systems of Complex Functional
Equations in C°

Hong Li"* and Hong Yan Xu® ">

ISchool of Psychology, Jiangxi Normal University, Nanchang 330022, China

*Office of Research, Gannan Normal University, Ganzhou, Jiangxi 341000, China

*Department of Informatics and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, Jiangxi 333403, China

Correspondence should be addressed to Hong Yan Xu; xhyhhh@126.com
Received 23 May 2021; Accepted 14 June 2021; Published 2 July 2021
Academic Editor: Mohsan Raza

Copyright © 2021 Hong Li and Hong Yan Xu. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The purpose of this article is to give the details of finding the transcendental entire solutions with finite order for the systems of nonlinear
A o . 0f,(z1,2,))/0z;) + ((0f (21, 2,))102,))™ + Py (2)f, (21 + €1, 2, + 65)™ = Q(2),
artial differential-difference equations (((0f, (21,2, 1 11 "2 20 S IRt T 1 where
P ! { (0, (21,22))102) + (0, (21,22))/02))" + Po(2)fy (21 + 0,22+ 6)™ = Qy(2),
P,(z), P,(2), Q,(2),andQ, (z) are polynomials in C?; n,, n,, m,, and m, are positive integers, and ¢ = (¢;, c,) € C>. We obtain that
there exist some pairs of the transcendental entire solutions of finite order for the above system, which is a very powerful supplement
to the previous theorems given by Xu and Cao and Xu and Yang.

1. Introduction Theorem 1 (see ([16], Theorem 1.1)). Let ¢ = (c,, c,) € C°.

) ) , Then, the Fermat-type partial differential-difference equation
In 1970, Yang [1] proved that the functional equations f" +

g™ =1 have no nonconstant entire solutions, if m, n are posi- "

tive integers satisfying (1/m) + (1/n) <1. After this result, (af(zl’ 22)) +f(z +cpz+0)" =1, (1)
with the aid of the Nevanlinna theory and the difference ana- 0z,

logues of the Nevanlinna theory (see [2-6]), there were rapid

developments on complex differential and difference equa- does not have any transcendental entire solution with finite
tions in one and several complex variables. Some classical  order, where m and n are two distinct positive integers.
results and topics in different fields are considered in differ-

ence versions, for example, difference Riccati equations, differ-  Theorem 2 (see ([15], Theorem 3.2)). Let c= (¢, c,) € C\
ence Painlevé equations, and difference F'erma‘F equations (s'ee {0}. Suppose that f is a nontrivial meromorphic solution of
(7-14]). Recently, Cao and Xu [15-17] investigated the exis-  the Fermat type partial difference equations

tence of the entire and meromorphic solutions for some

Fermat-type partial differential-difference equations by utiliz- 1 1
ing the Nevanlinna theory and difference Nevanlinna theory =+

of several complex variables [18, 19] and obtained the follow- flzitenztc) fz122)
ing theorems which is an extension of the previous results

given by Liu and his collaborators (see [20-24]). or

m = Az 2,)f (21,2,)" (2)
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flzi+epzy+ )"

where m € N, n € NU {0}, and A(z,,z,) is a nonzero mero-

morphic function on C? with respect to the solution f, that is
T(r,A)=0o(T(r,f)). If 6;(c0) > 0, then

lim sup w

r—00

> 0. (4)

Remark 3. Let n=0 and A(z,, z,) = 1, then the above equa-
tions become

1 1
flzi+epzy+6)"
1 1 1

+ + =1
flzitenz )" flzi+e,2)" ’

which can be called as the partial difference equations of Fer-
mat type.

In 2020, the first author and his coauthors discussed the
transcendental entire solutions with finite order for the sys-
tems of partial differential difference equations and gave the
conditions on the existence of the finite-order transcendental
entire solutions for the following systems, which are some
extension and improvements of the previous results given
by Xu and Cao and Gao [16, 25].

Theorem 4 (see ([26], Theorem 1.2)). Let ¢ = (c,,c,) € C?,
and mj, n;(j = 1, 2) be positive integers. If the following system
of Fermat-type partial differential-difference equations

of (21, 25)\™
(%) +h(z ez te)" =1,
1
of,(z2,)\ ™
( fZEZI 2)> +fi(z +epz o)™ =1,
1
satisfies one of the conditions

(i) mym, > n;ny;
(i) m;> (n;/(n; - 1)) forn; 22, j=1,2.

Then, system (6) does not have any pair of transcendental
entire solution with finite order.

