Research Article

Iterative Solutions for Solving Variational Inequalities and Fixed-Point Problems

Li-Jun Zhu,1,2 Naseer Shahzad3, and Asim Asiri3

1The Key Laboratory of Intelligent Information and Big Data Processing of Ningxia Province, North Minzu University, Yinchuan 750021, China
2Health Big Data Research Institute of North Minzu University, Yinchuan 750021, China
3Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Correspondence should be addressed to Naseer Shahzad; nshahzad@kau.edu.sa

Received 28 January 2021; Accepted 14 February 2021; Published 24 February 2021

Academic Editor: Huseyin Isik

Copyright © 2021 Li-Jun Zhu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we are interested in variational inequalities and fixed-point problems in Hilbert spaces. We present an iterative algorithm for finding a solution of the studied variational inequalities and fixed-point problems. We show the strong convergence of the suggested algorithm.

1. Introduction

Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$. Let $C \subset H$ be a nonempty closed convex set. Let $f : C \rightarrow H$, $g : C \rightarrow H$, $\varphi : C \rightarrow C$, and $T : C \rightarrow C$ be four nonlinear operators. Use $\text{Fix}(T)$ to denote the fixed-point set of T.

In this paper, we will investigate the following variational inequalities and fixed-point problems of finding a point $u^* \in C$ such that

$$
\begin{align*}
&u^* \in \text{GVI}(C, f, \varphi), \\
&\varphi(u^*) \in \text{VI}(C, g) \cap \text{Fix}(T),
\end{align*}
$$

where $\text{GVI}(C, f, \varphi)$ denotes the solution set of the generalized variational inequality (shortly, GVI) which is to find a point $x^* \in C$ such that

$$
\langle f(x^*), \varphi(x) - \varphi(x^*) \rangle \geq 0, \quad \forall x \in C,
$$

and $\text{VI}(C, g)$ means the solution set of the variational inequality (shortly, VI) which is to find a point $x^* \in C$ such that

$$
\langle g(x^*), x - x^* \rangle \geq 0, \quad \forall x \in C.
$$

Throughout, we use Θ to denote the solution set of problem (1), that is,

$$
\Theta = \text{GVI}(C, f, \varphi) \cap \varphi^{-1}(\text{VI}(C, g) \cap \text{Fix}(T)).
$$

It is well known that variational inequalities play key roles and provide a useful mathematical framework, theory, and method for studying many valuable problems arising in water resources, finance, economics, medical images, and so on ([1–6]). A lot of work and a great deal of algorithms for solving GVI or VI have been introduced and investigated, see, e.g., [7–15]. Among them, a basic and important algorithm is the projected algorithm which generates a sequence $\{x_n\}$ with the form

$$
x_{n+1} = \text{proj}_C[x_n - \kappa_n f(x_n)], \quad n \geq 0,
$$

where κ_n is step-size and $\text{proj}_C : H \rightarrow C$ is the orthogonal projection.

At the same time, we are also interested in the fixed-point problem of finding a point u^* such that $Tu^* = u^*$. Iterative
solution for solving a fixed-point problem is an active research field, see, e.g., [16–24]. Recently, iterative algorithms for solving variational inequalities and fixed-point problems have been investigated extensively by many authors [25–33].

Motivated by the work in this direction, in this paper, we devote to research variational inequalities and fixed-point problem (1). We introduce an iterative algorithm for finding a solution of problem (1). We show the strong convergence of the suggested algorithm.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that an operator $f : C \to H$ is said to be

(i) strongly monotone if

$$\langle f(u) - f(v), u - v \rangle \geq \lambda \| u - v \|^2, \quad \forall u, v \in C$$ \hspace{1cm} (6)

(ii) θ-inverse strongly φ-monotone if there exists a constant $\theta > 0$ such that

$$\langle f(u) - f(v), \varphi(u) - \varphi(v) \rangle \geq \theta \| f(u) - f(v) \|^2 + \varphi(u) - \varphi(v), \quad \forall u, v \in C$$ \hspace{1cm} (7)

(iii) relaxed (μ, ν)-cocoercive [34, 35], if there exist two constants $\mu > 0, \nu > 0$ such that

$$\langle f(u) - f(v), u - v \rangle \geq (-\mu) \| f(u) - f(v) \|^2 + \nu \| u - v \|^2, \quad \forall u, v \in C$$ \hspace{1cm} (8)

An operator $T : C \to C$ is said to be

(i) pseudocontractive [36] if

$$\| T(u) - T(v) \|^2 \leq \| u - v \|^2 + \| (I - T)u - (I - T)v \|^2, \quad \forall u, v \in C$$ \hspace{1cm} (9)

(ii) L-Lipschitz if

$$\| T(u) - T(v) \| \leq L \| u - v \|, \quad \forall u, v \in C$$ \hspace{1cm} (10)

where $L > 0$ is a constant.

If $L < 1$, then T is said to be L-contraction. If $L = 1$, then T is said to be nonexpansive.

An operator $A : H \to 2^H$ is said to be monotone if $\langle x - y, u - v \rangle \geq 0$ for all $x, y \in \text{dom}(A), u \in A(x)$, and $v \in A(y)$. A monotone operator A on H is said to be maximal if its graph is not strictly contained in the graph of any other monotone operator on H.

For $\forall x^* \in H$, there exists a unique point in C, denoted by $\text{proj}_C(x^*)$ satisfying

$$\| x^* - \text{proj}_C(x^*) \| \leq \| x - x^* \|, \quad \forall x \in C.$$ \hspace{1cm} (11)

Moreover, proj_C is firmly nonexpansive, that is,

$$\| \text{proj}_C(u^*) - \text{proj}_C(v^*) \|^2 \leq \langle \text{proj}_C(u^*) - \text{proj}_C(v^*), u^* - v^* \rangle, \quad \forall u^*, v^* \in H.$$ \hspace{1cm} (12)

Further, proj_C has the following property:

$$\langle u^* - \text{proj}_C(u^*), x^* - \text{proj}_C(u^*) \rangle \leq 0, \quad \forall u^* \in H, x^* \in C.$$ \hspace{1cm} (13)

Lemma 1 ([37]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let $T : C \to C$ be an L-Lipschitz pseudocontractive operator. Then, $\forall x^* \in C$ and $y^* \in \text{Fix}(T)$, we have

$$\| (1 - \zeta)x^* + \zeta T[(1 - \lambda)x^* + \lambda T(x^*)] - y^* \| \|^2 \leq \zeta(c(\zeta - \lambda))\| T[(1 - \lambda)x^* + \lambda T(x^*)] - x^* \|^2 + \| x^* - y^* \|^2,$$ \hspace{1cm} (14)

where $0 < \zeta < \lambda < 1/(\sqrt{1 + L^2} + 1)$.

