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In this paper, we investigate the 3D incompressible chemotaxis-Euler equations. Taking advantage of the structure of axisymmetric
fluids, we establish the blowup criterion of the system using the Fourier localization method.

1. Introduction

The effect of oxygen attraction on the emergence of biocon-
vective patterns is studied in [1, 2]. Some experiments, such
as a colony of Bacillus subtilis suspending in a drop of water,
are carried out to identify this phenomenon. From paper [3–
6], we can also find the important role of chemotaxis between
sperm and eggs. The following model, in [1], is introduced to
analyze the above phenomenon:

nt + u · ∇n = Δn + χ∇· n∇ Δð Þ−1c� �
+ κn − μn2, n x, 0ð Þ, x ∈ d:

ð1Þ

Here, n and u represent the concentration of bacteria
and the velocity field of the transported water, respectively.
Besides, the vector field u is divergence free and indepen-
dent of n. The equation describes the evolution of the bac-
teria transported by the velocity field of the fluid.
Moreover, these cells are attracted by the oxygen concen-
tration generated by chemotaxis. For the term χ∇·ðn∇
ðΔÞ−1cÞ, χ > 0 is a parameter controlling the influence of
the chemotactic effect. In addition, κ is the strength
growth rate of the population and μ is a parameter regu-
lating death by overcrowding.

Apart from Equation (1), there are a lot of other models
illustrating the procedure of oxygen attraction in biology.
An increasing number of mathematicians studied the process
in the past years, see [7–15]. Our aim in this paper is to fur-
ther explore model (1), combined with an oxygen equation
and a Navier-Stokes equation, see [16]. Then, we obtain the
following model in d, d = 2, 3,

nt + u · ∇n = Δn − χ∇· n∇cð Þ + κn − μn2,
ct + u · ∇c = Δc − nc,
ut + u · ∇ð Þu−∇P = ηΔu − n∇Φ,
∇·u = 0,
n 0, xð Þ = n0 xð Þ, c 0, xð Þ = c0 xð Þ, u 0, xð Þ = u0 xð Þ:

8>>>>>>>><
>>>>>>>>:

ð2Þ

The unknowns are n, c, u, and P, standing for the bacte-
ria, the oxygen, the velocity field, and the pressure of the fluid
separately. The third equation of the above system contained
an extra force, buoyancy, which is produced by the density
and a given gravitational potential Φ. η is the dissipation
coefficient. If κ = μ = 0 and η > 0, the global existence of weak
solutions in 2 was shown in [8, 12].
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In this paper, we choose χ = κ = μ = 1 and η = 0, then (2)
can be changed into the following one:

nt + u · ∇n = Δn−∇ · n∇cð Þ + n − n2,
ct + u · ∇c = Δc − nc,
ut + u · ∇ð Þu−∇P = −n∇Φ,
∇·u = 0,
n 0, xð Þ = n0 xð Þ, c 0, xð Þ = c0 xð Þ, u 0, xð Þ = u0 xð Þ:

8>>>>>>>><
>>>>>>>>:

ð3Þ

The Euler equation is shown as the following form:

ut + u · ∇u+∇P = 0,
∇·u = 0,
u 0, xð Þ = u0 xð Þ:

8>><
>>: ð4Þ

In three dimensional space, the vorticity equation has the
form

ωt + u · ∇ω = ω · ∇u: ð5Þ

But the chief difficulty is we are lacking information on
the vortex-stretching term ω · ∇u. Although the global exis-
tence of classical solutions for the 3D Euler equation is an
open problem, some known results are obtained under the
circumstances of axisymmetric flows without swirl. That a
vector field u is axisymmetric without swirl is defined as
follows:

u t, xð Þ = ur t, r, zð Þer + uz t, r, zð Þez , x = x1, x2, zð Þ, r = x21 + x22
� �1/2,

ð6Þ

where ðer , eθ, ezÞ is the cylindrical basis of 3 and the compo-
nents ur and uz do not depend on the angular variable. With
this structure, vorticity takes the form