+ +
flzy +ep2)"

flzi 2+ ¢)" =A(z,2,)f (21, 2)" (3)

Remark 5. Here, (f, g) is called as a pair of finite-order tran-
scendental entire solutions for system

ffr+gm=1,

if f, g are transcendental entire functions and p = max {p(f),
p(g)} < oo.

Remark 6. The condition m; > (n;/(n; - 1)) implies m; > 1.
Thus, a question rises naturally: what will happen on the exis-
tence of transcendental entire solutions with finite order

when m; =1, j=1,2 in system (6)?
In fact, we give the following example to explain that sys-

tem (6) has a pair of transcendental entire solutions with
finite order when m, =m, =1 and n, = n, =2, that is,

(E?fl (z1> 2,

) 2
2z, +h(zi+ch2,+6)=1,

3 (21,2)\ 2
(fZ(ZIZZ)> +£,(21 + 1> 25 + &) = 1[rgb]0.00,0.00,1.00.

0z,
(8)
Example 1. Let

1 1 1 i
fiz)= 1- an_ JAtsan - 55+ (5 -

1 2
) 3 3 mi)e” — {e@ *3 (2, - m‘)} ,

Then, f = (f},f,) is a pair of transcendental entire solu-
tions of system (8) with (¢, ¢,) = (7i, i) and p(f) = 1.

Corresponding to system (6), we further consider the fol-
lowing system of the partial differential difference equation

of1(z1,2) . of1(z1, %)
0z, 0z,

9f,(z1,2,) " (21525
0z, 0z,

)nl +P(2)f,(z, + ¢, 2, +6,)™ =Q, (2),

)>"2 +Py(2)f1 (21 + €12y + 6)™ = Qy(2)s
(10)

where P,(z), P,(z) are two nonzero polynomials in C?
and obtained.



Journal of Function Spaces

Theorem 7. Let ¢=(c;,¢,) € C°, my,n;(j=1,2) be positive
integers satisfies one of the conditions
(i) mym, > n;ny;
(i) m;>n;/(n;— 1) forn;>2, j=1,2.

Then, system (10) does not have any pair of transcendental
entire solutions with finite order.

The following example shows that the conditions m;
> (n;in; —

existence of finite- order transcendental entire solutions

j
1) for n;>2 and j=1,2 are precise and the

fi)=1- g = 22+ 2 (@) (e - )
fil)=1- g - 18+ 3 (@ -2) (e - )

Then, f =
tions of system (11) with (¢}, ¢,) =

(f»f,) is a pair of transcendental entire solu-
(71, 27ti) and p(f) = 1.

Remark 8. In Sections 3 and 4, we give the details proceeding
for obtaining a class of finite-order transcendental entire
solutions for systems (8) and (11).

Next, we continue to discuss the existence of the finite-
order transcendental entire solutions for several systems
including both the difference operator and the partial differ-
ential such as

<g_2) | + [zt ezt 6) - fi(z2)]" =1,

(%) | +fi(ztenz+6) - f(z55)]" =1,

0z,

<g£ %> +fi(z tenzt o) - fi(zn2)]" =1,

<§2 a_f2> +[fi(z + ez +6) — fr(22,)]" =1,

(14)
where ¢, ¢, are constants in C. It is easy to find the finite-

order transcendental entire solutions for systems (13) and
(14). For c, # 0, system (5) has a pair of finite-order transcen-

i) — (2, — i)™ — {ezz‘zl -

for the system (10) when n, =n, =2, m,
(z) =P,(2) = Q,(2) = Q,(z) =1, that is,

=m, =1 and P,

(afl (21> Zz) 0f(21>2,)

0z, 0z,

9f,(21,2,) afz(zl’ )
( 0z, 0z,

) +h(z + 2, +6,) =1,

) +fi(zy+¢,2,+¢,) =1,
(11)

Example 2. Let

1 2
i) + (2, — i)™ — {ezle ) (z, -2, - ﬂi)] ,

(12)

N =

(z3—2, — m’)} 2.

dental entire solutions (f;, f,) of the forms

b+d-2ac, d

_ (ilcy)z,
=az, + Zy+ — te ,
fi 1 26, 215 s
b+d-2ac, b ;
_ _ (miley)z,
=azy+ ——2Z, + - —¢ ,
P 1 26, 2Ty

and for ¢, # ¢;, system (14) has a pair of finite-order tran-
scendental entire solutions (f;, f,) of the forms

b+d-2 d .
frmaz + P70 4 L emieman@oa),
2(c;— ) 2
b+d-2ac b .
= _ 2 _ plmil(e=e))(z2-21)
f2 azy + 2(62—61) (ZZ Zl>+2 4 >

(16)

where a, b, d € C satisfy 1 —a™ =b™ and 1 - a™ = b"™. Fur-
thermore, we can give the finite-order transcendental entire
solutions for systems (13) and (14) when n, =n, =2 and
m; =m, =1 easily.