Lemma 2 ([24]). Let C be a nonempty, convex, and closed subset of a Hilbert space H. Let $T : C \to C$ be a continuous pseudocontractive operator. Then,

(i) $\text{Fix}(T) \subseteq C$ is closed and convex

(ii) T is demiclosedness, i.e., $u_n \to z$ and $T(u_n) \to z^*$ imply that $T(z) = z^*$

Lemma 3 ([23]). Let $\{ \alpha_n \} \subseteq [0, \infty), \{ \theta_n \} \subseteq (0, 1)$, and $\{ \eta_n \}$ be real number sequences. Suppose the following conditions are satisfied:

(i) $\forall n \geq 1, \{ (1 - \theta_n)\alpha_n + \eta_n \} \subseteq [0, 1]$

(ii) $\sum_{n=1}^{\infty} \theta_n = \infty$

(iii) $\limsup_{n \to \infty} (\eta_n/\theta_n) \leq 0$ or $\sum_{n=1}^{\infty} | \eta_n | < \infty$

Then, $\lim_{n \to \infty} \alpha_n \alpha_n = 0$.

Lemma 4 ([38, 39]). Let $\{ x_n \}$ be a real number sequence. Assume there exists at least a subsequence $\{ x_{n_k} \}$ of $\{ x_n \}$ such that

$$x_{n_k} \leq x_{n_{k+1}}, \quad \forall k \geq 0,$$ \hspace{1cm} (15)

for all $k \geq 0$. For every $n \geq N_\omega$, define an integer sequence $\{ \mu_n \}$
\[\mu(n) = \max \{ i \leq n : x_n < x_{n+1} \} \]

(16)

Then, \(\mu(n) \to \infty \) as \(n \to \infty \) and for all \(n \geq N_0 \), max \(\{ x_{\mu(n)} , x_n \} \leq x_{\mu(n)+1} \).

3. Main Results

In this section, we present our iterative algorithm and convergence theorem. Let \(C \) be a nonempty closed convex subset of a real Hilbert space \(H \). Assume that

(i) \(\phi : C \to C \) is a \(\rho \)-contractive operator

(ii) \(\varphi : C \to C \) is a weakly continuous and \(\lambda \)-strongly monotone operator such that its range \(R(\varphi) = C \)

(iii) \(f : C \to H \) is a \(\Theta \)-inverse strongly \(\varphi \)-monotone operator

(iv) \(g : C \to H \) is an \(L_1 \)-Lipschitz and relaxed \((\mu, \nu) \)-cocoercive operator

(v) \(T : C \to C \) is an \(L_2 \)-Lipschitz pseudocontractive operator with \(L_2 > 1 \)

Let \(\{ \theta_n \} \), \(\{ \kappa_n \} \), \(\{ \lambda_n \} \), and \(\{ \tau_n \} \) be four real number sequences in \([0, 1] \) and \(\{ \kappa_n \} \) and \(\{ \gamma_n \} \) be two real number sequences in \((0, \infty) \).

Now, we present our algorithm for solving problem (1).

Algorithm 5. Let \(x_0 \in C \) be an initial value. Define the sequence \(\{ x_n \} \) by the following form:

\[
\begin{align*}
 u_n &= \theta_n \phi(x_n) + (1 - \theta_n) \text{proj}_C[\varphi(x_n) - \kappa_n f(x_n)], \\
 y_n &= (1 - c_n) u_n + c_n T[(1 - \lambda_n) u_n + \lambda_n T(u_n)], \\
 z_n &= \text{proj}_C[y_n - \gamma_n T(y_n)], \\
 \phi(x_{n+1}) &= (1 - \tau_n) \phi(x_n) + \tau_n z_n, \quad n \geq 0.
\end{align*}
\]

(17)

Theorem 6. Suppose that \(\Theta \neq \emptyset \). Assume that the following conditions are satisfied:

(C1): \(\lim_{n \to \infty} \theta_n = 0 \) and \(\sum_{n=1}^{\infty} \theta_n = \infty \)

(C2): \(0 < a_1 < c_n < c_1 < \lambda_n < b_1 < 1/(\sqrt{1 + L_2^2 + 1}) \) for all \(n \geq 0 \)

(C3): \(\nu > \mu L_1^2 \) and \(0 < a_2 \leq \gamma_n \leq b_2 \leq 2(\nu - \mu L_1^2)/L_1^2 \) for all \(n \geq 0 \)

(C4): \(\rho < \lambda < \lambda_{\infty} \) and \(0 < \lim \inf_{n \to \infty} \tau_n \leq 1 \)

(C5): \(\rho < \lambda < \lambda_{\infty} \) and \(0 < \lim \inf_{n \to \infty} \kappa_n \leq \lambda_{\infty} \leq \lambda_{\infty} < 2 \beta \)

Then, the sequence \(\{ x_n \} \) generated by (17) converges strongly to \(u^* \in \Theta \) verifying

\[||\phi(u^*) - \varphi(u^*)|| > 0, \quad \forall x^* \in \Theta. \]

(18)

Proof. Since \(\varphi \) is \(\lambda \)-strongly monotone, we can get from (6) that

\[||\varphi(u) - \varphi(v)|| > \lambda ||u - v||, \quad \forall u, v \in C. \]

Thus, VI (18) has a unique solution, denoted by \(u^* \). It follows that \(u^* \in \text{GVI}(C, f, \varphi) \) and \(\varphi(u^*) \in \text{Fix}(T) \cap \text{VI}(C, g) \).

Using inequality (13), we can obtain that \(\varphi(u^*) = \text{proj}_C[\varphi(u^*) - \kappa_n f(u^*)] \) for all \(n \geq 0 \).