ω = ∂zu
r − ∂ru

zð Þeθ ≔ ωθeθ ð7Þ

and satisfies

∂tω + u · ∇ω = ur

r
ω: ð8Þ

Hence, the quantity Γ≔ ωθ/r obeys to the equation

∂tΓ + u · ∇Γ = 0: ð9Þ

The goal of this paper is to build the blowup criterion of
smooth solutions for (3) by the Fourier localization tech-
nique. Here, we follow ideas introduced in [17–21]. Our
result reads as the following:

Theorem 1. For s > 3, suppose the triple ðn0, c0, u0Þ ∈Hs ×
Hs+1 ×Hs+1 and Φ ∈Hs+2. Let u0 be an axisymmetric

divergence-free vector field and its vorticity satisfies ω0/r ∈
L3,1. Assume that

n ∈ C 0, T½ � ;Hsð Þ ∩ L2 0, T½ � ;Hs+1� �
,

c ∈ C 0, T½ � ;Hs+1� �
∩ L2 0, T½ � ;Hs+2� �

,

u ∈ C 0, T½ � ;Hs+1� � ð10Þ

are the smooth solutions to (3). If the condition

ðT
0

∥n τð Þ∥2B0
∞,1

� �
dτ <∞ ð11Þ

holds true, then the solutions ðn, c, uÞ can be extended beyond
T > 0.

Remark 2. In paper [20], a regularity criterion in terms of two
items is established. But in Theorem 1, we give a different cri-
terion using the only bacteria concentration in 3. The bacte-
ria concentration plays a more important role in this model,
and the nonlinear term −∇ · ðn∇cÞ is difficult to estimate.
Hence, using bacteria concentration to show the regularity
is natural and physical.

Notation. Throughout the paper, C means a harmless con-
stant and may vary from line to line; CT denotes a constant
C relating to T ; ∥·∥p stands for the norm of the Lebesgue space
Lp.

2. Preliminaries

In this section, we give the definition of some function spaces
and recall some useful lemmas.

Firstly, we use the dynamic partition of the unity to give
the definition of Besov spaces. One may check [22] for exact
details. Let φ ∈ C∞

0 ðdÞ be set in C = fξ ∈ d, 3/4≤∣ξ∣≤8/3g
satisfying

〠
q∈Z

φ 2−qξð Þ = 1, for ξ ≠ 0: ð12Þ

Let χðξÞ = 1 −∑q∈Nφð2−qξÞ. For f ∈ S′, Littlewood-Paley
operators are defined as follows:

Δ−1 f = χ Dð Þf ;∀q ∈ Δq f = φ 2−qDð Þf and∀q ∈ _Δq f = φ 2−qDð Þf :
ð13Þ

The low-frequency cut-offs are denoted:

Sq f = 〠
−1≤q′≤q−1

Δq′ f ,

_Sq f = 〠
q′≤q−1

_Δq′f :
ð14Þ

Now, we introduce the definition of the Besov space. For
s ∈ℝ, 1 ≤ p, r ≤∞, the homogenous Besov space _B

s
p,r is
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defined as the set of tempered distributions of f ∈ S ′/P
satisfying

fk k _B
s
p,r
≔ 〠

q∈Z
2qsr _Δq f
��� ���r

p

 !1/r

<∞, ð15Þ

where P is the polynomial space. The inhomogeneous space
Bs
p,r is the set of tempered distribution f with the norm

fk kBs
p,r
≔ 〠

q≥−1
2qsr Δq f
�� ��r

p

 !1/r

<∞: ð16Þ

It is worthwhile to remark that Bs
2,2 and Bs

∞,∞ coincide
with the usual Sobolev spaces Hs and the usual Hölder space
Cs for s ∈ℝ \ℤ, respectively.