Example 3. The function

f=0vf)= (Zl_Z2+emzz)zl_zz_emzz)’ (17)

is a pair of transcendental entire solutions with p(f)=1
for system (13) when (c;,c,)=(1,1), n,=n, =2, and m,
=m,=1.



Example 4. The function

f=(fufi) = (20 -2+ @), 20 -2, - ),
(18)

is a pair of transcendental entire solutions with p(f)=1
for system (14) when (c;,¢,)=(1,2), ny=n,=2 and m,
=m,=1.

Corresponding to systems (13) and (14), we can also
obtain the solutions of the following systems

(%) nl + Lz + ezt 6) — fr(z2)]" =1,
al ) (19)
<a_£) +[fi(z + ezt 6) — fi(z12,)]" =1,

0 0 "
(aJZE aﬁl) fz 21 +C,2,+ 62) fz(zla 22)] =1L

(523

where ¢, ¢, are constants in C. In fact, for ¢, # 0, then
systems (19) has a pair of solutions with the forms

) +[fi(z tenz +6) - fi(z2,)]" =1,

(20)

by —ayc

(fpfz)—(“lzl - C:IC

2+ Gy(2) 42, + 2t Gz(zz))’

(21)

where G, (z,), G,(z,) are two period functions with period c,,

and for s ==z, — z; and s, = ¢, — ¢; # 0, then system (20) has a
pair of solutions with the forms

+ Gz(s)> ,

(22)

2

a

Uiof)= (e 22500

c b, —a,c
L5+ G (s), apz, + —22
1 64

where G, (s), G,(s) are two period functions with period s,
and a,, a,, ¢;, ¢,, dy, and d, are constants satisfying

ay' +b" =1,a +b)> =1. (23)
2. Proof of Theorem 7
The following lemmas will be used in this paper.
Lemma 9 ([27, 28]). Let f be a nonconstant meromorphic func-

tion on C" and let I = (i}, -+, 1,) be a multi-index with length
II| =X, i;. Assume that T(ry, f) > e for some r,. Then,

m <r, afj> =S(r. f), (24)
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holds for all r > r,, outside a set E C (0,+00) of finite logarithmic
measure [ (dt/t) < oo, where o'f = (3"f)/(0z't --- 0zly).

Lemma 10 ([18, 19]). Let f be a nonconstant meromorphic
function with finite order on C" such that f(0) # 0, co, and
let € > 0. Then, for ce C",

n(r i) () s @9

holds for all r > r,, outside a set E C (0,+00) of finite logarith-
mic measure | (dt/t) < co.

Lemma 11 (see [29]). Let f be a nonconstant meromorphic
function on C". Take a positive integer m and take polyno-
mials of f and its partial derivatives:

P =Y apf" (1) - (3)", () = (o 21)

pel
; q ; Q@
(=Y cf™(df)" - (9F)" (@) = (4~ ),
qel
B(f)= ) b,
k=0
(26)
where I, ] are finite sets of distinct elements and a, cg, and by

are meromorphic functions on C" with b, =0. Assume that f
satisfies the equation

B(f)Q(f) = P(f), (27)

such that P(f),Q(f), and B(f) are differential polyno-
mials, that is, their coefficients a satisfy m(r,a)=S(r, f).

If deg (P(f)) <m = deg (B(f)), then
m(r, Q(f)) =S(r.f), (28)

holds for all r possibly outside of a set E with finite loga-
rithmic measure.

Proof. Let (f,, f,) be a pair of transcendental entire functions
with finite-order satisfying system (10). Here, we will discuss
two following cases.