Since \(f \) is \(\Theta \)-inverse strongly \(\varphi \)-monotone, for any \(u \in C \), we have

\[\begin{align*}
 &||\varphi(u) - \varphi(u')|| - ||\varphi(u') - \varphi(u)||^2 \\
 &= ||\varphi(u) - \varphi(u')||^2 - 2\kappa(f(u) - f(u'), \varphi(u) - \varphi(u')) \\
 &\quad + \kappa^2 ||f(u) - f(u')||^2 \\
 &\leq ||\varphi(u) - \varphi(u')||^2 + \kappa||f(u) - f(u')||^2 \\
 &\leq ||\varphi(u) - \varphi(u')||^2 + \kappa(\kappa - 2\beta)||f(u) - f(u')||^2.
\end{align*} \]

(20)

Based on (20), we deduce

\[\begin{align*}
 &||\varphi(x_n) - \varphi(u') - \kappa_n f(x_n)||^2 \\
 &\leq ||\varphi(x_n) - \varphi(u')||^2 + \kappa_n(\kappa_n - 2\beta)||f(x_n) - f(u')||^2 \\
 &\leq ||\varphi(x_n) - \varphi(u')||^2,
\end{align*} \]

(21)

\[\begin{align*}
 &||\varphi(x_{n+1}) - \varphi(u') - \kappa_{n+1} f(x_{n+1})||^2 \\
 &\leq ||\varphi(x_{n+1}) - \varphi(u')||^2 + \kappa_n(\kappa_n - 2\beta)||f(x_{n+1}) - f(x_n)||^2.
\end{align*} \]

(22)

By (17), (19), and (21), we derive

\[\begin{align*}
 &||u_n - \varphi(u')|| = ||\theta_n \phi(x_n) + (1 - \theta_n) \text{proj}_C[\varphi(x_n) - \kappa_n f(x_n)] \\
 &\quad - \text{proj}_C[\varphi(u') - \kappa_n f(u')]|| \\
 &\quad \leq ||\theta_n \phi(x_n) - \varphi(u') + \kappa_n f(u')|| \\
 &\quad + (1 - \theta_n) ||\varphi(x_n) - \kappa_n f(x_n) - (\varphi(u') - \kappa_n f(u'))|| \\
 &\quad \leq \theta_n ||\phi(x_n) - \varphi(u')|| + \theta_n ||\varphi(u') - \varphi(u')|| \\
 &\quad + \kappa_n(\kappa_n - 2\beta)||f(x_n) - f(u')|| \\
 &\quad - \theta_n \kappa_n f(x_n) - (\varphi(u') - \kappa_n f(u'))|| \\
 &\quad + (1 - \theta_n) \kappa_n f(u') ||f(x_n) - f(u')|| \\
 &\quad \leq \theta_n \rho ||f(x_n) - f(u')|| \\
 &\quad + \theta_n ||f(x_n) - f(u')|| \\
 &\quad - \varphi(u') ||f(x_n) - f(u')|| + \theta_n ||\varphi(u') - \varphi(u') + \kappa_n f(u')|| \\
 &\quad + (1 - \theta_n) ||\varphi(u') - \varphi(u')|| \\
 &\quad = [1 - (1 - \theta_n) \rho] \kappa_n f(x_n) - \varphi(u') + \theta_n ||\varphi(u') - \varphi(u')|| + \theta_n ||\varphi(u') - \varphi(u')|| \\
 &\quad - \varphi(u') + \kappa_n f(u') ||f(x_n) - f(u')|| + \theta_n ||\varphi(u') - \varphi(u')|| + 2\beta ||f(u')||^2.
\end{align*} \]

(23)
According to (21) and (23), we obtain
\[
\|u_n - \varphi(u')\|^2 \leq \| \varphi(x_n) - \varphi(u') + k_n f(u') \| + (1 - \theta_n) \\
\cdot \left[\| \varphi(x_n) - k_n f(x_n) - (\varphi(u') - k_n f(u')) \| \right]^2 \\
\leq \theta_n \| \varphi(x_n) - \varphi(u') + k_n f(u') \|^2 \\
+ (1 - \theta_n) \| \varphi(x_n) - k_n f(x_n) - (\varphi(u') - k_n f(u')) \|^2 \\
\leq \theta_n \| \varphi(x_n) - \varphi(u') + k_n f(u') \|^2 + (1 - \theta_n) \\
\cdot \left[\| \varphi(x_n) - \varphi(u') \| + k_n (k_n - 2\theta) \| f(x_n) - f(u') \| \right]^2.
\] (24)

Applying Lemma 1 to (17), we have
\[
\|v_n - \varphi(u')\|^2 = \|(1 - c_n)u_n + c_n T((1 - \lambda_n)u_n + \lambda_n T(u_n)) - \varphi(u')\|^2 \\
\leq \|u_n - \varphi(u')\|^2 + c_n(1 - \lambda_n)u_n + \lambda_n T(u_n) - u_n\|^2 \\
\leq \|u_n - \varphi(u')\|^2.
\] (25)

Since g is relaxed (μ, v)-cocoercive and L_1-Lipschitz, for all $u, v \in C$, we have
\[
\|(I - g_\gamma g)u - (I - g_\gamma g)v\|^2 \\
= \|u - v\|^2 - 2g_\gamma g_\gamma g(u) - g(v), u - v\| + y_\gamma^2\gamma g(u) - g(v)\|^2 \\
\leq \|u - v\|^2 - 2g_\gamma [\mu_\gamma g_\gamma g(u) - g(v)] + vu - v^2 + y_\gamma^2\gamma g(u) - g(v)\|^2 \\
\leq \|u - v\|^2 + 2\mu_\gamma y_\gamma^2\| u - v \|^2 - 2v - v^2 + y_\gamma^2\gamma g(u) - g(v)\|^2 \\
= (1 + 2\mu_\gamma y_\gamma^2\gamma + 2\gamma_\gamma^2\gamma)\| u - v \|^2.
\] (26)

Since $0 < y_\gamma < 2(\nu - \mu y_\gamma^2\gamma)/L_\gamma^2$, $1 + 2\mu_\gamma y_\gamma^2\gamma + 2\gamma_\gamma^2\gamma \leq 1$. Thus, from (26), we obtain
\[
\|(I - g_\gamma g)u - (I - g_\gamma g)v\|^2 \leq \|u - v\|^2, \quad \forall u, v \in C.
\] (27)

Hence,
\[
\|z_n - \varphi(u')\| = \| \text{proj}_{C}(I - g_\gamma g)y_n - \text{proj}_{C}(I - g_\gamma g)\varphi(u') \| \\
\leq \|(I - g_\gamma g)y_n - (I - g_\gamma g)\varphi(u') \| \\
\leq \|y_n - \varphi(u') \|.
\] (28)