In our study, we require the space-time Besov spaces as
the following manner: for T > 0 and ρ ≥ 1, we denote by LρT
Bs
p,r the set of all tempered distribution f such that

fk kLρTBs
p,r
≜ 〠

q∈ℤ
2qsr _Δq f
��� ���r

Lp ℝdð Þ

 !1/r�����
�����
LρT

<∞: ð17Þ

Lemma 3 (see [22]). Let 1 ≤ p ≤ q ≤∞. Suppose that f ∈ Lp,
then there exists a constant C independent of f , j such that

sup pf̂ ⊂ ∣ξ∣≤C2j
� �

⇒ ∥∂α f ∥q ≤ C2j∣α∣+dj 1/p−1/qð Þ∥f ∥p,

sup pf̂ ⊂
1
C
2j≤∣ξ∣≤C2j

	 

⇒ ∥f ∥p ≤ C2−j∣α∣ sup

∣β∣=∣α∣
∥∂β f ∥p:

ð18Þ

Lemma 4 (see [22]). There exists a constant C > 0 such that
for s > 0, we have

∥uv∥Hs ≤ C∥u∥∞∥v∥Hs + C∥u∥Hs∥v∥∞: ð19Þ

Lemma 5 (see [23]). Let u be a solution of the transport
equation

ut + v · ∇u = 0,
u x, 0ð Þ = u0,

(
ð20Þ

and define Rq ≔ v · ∇Δqu − Δqðv · ∇uÞ, 1 ≤ p ≤ p1 ≤∞, 1 ≤ r

≤∞, and s ∈ such that s > −d min ð1/p1, 1/p′Þðor s>−1 − d
min ð1/p1, 1/p′Þ if div v = 0Þ: There exists a sequence cq ∈
ℓrðℤÞ such that ∥cq∥ℓr = 1 and a constant C depending only
on d, r, s, p, and p1, which satisfy

∀q ∈ℤ, 2qs∥Rq∥p ≤ CcqZ ′ tð Þ∥u∥Bs
p,r
, ð21Þ

with

Z ′ tð Þ≔
∥∇v∥

Bd/p1p1 ,∞∩L∞ , if s < 1 + d
p1

,

∥∇v∥Bs−1p1 ,r
, if either s > 1 + d

p1
or s = 1 + d

p1
for r = 1:

8>>><
>>>:

ð22Þ

Lemma 6 (see [24]). Let ½p, r� ∈ ½1,∞�2, v be a divergence-free
vector-field belonging to the space L1locðℝ+ ; LipðℝdÞ and let a
be a smooth solution of the following transport equation:

at + v · ∇a = f ,
a x, 0ð Þ = a0:

(
ð23Þ

If the initial data a0 ∈ B0
p,r , then we have for all t ∈ +ℝ

∥a∥~L∞t B0
p,r
≤ C ∥a0∥B0

p,r
+∥f ∥~L1t B0

p,r

� �
1 +
ðt
0
∥∇v τð Þ∥L∞dτ

� �
:

ð24Þ

3. Proof of Theorems

3.1. Local Well-Posedness. We construct the following
smoothing system:

nkt + uk · ∇nk = Δnk−∇ · nk∇ck
� �

+ nk − nk
� �2

, k ∈N ,

ckt + uk · ∇ck = Δck − cknk,

ukt + uk · ∇
� �

uk−∇Pk = Δuk + nk∇Φ,

∇·uk = 0,

nk, ck, uk
� �




t=0
= Skn

0, Skc0, Sku0
� �

:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð25Þ

Step 1. Uniform boundedness.