Case 1. nyn, > m;m,. In view of Lemma 10, the following
conclusions that

fi(z1,2,) '
m(ﬁ)%) =12 (9

holds for all r> 0 outside of a possible exceptional set
E;c[L+00) of finite logarithmic measure [, (dt/t) < co.
J

Thus, we can deduce from (29) that



Journal of Function Spaces 5

T(r;fj(zl’ZZ)) =m(r,fj(zl,22)> Sm(r,f fj(zl,zZ) )) +m( f](z1 +¢1,2, +c2)> +log 2

(zy+cp25+ 6,y

m(r’fj(zl T2+ Cz)) + S(T’,fj) = T(r,fj(zl +¢p, 2, + cz)) + S(r,fj), j=12,

(30)

for all reE = E, UE,. By using Lemma 9 and Lemma 11,
it follows from (30) that

mT(r, f5(21,2,)) SmT(r fr(21 + €1, 2, + 6)) + S(1, /) S T(r, Py (2) (2, + €1, 2+ 6)" ) + S(1 /)
= T(r, <§f1 i) -Q (z)) +8(r.f,) = mlT(r, a—fi + i) +O(log r) + S(r, f,) + S(r, f1)

3z,
v, 3L ) Oflogr) 501 ,) S0 £ < [ r, LD |

0z,
+O0(log 1) +8(r. f,) + 8(r. f) = m T (1. f1) + O(log 1) + S(r- f,) + S(1- £,)»

(31)

for all reE. Similarly, we have In view of n,n, > m,m,, this is impossible since f;, f, are
transcendental entire functions.

2T(rf1) < myT(r ) + O(log r) + S(r, fy) +S(r. /), r€E. (32)

Case 2. m;>(n;/(n;— 1)), n;>2, j=1,2. In view of the
Nevanlinna second fundamental theorem concerning small

functions, Lemma 10, and system (11), we can deduce
(nyn, - mlmz)T(r,fj) <O(logr) +S(r, f,) +S(r. f,), reE. (33) that

In view of (31) and (32), it yields

’”T( )= (Zf g) )rsnsen(r <<af1/az1)+l<af1/az2>>ml>+N(“ <<af1/azl)+<af11/az2>>’"'—Ql<z>>

1 _ 1 — 1
#$05) (s ) N mEmE e mrer) R <N G )
+ N(r, m) +O(log ) + (1, f) < T( a—fl + %) +T(r, f,(z, + ¢, 2, + ¢;)) + O(log 1) + S(r, f,) + S(1, f,)s
(34)
that is, Similarly, we have
0 0
me-17(r 22 22 <ty rotonn

(ml—l)T< g—2+%) T(r,f,(z+c)) + O(log )

0z, +8(r, f1) +S(r f3)-
+8(r f1) + S(1. f)-

On the other hand, in view of system (10) and Lemma 10,

(35) it follows that



mT(r.f,(z1 +¢1, 2, + 63)) + O(log r) = T(r, Py (2)f, (21 + ¢y 25 +63)™)

osorle (02 )

S =m (3 + 50 + Ofog

+8(r. f1) + S(rs )
(37)

Similarly, we have

0
n,T(r, fi(zy + 1,25+ ¢5)) = m2T<r, afz aﬁz) +O(log r)
2

+8(r. f1) +S(r: /).
(38)

In view of (35)-(38), we obtain that

(”1 - 1> T(r, fr(21 + €1, 2, + ;) < O(log 1) + S(r, f;) + S(1. ),

(”2 - mznj 1) T(r. fi(z) + 1,2, + ;) < O(log ) + 8(r, f1) + S(1 /).

(39)

The fact that m; > (n;/(n; - 1)) can lead to a contradic-

tion since f, f, are transcendental entire functions.
Therefore, this completes the proof of Theorem 7.

3. Entire Solutions for System (8)

Now, the details that we obtain a pair of finite-order tran-
scendental entire solutions for system (8) will be given below.

Let (f;, f,) be a pair of finite-order transcendental entire
solutions for system (8). Differentiating both equations in
system (8) for z;, we deduce

af1(zl’zz) 0 fl(zl’ZZ) 0f,(z1 + 1,2, + 6)

0z, 0z? 0z, ’

sz(zl,zz) 0 fz(zl’zz) + 0f1(z1 + ¢, 2, ;) -0

0z, 0z} 0z, '
(40)

Let F\(z),2,) = (9f,(21,2,))/0z; and F,(zy,2,) = (9f,
(z1,2,))/0z,, then it follows from (18) that

0F,(z,,
2F (21, 2,) % =-Fy(z1+cp, 5+ 6),
1
0F,(z,,
2F,y(zy,2,) 25;; %) _ —F, (2, + ¢, 2, + ¢,)[rgb]0.00,0.00,1.00.
1

(41)