Combining (17), (23), (25), and (28), we obtain
\[
\|\varphi(x_{n+1}) - \varphi(u')\| \leq (1 - \tau_n)\|\varphi(x_n) - \varphi(u')\| + \tau_n\|z_n - \varphi(u')\| \\
\leq (1 - \tau_n)\|\varphi(x_n) - \varphi(u')\| + \tau_n\|u_n - \varphi(u')\| \\
\leq (1 - \tau_n)\|\varphi(x_n) - \varphi(u')\| + \tau_n \\cdot \left[1 - \left(1 - \frac{\rho}{\lambda}\right)\|g_\gamma g_\gamma g - \varphi(u')\| + \tau_n \|g_\gamma g_\gamma g - \varphi(u')\| \right] \\
= \left[1 - \left(1 - \frac{\rho}{\lambda}\right)\|g_\gamma g_\gamma g - \varphi(u')\| \right] \|\varphi(x_n) - \varphi(u')\| \\
+ \left(1 - \frac{\rho}{\lambda}\right)\|g_\gamma g_\gamma g - \varphi(u')\| \|\varphi(x_{n+1}) - \varphi(u')\| + 2\|g_\gamma g_\gamma g\| \|\varphi(u')\| \|u_n - \varphi(u')\| \\
\leq \left[1 - \left(1 - \frac{\rho}{\lambda}\right)\|g_\gamma g_\gamma g - \varphi(u')\| \right] \|\varphi(x_n) - \varphi(u')\| \\
+ \left(1 - \frac{\rho}{\lambda}\right)\|g_\gamma g_\gamma g - \varphi(u')\| \|\varphi(u')\| l \|u_n - \varphi(u')\|.
\] (29)

By induction, we have
\[
\|\varphi(x_n) - \varphi(u')\| \leq \max \left\{ \|\varphi(x_n) - \varphi(u')\|, \frac{\|\varphi(u') - \varphi(u')\| + 2\|f(u')\|}{1 - \rho/\lambda} \right\}.
\] (30)

It follows that
\[
\|x_n - u\|^2 \leq \frac{1}{\lambda} \|\varphi(x_n) - \varphi(u')\|^2 \\
\leq \frac{1}{\lambda} \max \left\{ \|\varphi(x_n) - \varphi(u')\|, \frac{\|\varphi(u') - \varphi(u')\| + 2\|f(u')\|}{1 - \rho/\lambda} \right\}.
\] (31)

So, $\{\varphi(x_n)\}, \{x_n\}, \{y_n\}, \{z_n\}$, and $\{u_n\}$ are bounded. From (17), we have
\[
\varphi(x_{n+1}) - \varphi(x_n) = \tau_n(z_n - \varphi(x_n)), \quad n \geq 0.
\] (32)

It follows that
\[
\langle \varphi(x_{n+1}) - \varphi(x_n), \varphi(x_n) - \varphi(u') \rangle = \tau_n(z_n - \varphi(x_n), \varphi(x_n) - \varphi(u')).
\] (33)

Thanks to (33), we deduce
\[
\|\varphi(x_{n+1}) - \varphi(u')\|^2 - \|\varphi(x_n) - \varphi(u')\|^2 - \|\varphi(x_{n+1}) - \varphi(x_n)\|^2 \\
= \tau_n \|z_n - \varphi(u')\|^2 - \|\varphi(x_n) - \varphi(u')\|^2 - \|z_n - \varphi(x_n)\|^2.
\] (34)

Combining (32) and (34), we obtain
\[
\|\varphi(x_{n+1}) - \varphi(u')\|^2 - \|\varphi(x_n) - \varphi(u')\|^2 \\
= \tau_n \|z_n - \varphi(u')\|^2 - \|\varphi(x_n) - \varphi(u')\|^2 - \|z_n - \varphi(x_n)\|^2 \\
= \tau_n \|z_n - \varphi(u')\|^2 - \|\varphi(x_n) - \varphi(u')\|^2 - \tau_n (1 - \tau_n) \|z_n - \varphi(x_n)\|^2 \\
\leq \tau_n \|u_n - \varphi(u')\|^2 - \|\varphi(x_n) - \varphi(u')\|^2 - \tau_n (1 - \tau_n) \|z_n - \varphi(x_n)\|^2.
\] (35)

By virtue of (23), we get
\[
\|u_n - \varphi(u')\|^2 \leq \left[1 - \left(1 - \frac{\rho}{\lambda}\right)\|g_\gamma g_\gamma g - \varphi(u')\| \right] \|\varphi(x_n) - \varphi(u')\|^2 \\
+ \left(1 - \frac{\rho}{\lambda}\right)\|g_\gamma g_\gamma g - \varphi(u')\| \|\varphi(u')\| l \|u_n - \varphi(u')\|.
\] (36)

Now, we consider two cases.

Case 1. There exists some integer $N_0 > 0$ such that $\{\|\varphi(x_n) - \varphi(u')\|\}$ is decreasing when $n \geq N_0$. Then, $\lim_{n \to \infty} \|\varphi(x_n) - \varphi(u')\|$ exists. According to (35), (36), and (C1), we
have
\[
\begin{align*}
\tau_n(1-t_n)\|z_n - \phi(x_n)\|^2 &\leq \|\phi(x_n) - \phi(u^*)\|^2 - \|\phi(x_{n+1}) - \phi(u^*)\|^2 \\
&\quad + \tau_n(1-t_n)\|u_n - \phi(u^*)\|^2 - \|\phi(x_n) - \phi(u^*)\|^2 \\
&\leq \|\phi(x_n) - \phi(u^*)\|^2 - \|\phi(x_{n+1}) - \phi(u^*)\|^2 \\
&\quad + \left(1 - \frac{\rho_n}{\rho}\right)\|\phi(x_n) - \phi(u^*)\|^2 + \frac{2\theta_n\|\phi(x_n) - \phi(u^*)\|^2}{1 - \rho\lambda} \longrightarrow 0. \tag{37}
\end{align*}
\]

This together with (C4) implies that
\[
\lim_{n \to \infty} \|z_n - \phi(x_n)\| = 0. \tag{38}
\]

Therefore, by (32), we have
\[
\lim_{n \to \infty} \|\phi(x_{n+1}) - \phi(x_n)\| = 0. \tag{39}
\]