Taking the operation Δq with q ≥ −1 on the first equation
of (25), we obtain

Δqn
k
t + Δq uk · ∇nk

� �
= ΔΔqn

k−∇ · Δq nk∇ck
� �

+ Δqn
k − Δq nk

� �2
:

ð26Þ
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Making the L2-inner product for (26) with Δqn
k yields

1
2
d
dt

∥Δqn
k∥22+∥∇Δqn

k∥22 = −
ð
ℝd
Δq uk · ∇nk
� �

Δqn
kdx

−
ð
ℝd
∇·Δq nk∇ck

� �
Δqn

kdx +
ð
ℝd
Δqn

kΔqn
kdx

−
ð
ℝd
Δq nk
� �2

Δqn
kdx ≤ ∥Δq uk · ∇nk

� �
∥2∥Δqn

k∥2+∥Δq

� nk∇ck
� �

∥2∥∇Δqn
k∥2+∥Δqn

k∥22+∥Δq nk
� �2

∥2∥Δqn
k∥2:

ð27Þ

Multiplying 22qs on both sides of the above inequality,
then taking the ℓ1 norm, using Hölder’s inequality and
Young’s inequality together with Lemma 4, we have

1
2
d
dt

∥nk∥2Hs+∥nk∥2Hs+1 ≤ ∥uk · ∇nk∥Hs∥nk∥Hs+∥nk∇ck∥Hs∥nk∥Hs+1

+∥nk∥2Hs+∥ nk
� �2

∥Hs∥nk∥Hs ≤ C∥uk∥Hs∥nk∥Hs+1∥nk∥Hs

+ C∥nk∥Hs∥ck∥Hs+1∥nk∥Hs+1+∥nk∥2Hs + C∥nk∥2Hs∥nk∥Hs

≤ C∥uk∥2Hs∥nk∥2Hs + 1
8 ∥n

k∥2Hs+1 + C∥nk∥2Hs∥ck∥2Hs+1

+ 1
8 ∥n

k∥2Hs+1+∥nk∥2Hs + C ∥nk∥4Hs+∥nk∥2Hs

� �
:

ð28Þ

Then, we conclude

d
dt

∥nk∥2Hs+∥nk∥2Hs+1 ≤ C ∥uk∥2Hs∥nk∥2Hs+∥nk∥2Hs∥ck∥2Hs+1+∥nk∥2Hs+∥nk∥4Hs

� �
:

ð29Þ

In a similar way to (29), we obtain

1
2
d
dt

∥ck∥2Hs+1+∥ck∥2Hs+2 ≤ C∥uk∥2Hs+1∥ck∥2Hs+1

+ 1
8 ∥c

k∥2Hs+2 + C∥ck∥4Hs+1 + 1
8 ∥n

k∥2Hs+1 :

ð30Þ

Thus, we have

d
dt

∥ck∥2Hs+1+∥ck∥2Hs+2 ≤ C ∥uk∥2Hs+1∥ck∥2Hs+1+∥ck∥4Hs+1

� �
+ 1
8 ∥n

k∥2Hs+1 :

ð31Þ

Operating Δq with q ≥ −1 to the third equation of (25)
implies

Δqu
k
t + uk · ∇
� �

Δqu
k−∇ΔqP

k = uk · ∇
� �

Δqu
k

− Δq uk · ∇
� �

uk
� �

− Δq nk∇Φ
� �

:
ð32Þ

Taking the L2-inner product for the above equality with

Δqu
k gives

1
2
d
dt

∥Δqu
k∥22 =

ð
ℝd

uk · ∇
� �

Δqu
k − Δq uk · ∇

� �
uk

� �� �
Δqu

kdx

−
ð
ℝd
Δq nk∇Φ
� �

Δqu
kdx ≤ ∥ uk · ∇

� �
Δqu

k

− Δq uk · ∇
� �

uk
� �

∥2∥Δqu
k∥2+∥Δq nk∇Φ

� �
∥2∥Δqu

k∥2:

ð33Þ

Multiplying 22qðs+1Þ on both sides of the above inequality
and taking the ℓ1 norm, we conclude

d
dt

∥uk∥2Hs+1 ≤ ∥∇uk∥∞∥uk∥2Hs+1 + 1
8 ∥n

k∥2Hs+1+∥uk∥2Hs+1

≤ C ∥uk∥4Hs+1+∥uk∥2Hs+1

� �
+ 1
8 ∥n

k∥2Hs+1 :