By Lemmas 9-11, it yields that (0F;(z,,2,))/0z, =S

Journal of Function Spaces

(r.f;) for j=1,2. Thus, we can assume that

0F,(z1,2,)
0z,

0F,(z,,z
—ap B g (@)

where a,,a, € C. Solving Equation (42), we have
F\(21:25) = 42, + 91(2), F (21, 25) = 421 + 9,(2,),  (43)

where ¢, (z,), ¢,(z,) are finite-order transcendental entire
functions in z,. Due to Equations (41) and (42), we obtain that

Fi@)=-g Fe o ) == 5 Filere). (49

Substituting (43) into (44), we can deduce that

1
2a. (@21 +aycy) —
1

1
a2+ 9, (2,) = - g‘/’z(zﬁcz))
1

1 1
Bz1 +@,(2;) = _7(‘1121 +ac) - T(PI(ZZ +6),
2 2
(45)

which implies that a} = a3 = —(1/8). It would be well if a, =
—(1/2). So, it follows that

1
F1(21’22)=‘521 +‘P1(Zz),F2(zl,z2)=—§z1 +9,(2,),
1 1
P1(22+6) =9y(2) + 551)‘/’2(22 +6)=9,(2) + Phes

(46)
This means that

$1(2+26) =@ (2) =1, 9, (2 +26,) — 9, (2,) =1, (47)

which imply

c c
Gi(z,) + 271222’ $,(2,) = Gy(2,) + ﬁzz’ (48)

¢1(2) =

where G,(z,), G,(z,) are finite-order entire period func-
tion with period 2¢, satisfying G, (z, + ¢;) = G,(z,).

Solving the following system

0 , 1
% =F(z1,2,) = _521 +¢,(22),
; : (49)
M =F,(21,2,) = =521 + 9,(2),
0z,
we obtain that
1,
fHi(z12) = R +219,(2,) +v¥,(22)s
50
L, (50)
fa(z1,2,) = _Zzl +219,(2,) + ¥,(2,),
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where v, (z,), ¥,(2,) are finite-order entire functions in
z,. Substituting (50) into (8), and combining with the period-
icity of ¢,(2,) and ¢, (z,), it yields that

1 c 2
<_Zl +12,+G, (Z2)> (21 + Cl)2 +(21 )Py (2 +6) + Yy (2 +6) =1,
2

2 2¢ 4

1 c 2
<—5z1 + 2—612z2 + Gz(zz)> -

&=

Thus, we have

1, ¢ 2! ?
Vy(zy+6)=1-—c]— —2z,—¢,G,(z —(—Z+Gz ,
2(22+6) 11T A 1(22) 2, 2 1(22)

2
2

1, ¢ = g
V(2 t+6)=1- 151 - 2—2222 —Gy(z,) - (2_5222 + Gz(zz)) >

which mean that

2
Yy(z) =1+ 26 - —222 = 6Gy(2,) (ZC—CIZ (z,—c) + Gz(zz)) ,
(53)
v, (z,) =1+ :llcf - Ziclzz2 -¢,G(z;) - (;le(zz —¢) + Gl(zz))z.
(54)
In view of (48)-(54), it follows that
1, 1, ¢ c
filzz) =1+ 167 78 + z—czzlz2 - Zzz + (21 = ¢,)G\(2,)s

_ [2%12 (z,-6) + G, (zz)} 2,

1 c c

frlzz) =1+ Zc2 - sz + izlz2 2c1 2, + (21— ¢1)Gy(2y),
2 2

- @ma)+ G )r

eyt 2\%2) | >
2¢,

(55)

where G,(z,), G,(z,) are finite-order transcendental
entire period functions with period 2c, satisfying G,(z, + ¢,)
=G, (z,). Substituting (f}, f,) into system (2), it is easy to
confirm that (f,, f,) is a solution of system (8).

4. Entire Solutions for System (11)

Let (f},f,) be a pair of finite-order transcendental entire
solutions of system (13). Next, the detail that we obtain one
form of (f},f,) is listed as follows. Differentiating system

(71 + 51)2 +(Z1+ )P (5 +6) +Y (5 +6) =1

(13) for z,, z,, respectively, we have

28, a2 (PP 2] P E)

0z,
F F
2F2(21,Zz)(a Zézzll’ZZ) + 9 zé‘:zz)

) + Fy(z; + ¢, 2, +¢,) =0,

> + Fi(z; + ¢, 2, +¢,) =0,
(56)
where

Fl(zl’ 22) = afl <azzll’ Zz) + afl (aZZIZ’ ZZ) ,

forj=1,2. (57)