By (24), we have
\[
\begin{align*}
\|\phi(x_{n+1}) - \phi(u^*)\|^2 &= \|(1 - \tau_n)(\phi(x_n) - \phi(u^*)) + \tau_n(z_n - \phi(u^*))\|^2 \\
&\leq (1 - \tau_n)\|\phi(x_n) - \phi(u^*)\|^2 + \tau_n\|z_n - \phi(u^*)\|^2 \\
&\leq (1 - \tau_n)\|\phi(x_n) - \phi(u^*)\|^2 + \tau_n\|u_n - \phi(u^*)\|^2 \\
&\leq (1 - \tau_n)\|\phi(x_n) - \phi(u^*)\|^2 + \tau_n\|\phi(x_n) - \phi(u^*)\|^2 \\
&\quad - \|\phi(u^*) + \kappa_n f(u^*)\|^2 + \tau_n(1 - \delta_n)\|\phi(x_n) - \phi(u^*)\|^2 \\
&\leq \|\phi(x_n) - \phi(u^*)\|^2 + \tau_n\|\phi(x_n) - \phi(u^*)\|^2 \\
&\quad + \kappa_n f(u^*)\|^2 + \tau_n(1 - \delta_n)\|\phi(x_n) - \phi(u^*)\|^2 \\
&\quad - \|\phi(u^*)\|^2. \tag{40}
\end{align*}
\]

It results in that
\[
\begin{align*}
\tau_n(1 - \delta_n)\kappa_n(2\theta_n - \kappa_n)\|f(x_n) - f(u^*)\|^2 \\
&\leq \|\phi(x_n) - \phi(u^*)\|^2 - \|\phi(x_{n+1}) - \phi(u^*)\|^2 + \tau_n\|\phi(x_n) - \phi(u^*)\|^2 \\
&\quad - \|\phi(u^*) + \kappa_n f(u^*)\|^2 \\
&\leq (\|\phi(x_n) - \phi(u^*)\|^2 + \|\phi(x_{n+1}) - \phi(u^*)\|^2)\|\phi(x_n) - \phi(u^*)\|^2 \\
&\quad + \tau_n\|\phi(x_n) - \phi(u^*) + \kappa_n f(u^*)\|^2 \longrightarrow 0. \tag{41}
\end{align*}
\]

Hence,
\[
\lim_{n \to \infty} \|f(x_n) - f(u^*)\| = 0. \tag{42}
\]

Set \(v_n = \phi(x_n) - \kappa_n f(x_n) - (\phi(u^*) - \kappa_n f(u^*))\) for all \(n \geq 0\).

Using (13) and (21), we have
\[
\begin{align*}
\|\text{proj}_C[\phi(x_n) - \kappa_n f(x_n)] - \phi(u^*)\|^2 \\
&= \|\text{proj}_C[\phi(x_n) - \kappa_n f(x_n)] - \text{proj}_C[\phi(u^*) - \kappa_n f(u^*)]\|^2 \\
&\leq \langle v_n, \text{proj}_C[\phi(x_n) - \kappa_n f(x_n)] - \phi(u^*) \rangle \\
&= \frac{1}{2} \{\|v_n\|^2 + \|\text{proj}_C[\phi(x_n) - \kappa_n f(x_n)]\|^2 \}
\end{align*}
\]

\[
\begin{align*}
&\quad - \|\phi(u^*)\|^2 - \|\phi(x_n) - \kappa_n f(x_n)\| - \kappa_n(f(x_n) - f(u^*))\|^2 \\
&\leq \frac{1}{2} \{\|\phi(x_n) - \phi(u^*)\|^2 + \|\text{proj}_C[\phi(x_n) - \kappa_n f(x_n)]\|^2 \}
\end{align*}
\]

\[
\begin{align*}
&\quad - \|\phi(u^*)\|^2 - \|\phi(x_n) - \kappa_n f(x_n)\| - \kappa_n(f(x_n) - f(u^*))\|^2 \\
&\quad - \kappa_n\|f(x_n) - f(u^*)\|^2 + 2\kappa_n(f(x_n) - \text{proj}_C[\phi(x_n) - \kappa_n f(x_n)])\|f(x_n) - \text{proj}_C[\phi(x_n) - \kappa_n f(x_n)]\|f(x_n) - f(u^*)\rangle.
\end{align*}
\]

In the light of (17) and (44), we have
\[
\begin{align*}
\|u_n - \phi(u^*)\|^2 &\leq \delta_n\|\phi(x_n) - \phi(u^*)\|^2 + (1 - \delta_n)\|\phi(x_n) - \phi(u^*)\|^2 \\
&\leq \delta_n\|\phi(x_n) - \phi(u^*)\|^2 + (1 - \delta_n)\|\phi(x_n) - \phi(u^*)\|^2 \\
&\quad - \|\phi(u^*)\|^2 + 2\kappa_n\|\phi(x_n) - \text{proj}_C[\phi(x_n) - \kappa_n f(x_n)]\|^2 \\
&\quad - \|\phi(x_n) - \text{proj}_C[\phi(x_n) - \kappa_n f(x_n)]\|^2 \|f(x_n) - \text{proj}_C[\phi(x_n) - \kappa_n f(x_n)]\|^2. \tag{45}
\end{align*}
\]

Based on (40) and (45), we obtain
\[
\begin{align*}
\|\phi(x_{n+1}) - \phi(u^*)\|^2 \leq (1 - \tau_n)\|\phi(x_n) - \phi(u^*)\|^2 + \tau_n\|u_n - \phi(u^*)\|^2 \\
&\leq \|\phi(x_n) - \phi(u^*)\|^2 + \tau_n\|\phi(x_n) - \phi(u^*)\|^2 \\
&\quad - \|\phi(u^*)\|^2 + \tau_n(1 - \delta_n)\|\phi(x_n) - \phi(u^*)\|^2 \\
&\quad + 2\tau_n\kappa_n\|\phi(x_n) - \text{proj}_C[\phi(x_n) - \kappa_n f(x_n)]\|^2 \|f(x_n) - \text{proj}_C[\phi(x_n) - \kappa_n f(x_n)]\|^2. \tag{46}
\end{align*}
\]

Then,
\[
\begin{align*}
\tau_n(1 - \delta_n)\|\phi(x_n) - \text{proj}_C[\phi(x_n) - \kappa_n f(x_n)]\|^2 \\
&\leq (\|\phi(x_n) - \phi(u^*)\|^2 + \|\phi(x_{n+1}) - \phi(u^*)\|^2)\|\phi(x_n) - \phi(u^*)\|^2 \\
&\quad - \|\phi(x_n)\|^2 + \tau_n(1 - \delta_n)\|\phi(x_n) - \phi(u^*)\|^2 \\
&\quad + 2\tau_n\kappa_n\|\phi(x_n) - \text{proj}_C[\phi(x_n) - \kappa_n f(x_n)]\|^2 \|f(x_n) - \text{proj}_C[\phi(x_n) - \kappa_n f(x_n)]\|^2. \tag{47}
\end{align*}
\]
According to (C1), (C4), (39), (42), and (47), we deduce

\[\lim_{n \to \infty} \| \varphi(x_n) - \text{proj}_C[\varphi(x_n) - \kappa_n f(x_n)] \| = 0. \]

(48)

Since \(u_n - \varphi(x_n) = (1 - \beta_n)(\text{proj}_C[\varphi(x_n) - \kappa_n f(x_n)] - \varphi(x_n)) \), from (38), (39), and (48), we have

\[\lim_{n \to \infty} \| \varphi(x_n) - u_n \| = \lim_{n \to \infty} \| \varphi(x_{n+1}) - u_n \| = \lim_{n \to \infty} \| z_n - u_n \| = 0. \]

(49)

From (26) and (28), we get

\[\| z_n - \varphi(u^\tau) \|^2 \leq \| y_n - \varphi(u^\tau) \|^2 - 2 \gamma_n \langle \mu \|g(y_n) - g(\varphi(u^\tau)) \|, \| y_n - \varphi(u^\tau) \| \rangle + \| y_n - \varphi(u^\tau) \|^2 \]

\[+ \nu \| y_n - \varphi(u^\tau) \|^2 \]

\[= \| y_n - \varphi(u^\tau) \|^2 + \left(2 \gamma_n \mu + \gamma_n^2 \right) \| g(y_n) - g(\varphi(u^\tau)) \|^2 \]

\[- \| \varphi(u^\tau) \|^2 + \| y_n - \varphi(u^\tau) \|^2 \]

\[- \| y_n - \varphi(u^\tau) \|^2 + \left(2 \gamma_n \mu + \gamma_n^2 \right) \| g(y_n) - g(\varphi(u^\tau)) \|^2. \]

(50)

It follows that

\[\| \varphi(x_{n+1}) - \varphi(u^\tau) \|^2 \leq (1 - \tau_n) \| \varphi(x_n) - \varphi(u^\tau) \|^2 + \tau_n \| u_n - \varphi(u^\tau) \|^2 + \tau_n \left(2 \gamma_n \mu + \gamma_n^2 \right) \| g(y_n) - g(\varphi(u^\tau)) \|^2 \]

\[\leq (1 - \tau_n) \| \varphi(x_n) - \varphi(u^\tau) \|^2 - \| \varphi(x_{n+1}) - \varphi(u^\tau) \|^2 \]

\[+ \tau_n \left(2 \gamma_n \mu + \gamma_n^2 \right) \| g(y_n) - g(\varphi(u^\tau)) \|^2 \to 0. \]

(51)

which together with (49) implies that

\[\lim_{n \to \infty} \| g(y_n) - g(\varphi(u^\tau)) \| = 0. \]

(53)

Since proj\(_C\) is firmly nonexpansive, from (12) and (28), we have

\[\| z_n - \varphi(u^\tau) \|^2 = \| \text{proj}_C[(1 - \gamma_n)u_n - \lambda_n T(u_n)] - u_n \|^2 \]

\[\leq \| (1 - \gamma_n)u_n - \lambda_n T(u_n) - u_n \|^2 \]

\[\leq \| (1 - \gamma_n)u_n - \varphi(u^\tau) \|^2 + 2 \| y_n - \varphi(u^\tau) \| \| y_n - \varphi(u^\tau) \| + \| y_n - \varphi(u^\tau) \|^2 \]

(60)

In view of (25) and (59), we get

\[\| y_n - u_n \|^2 \leq \| u_n - \varphi(u^\tau) \|^2 + \| y_n - \varphi(u^\tau) \|^2 \]

\[\leq \| y_n - \varphi(u^\tau) \|^2 + \| y_n - \varphi(u^\tau) \|^2 + \| y_n - \varphi(u^\tau) \|^2 \to 0. \]

(61)
Since T is L_2-Lipschitz, we have
\[
\|T(u_n) - u_n\| \leq \|T(u_n) - T[(1 - \lambda_n)u_n + \lambda_n T(u_n)]\| + \|T[(1 - \lambda_n)u_n + \lambda_n T(u_n)] - u_n\| \leq \lambda_n L_2\|T(u_n) - u_n\|.
\]

Hence,
\[
\|T(u_n) - u_n\| \leq \frac{1}{1 - \lambda_n L_2}\|T[(1 - \lambda_n)u_n + \lambda_n T(u_n)] - u_n\|.
\]

Owing to (C2), (61) and (63), we deduce
\[
\lim_{n \to \infty} \|T(u_n) - u_n\| = 0.
\]

Next, we show that \(\limsup_{n \to \infty} (\phi(u') - \phi(y'), u_n - \phi(u')) \leq 0\). Let \(u_n\) be a subsequence of \(\{u_n\}\) such that
\[
\limsup_{n \to \infty} (\phi(u') - \phi(y'), u_n - \phi(u')) = \lim_{n \to \infty} (\phi(u') - \phi(y'), u_n - \phi(u')).
\]

Since \(\{x_n\}\) is bounded, there exists a subsequence \(\{x_{n_i}\}\) of \(\{x_n\}\) which converges weakly to some point \(z \in C\). Without loss of generality, we may assume that \(x_{n_i} \to z\). This implies that \(\phi(z) = \phi(z_{n_i})\) due to the weak continuity of \(\phi\). Thus, \(u_{n_i} - \phi(z), y_{n_i} - \phi(z)\), and \(z_{n_i} - \phi(z)\). Applying Lemma 2 to (64) to deduce \(\phi(z) \in \text{Fix}(T)\).