In view of Lemmas 9-11, it follows that (0F;(z;,2,))/d
zy =S(r, f;) for j=1, 2. For the convenience, assume that

0F(z),z,) 0F(z),2,)
J\TD 22 Jj\F1> <2 _ b», _ 1,2, 58
0z, " 0z, o (58)

where b; € C. The characteristic equations for Equation
(58) are

dz, 1 dz, dF

E_ ’E:]' =b.. (59)

ae
In view of the initial conditions: z; =0,z, =5, and F; =
F;(0,s) = F;(s) with a parameter s, we thus obtain the follow-

ing parametric representation for the solutions of the charac-
teristic equations: z, =t, z, =t +s,

t
F;= Joﬁbjdt +u(s) =bjt + py(s), (60)

where p j(s), j=1,2 are entire functions with finite order
in s. Thus, it follows that

Fj(zl,zz):bjzl+Mj(z2—z1), j=12. (61)

In view of (56) and (58), it follows that

20,F (21, 2,) = —F, (21 + 12, + ), (62)
-F,

2b,F,(21,2,) = =Fy (2, + ¢, 2, + 6,).



Substituting (61) into (62), we have that

{ Zb%ZI +2byp,(s) = =by(z, +¢1) — py (5 +50)s (63)
:—bl

2byz, +2b,p,(s) (21 + ) —p(s+5)
where s =z, — z, and s, == ¢, — ¢,. This implies that b; =

by =—(1/8). Let us assume that b, = b, =—(1/8). Thus, it
yields that

1
Hy(s+89) =y (s) + 5
: (64)
(s +8y) =ty(s) + 56
This means
W) =G +7s j=12 (65)
G, (s+59) = Gy(s)s (66)

where G, (s), G,(s) are finite-order transcendental entire
period functions with period 2s,, and 7=¢;/(2(c, - ¢;)).
Then, in view of (61) and (65), we deduce

1
Fj(z1,2,) = SAat Gi(za-2z)) +1(2,-2), j=12
(67)
that is,
o (z2)  fj(zp2) _ 1
]azl + ]822 ==+ Gz -2) +1(z - z).

(68)

By making use of the characteristic equations for Equa-
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tion (68) again, let

dz, dz, af, 1
=1, 22=1, L =-22,+Gi(z,—2)) +1(2, - 21).
dt dt dt 2 1 ]( 2 1) ( 2 1)
(69)
In view of the initial conditions: z; =0,z, =s, and f i=

(0,5) =f(s) with a parameter s, we can deduce that the
j j p
parametric representation for the solutions of the character-

istic equations: z; =t, z, =t +s, and
! 1, )
fi= 'L -5t G(s) + s | dt +v)(s) ==t t(Gi(s) +78) +v,(s), j=12,

(70)

where v,(s) is an entire function with finite order in s.

Substituting t =z, and s=z, —z, into the above form, we
have that

j=12.
(71)

Substituting (71) into (13), and combining with the peri-
odicity of Gj(s), it follows that

1
fi(z120) = _sz +2z, [Gj(z2 —2z)) +as(z, - 2))] + vi(z - 7),

vi(s)=1- i‘ﬁ =Gy (s =) —TCr (s = 8) — [Gy(s—8p) +T(s - 50)]2)

(72)

vy(s)=1- ;IIC% —aG(s=sp) —Te1(s—80) = [Gi(s —50) +T(s _50)]2'
(73)

Thus, in view of (66) and (71)-(73), we obtain that a pair
of entire solutions of system (13) are of the forms

1 1 c c 2
filz2) =1+ Zcf - ZZ% + 206 1_ o) (z2—21) (21 =) + (21 —01)Gi(2, - 2) - [GI(ZZ -z))+ 2, 1_ o) (z,—2z1 = (- 51))] )
(74)
1
folziz) =1+ 2¢f - ZZ% + 2(5;1_ o) (z2—21)(21 — 1) + (21— 6)Gy(2, - 2,) — {Gz(zz zy) + Z(CZCI_ o) (z2-2 - (- Cl)):| >
where G, (s), G,(s) are finite-order transcendental entire ~ Data Availability

period functions with period 2s, and satisty (66). Let
Gl (S) — e(m’/(cz—cl))s) G2 (S) _ _e(ni/(cz—cl))s‘ (75)

Thus, (f},f,) is a pair of finite-order transcendental
entire solutions of system (13).

No data were used to support this study.
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