Now, we show that \(\phi(z) \in \text{VI}(C, g)\). Let
\[
S_1(v) = \begin{cases}
g(v) + N_C v, & v \in C, \\
\& \& \\
\emptyset, & v \notin C.
\end{cases}
\]

Since \(g\) is relaxed \((\mu, v)\)-cocoercive, for all \(x, y \in C\), we have
\[
\langle g(x) - g(y), x - y \rangle \geq (-\mu)\|g(x) - g(y)\|^2 + v\|x - y\|^2 \geq (v - \mu L^2)\|x - y\|^2 \geq 0,
\]

which implies that \(g\) is monotone and so \(S_1\) is maximal monotone. Let \((v, u) \in G(S_1)\). Owing to \(u - g(v) \in N_C v\) and \(z \in C\), we get
\[
\langle v - z_n, u - g(v) \rangle \geq 0.
\]

According to \(z_n = \text{proj}_C(I - y_n g) y_n\), we obtain
\[
\langle v - z_n, z_n - (I - y_n g) y_n \rangle \geq 0.
\]

Then,
\[
\langle v - z_n, \frac{z_n - y_n}{y_n} + g(y_n) \rangle \geq 0.
\]

It follows that
\[
\langle v - z_n, u \rangle \geq \langle v - z_n, g(v) - g(z_n) \rangle + \langle v - z_n, g(z_n) - g(y_n) \rangle - \langle v - z_n, \frac{z_n - y_n}{y_n} \rangle \leq 0.
\]

Since \(z_n \to \phi(z)\), \(\|z_n - y_n\| \to 0\), it follows from (71) that \(\langle v - \phi(z), u \rangle \geq 0\). Therefore, \(\phi(z) \in S_{1_i}(0)\) and \(\phi(z) \in \text{VI}(C, g)\).

Next, we prove \(z \in \text{GVI}(C, f, \phi)\). Let
\[
S_2(v) = \begin{cases}
f(v) + N_C v, & v \in C, \\
\emptyset, & v \notin C.
\end{cases}
\]

It is known that \(S_2\) is maximal \(\varphi\)-monotone. Let \((v, w) \in G(S_2)\). Since \(w - f(v) \in N_C(v)\) and \(x_n \in C\), we have \(\langle \varphi(v) - \varphi(x_n), w - f(v) \rangle \geq 0\). Set \(w_n = \text{proj}_C(\varphi(x_n) - \kappa_n f(x_n))\). Then,
\[
\langle \varphi(v) - w_n, w_n - [\varphi(x_n) - \kappa_n f(x_n)] \rangle \geq 0.
\]

It follows that
\[
\langle \varphi(v) - w_n, \frac{w_n - \varphi(x_n)}{\kappa_n} + f(x_n) \rangle \geq 0.
\]

Thus,
\[
\langle \varphi(v) - \varphi(x_n), w \rangle \geq \langle \varphi(v) - \varphi(x_n), f(v) - f(x_n) \rangle + \langle \varphi(v) - \varphi(x_n), f(x_n) \rangle - \langle \varphi(v) - w_n, \frac{w_n - \varphi(x_n)}{\kappa_n} \rangle - \langle \varphi(v) - w_n, f(x_n) \rangle \geq 0.
\]

Since \(\|\varphi(x_n) - w_n\| \to 0\) and \(\varphi(x_n) \to \phi(z)\), we deduce that \(\langle \varphi(v) - \varphi(z), w \rangle \geq 0\) by taking \(i \to \infty\) in (75). Thus, \(z \in S_{1_i}(0)\) by the maximal \(\varphi\)-monotonicity of \(S_2\). Hence, \(z \in \text{GVI}(C, f, \phi)\). Therefore, \(z \in \varphi^{-1}(\text{Fix}(T) \cap \text{VI}(C, g)) \cap \text{GVI}(C, f, \phi) = \emptyset\).
From (49) and (65), we obtain
\[
\limsup_{n \to \infty} (\phi(u^n) - \phi(u^0), u_n - \phi(u^0)) = \lim_{i \to \infty} (\phi(u^i) - \phi(u^0), \varphi(x_n) - \phi(u^0)) = (\phi(u^i) - \phi(u^0), \varphi(z) - \phi(u^0)) \leq 0.
\] (76)

By (17), we have
\[
\|u_n - \phi(u^0)\|^2 = \|\theta_n(\varphi(x_n) - \phi(u^0)) + (1 - \theta_n) \cdot (\pi_x(\varphi(x_n) - \kappa_n f(x_n)) - \phi(u^0))\|^2 \\
\leq (1 - \theta_n)^2 \|\pi_x(\varphi(x_n) - \kappa_n f(x_n)) - \phi(u^0)\|^2 + 2\theta_n (\varphi(x_n) - \phi(u^0), u_n - \phi(u^0)) \\
\leq (1 - \theta_n)^2 \|\varphi(x_n) - \phi(u^0)\|^2 + 2\theta_n (\varphi(x_n) - \phi(u^0), u_n - \phi(u^0)) \\
\leq (1 - \theta_n)^2 \|\varphi(x_n) - \phi(u^0)\|^2 + 2\theta_n \|\varphi(x_n) - \phi(u^0), u_n - \phi(u^0)\|^2 + 2\theta_n \|\varphi(x_n) - \phi(u^0), u_n - \phi(u^0)\|^2 \\
\leq (1 - \theta_n)^2 \|\varphi(x_n) - \phi(u^0)\|^2 + 2\theta_n \|\varphi(x_n) - \phi(u^0), u_n - \phi(u^0)\|^2 + 2\theta_n \|\varphi(x_n) - \phi(u^0), u_n - \phi(u^0)\|^2.
\] (77)

It follows that
\[
\|u_n - \phi(u^0)\|^2 \leq \left[1 - \frac{2(1 - \rho/l)\theta_n}{1 - \theta_n \rho/l} \right] \|\varphi(x_n) - \phi(u^0)\|^2 \\
+ \frac{\theta_n}{1 - \theta_n \rho/l} \|\varphi(x_n) - \phi(u^0)\|^2 \\
+ \frac{2\theta_n}{1 - \theta_n \rho/l} (\varphi(u^0) - \phi(u^0), u_n - \phi(u^0)).
\] (78)

Set \(M = \sup_n \|\varphi(x_n) - \phi(u^0)\|^2 \). Therefore,
\[
\|\varphi(x_{n+1}) - \phi(u^0)\|^2 \leq (1 - r_n) \|\varphi(x_n) - \phi(u^0)\|^2 + r_n \|\varphi(u^0) - \phi(u^0)\|^2 \\
\leq \left[1 - \frac{2(1 - \rho/l)\theta_n}{1 - \theta_n \rho/l} \right] \|\varphi(x_n) - \phi(u^0)\|^2 \\
+ \frac{\theta_n}{1 - \theta_n \rho/l} \|\varphi(x_n) - \phi(u^0)\|^2 \\
+ \frac{2\theta_n}{1 - \theta_n \rho/l} (\varphi(u^0) - \phi(u^0), u_n - \phi(u^0)) \\
= \left[1 - \frac{2(1 - \rho/l)\theta_n}{1 - \theta_n \rho/l} \right] \|\varphi(x_n) - \phi(u^0)\|^2 + \frac{2(1 - \rho/l)\theta_n}{1 - \theta_n \rho/l} \|\varphi(u^0) - \phi(u^0), u_n - \phi(u^0)\|^2 \\
\times \left\{ \frac{\theta_n}{2(1 - \rho/l) M + \frac{1}{1 - \rho/l} (\varphi(u^0) - \phi(u^0), u_n - \phi(u^0))} \right\}.
\] (79)

By Lemma 3 and (79), we conclude that \(\varphi(x_n) \to \varphi(u^0) \) and \(x_n \to u^0 \).

Case 2. For any \(N \), there exists an integer \(n_0 > N \) such that \(\|\varphi(x_{n_0}) - \phi(u^0)\| \leq \|\varphi(x_{n_0+1}) - \phi(u^0)\| \). Let \(\psi_n = \|\varphi(x_n) - \phi(u^0)\|^2 \). Then, we have \(\psi_n \leq \psi_{n+1} \). Let \(\{\mu_n\} \) be an integer sequence defined by, for all \(n \geq n_0 \),
\[
\mu(n) = \max \{ l \in \mathbb{N} | n \leq l \leq n, \psi_l \leq \psi_{l+1} \}.
\] (80)

Note that \(\mu(n) \) is nondecreasing and satisfies \(\lim_{n \to \infty} \mu(n) = \infty \) and \(\psi_{\mu(n)} \leq \psi_{\mu(n)+1} \) \(\forall n \geq n_0 \).

Similarly, we can deduce
\[
\limsup_{n \to \infty} (\phi(u^0) - \phi(u^0), u_{\mu(n)} - \phi(u^0)) \leq 0 \] (81)
\[
\psi_{\mu(n)+1} \leq \left[1 - \frac{2(1 - \rho/l)\theta_n}{1 - \theta_n \rho/l} \right] \|\varphi(x_n) - \phi(u^0)\|^2 + \frac{2(1 - \rho/l)\theta_n}{1 - \theta_n \rho/l} \|\varphi(u^0) - \phi(u^0), u_n - \phi(u^0)\|^2 \\
\times \left\{ \frac{\theta_n}{2(1 - \rho/l) M + \frac{1}{1 - \rho/l} (\varphi(u^0) - \phi(u^0), u_n - \phi(u^0))} \right\}.
\] (82)

Note that \(\psi_{\mu(n)} \leq \psi_{\mu(n)+1} \). By (82), we have
\[
\psi_{\mu(n)} \leq \frac{\theta_n}{2(1 - \rho/l) M + \frac{1}{1 - \rho/l} (\varphi(u^0) - \phi(u^0), u_n - \phi(u^0))}.
\] (83)

Based on (81) and (83), we derive
\[
\limsup_{n \to \infty} \psi_{\mu(n)} \leq 0,
\] and thus,
\[
\lim_{n \to \infty} \psi_{\mu(n)} = 0.
\] (85)

From (81) and (82), we can deduce
\[
\limsup_{n \to \infty} \psi_{\mu(n)+1} \leq \limsup_{n \to \infty} \psi_{\mu(n)}.
\] (86)

This together with (85) implies that
\[
\lim_{n \to \infty} \psi_{\mu(n)+1} = 0.
\] (87)

By Lemma 4, we obtain
\[
0 \leq \psi_{\mu(n)} \leq \max \left\{ \psi_{\mu(n)}, \psi_{\mu(n)+1} \right\}.
\] (88)

Therefore, \(\psi_{\mu(n)} \to 0 \). That is, \(\varphi(x_n) \to \varphi(u^0) \) and thus \(x_n \to u^0 \). This completes the proof.

In Algorithm 5, choose \(\varphi = I \), identity operator, and \(f : C \to H \) is a \(\Phi \)-inverse strongly monotone operator. Then, we have the following algorithm and corollary.
Algorithm 7. Let \(x_0 \in C \) be an initial value. Define the sequence \(\{x_n\} \) by the following form:

\[
\begin{align*}
u_n &= \theta_n \phi(x_n) + (1 - \theta_n) \text{proj}_C[x_n - \kappa_n f(x_n)], \\
y_n &= (1 - c_n) u_n + c_n T[(1 - \lambda_n) u_n + \lambda_n T(u_n)], \\
z_n &= \text{proj}_C[y_n - \gamma_n g(y_n)], \\
x_{n+1} &= (1 - \tau_n) x_n + \tau_n z_n, \quad n \geq 0.
\end{align*}
\]

(89)

Corollary 8. Suppose that \(\Theta_1 = VI(C, f) \cap VI(C, g) \cap \text{Fix}(T) \neq \emptyset \). Assume that conditions (C1)-(C5) are satisfied. Then, the sequence \(\{x_n\} \) generated by (89) converges strongly to \(v^* = \text{proj}_\Theta \phi(v^*) \).

Algorithm 9. Let \(x_0 \in C \) be an initial value. Define the sequence \(\{x_n\} \) by the following form:

\[
\begin{align*}
u_n &= \theta_n \phi(x_n) + (1 - \theta_n) \text{proj}_C[\phi(x_n) - \kappa_n f(x_n)], \\
z_n &= \text{proj}_C[\nu_n - \gamma_n g(u_n)], \\
\phi(x_{n+1}) &= (1 - \tau_n) \phi(x_n) + \tau_n z_n, \quad n \geq 0.
\end{align*}
\]

(90)

Corollary 10. Suppose that \(\Theta_2 := GVI(C, f, g) \cap \phi^{-1}(VI(C, g)) \neq \emptyset \). Assume that conditions (C1) and (C3)-(C5) are satisfied. Then, the sequence \(\{x_n\} \) generated by (90) converges strongly to \(u^* \in \Theta_2 \), verifying

\[
\langle \phi(u^*), \phi(u^*) - \phi(x^*) \rangle \leq 0, \quad \forall x^* \in \Theta_2.
\]

(91)

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

Li-Jun Zhu was supported by the National Natural Science Foundation of China (grant number 11861003) and the Natural Science Foundation of Ningxia Province (grant numbers NZ17015 and NYXYLK2017B09).

References

Y. Yao, H. Li, and M. Postolache, "Iterative algorithms for split equilibrium problems of monotone operators and fixed point problems of pseudo-contractions," Optimization, 2020.