ð34Þ

Collecting (29)–(34), we have

d
dt

∥nk∥2Hs+∥ck∥2Hs+1+∥uk∥2Hs+1

� �
+∥nk∥2Hs+1+∥ck∥2Hs+2

≤ C ∥nk∥2Hs+∥ck∥2Hs+1+∥uk∥2Hs+1

� �
1+∥nk∥2Hs+∥ck∥2Hs+1+∥uk∥2Hs+1

� �
≤ 1+∥nk∥2Hs+∥ck∥2Hs+1+∥uk∥2Hs+1

� �2
:

ð35Þ

We obtain from the Gronwall inequality that

1+∥nk∥2Hs+∥ck∥2Hs+1+∥uk∥2Hs+1 ≤
1+∥nk0∥2Hs+∥ck0∥2Hs+1+∥uk0∥2Hs+1

1 − C 1+∥nk0∥2Hs+∥ck0∥2Hs+1+∥uk0∥2Hs+1
� �

t
:

ð36Þ

Let

T = 1
2C 1+∥nk0∥2Hs+∥ck0∥2Hs+1+∥uk0∥2Hs+1
� � > 0, ð37Þ

then we obtain

sup
t∈ 0,T½ �

∥nk tð Þ∥2Hs+∥ck tð Þ∥2Hs+1+∥uk tð Þ∥2Hs+1

� �

+
ðt
0
∥nk∥2Hs+1+∥ck∥2Hs+2

� �
τð Þdτ

≤ 2 1+∥nk0∥2Hs+∥ck0∥2Hs+1+∥uk0∥2Hs+1

� �
:

ð38Þ

Step 2. Extracting sequences.

According to (38), we get

nk ∈ L∞ 0, T½ �,Hsð Þ ∩ L2 0, T½ �,Hs+1� �
,

ck ∈ L∞ 0, T½ �,Hs+1� �
∩ L2 0, T½ �,Hs+2� �

,

uk ∈ L∞ 0, T½ �,Hs+1� �
:

ð39Þ
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In order to prove the convergence, we require uniform
boundedness for ∂tnk, ∂tck, and ∂tuk. By the first equation
of (25), we infer

∥∂tn
k∥L∞t H−1 ≤ ∥Δnk∥L∞t H−1+∥uk · ∇nk∥L∞t H−1+∥∇

· nk∇ck
� �

∥L∞t H−1+∥nk∥L∞t H−1+∥ nk
� �2

∥L∞t H−1

≤ ∥nk∥L∞t Hs+∥uk∥L∞t Hs+1∥nk∥L∞t Hs+∥nk∥L∞t Hs∥ck∥L∞t Hs+1

+∥nk∥L∞t Hs+∥nk∥2L∞t Hs ≤ C:

ð40Þ

In a similar process, we have

∥∂tc
k∥L∞t H−1 ≤ ∥Δck∥L∞t H−1+∥uk · ∇ck∥L∞t H−1+∥cknk∥L∞t H−1

≤ ∥ck∥L∞t Hs+1+∥uk∥L∞t Hs+1∥ck∥L∞t Hs+1

+∥ck∥L∞t Hs+1∥nk∥L∞t Hs ≤ C:

∥∂tu
k∥L∞t H−1 ≤ ∥ uk · ∇

� �
uk∥L∞t H−1+∥nk∇Φ∥L∞t H−1

≤ ∥uk∥2L∞t Hs+1+∥nk∥L∞t Hs ≤ C:

ð41Þ

Since L2 is locally compactly embedded in H−1, we can
apply the Aubin-Lions Lemma to deduce that, extracting a
subsequence, the approximate solution sequence ðnk, ck, ukÞ
strongly converges in L∞ð½0, T� ;H−1Þ to some function ðn,
c, uÞ such that

nk ∈ L∞ 0, T½ � ;Hsð Þ ∩ L2 0, T½ �,Hs+1� �
,

ck ∈ L∞ 0, T½ � ;Hs+1� �
∩ L2 0, T½ �,Hs+2� �

,

uk ∈ L∞ 0, T½ � ;Hs+1� �
:

ð42Þ

By the above estimates, we can easily have the limit in the
approximate system (25) and ðn, c, uÞ solve (3) in the sense of
distribution. Using a classical method [12], we have n ∈ Cð½
0, T� ;HsÞ, c ∈ Cð½0, T� ;Hs+1Þ, and u ∈ Cð½0, T� ;Hs+1Þ.

Step 3. Uniqueness.

Let us consider the two solutions ðn1, c1, u1Þ and ðn2, c2
, u2Þ associated with the same initial data and satisfy (3).
We use the notation δn = n1 − n2, δc = c1 − c2, and δu = u1
− u2. Then, we have

∂tδn + δu · ∇n1 + u2 · ∇δn = Δδn−∇ · δn∇c1ð Þ−∇ · n2∇δcð Þ + δn − n1δn − n2δn,
∂tδc + δu · ∇c1 + u2 · ∇δc = Δδc − n1δc − c2δn,
∂tδu + δu · ∇ð Þu1 + u2 · ∇ð Þδu−∇ P1 − P2ð Þ = Δδu + δn∇Φ:

8>><
>>:

ð43Þ

Multiplying the first equation of (43) by δn and integrat-

ing in spaces, we obtain

1
2
d
dt

∥δn tð Þ∥22+∥∇δn tð Þ∥22 = −
ð
ℝd

δu · ∇n1ð Þδndx

−
ð
ℝd
∇· δu∇c1ð Þδndx −

ð
ℝd
∇· n2∇δcð Þδndx

+
ð
ℝd
δnδndx −

ð
ℝd
n1δnδndx −

ð
ℝd
n2δnδndx

≤ C ∥δu∥22+∥δn∥22∥n1∥2Hs

� �
+ C∥δn∥22∥c1∥

2
Hs+1

+ 1
8 ∥∇δn∥

2
2 + C∥n2∥

2
Hs∥∇δc∥22 +

1
8 ∥∇δn∥

2
2+∥δn∥22

+∥n1∥Hs∥δn∥22+∥n2∥Hs∥δn∥22,
ð44Þ

from which we conclude

d
dt

∥δn tð Þ∥22+∥∇δn tð Þ∥22 ≤ C ∥δu∥22+∥δn∥22∥n1∥2Hs

�
+∥δn∥22∥c1∥2Hs+1+∥n2∥2Hs∥∇δc∥22+∥δn∥22
+∥n1∥Hs∥δn∥22+∥n2∥Hs∥δn∥22

�
:

ð45Þ

Then, multiplying the second equation of (43) by δc and
integrating in spaces, we know

1
2
d
dt

∥δc tð Þ∥22+∥∇δc tð Þ∥22 = −
ð
ℝd

δu · ∇c1ð Þδcdx

−
ð
ℝd
δcn1δcdx −

ð
ℝd
δnc2δcdx

≤ C ∥δu∥22+∥δc∥22∥c1∥2Hs+1+∥δc∥22∥n1∥Hs

�
+∥δn∥22+∥δc∥22∥c2∥2Hs+1

�
:

ð46Þ

Hence, we get

d
dt

∥δc tð Þ∥22+∥∇δc tð Þ∥22 ≤ C ∥δu∥22+∥δc∥22∥c1∥2Hs+1+∥δc∥22∥n1∥Hs

�
+∥δn∥22+∥δc∥22∥c2∥2Hs+1

�
:

ð47Þ

Applying ∂i on both sides of the second equation of
Equation (43) gives

∂t∂iδc + u2 · ∇∂i∇c − Δ∂iδc = −∂i δu · ∇c1ð Þ − ∂iu2 · ∇δc
− ∂i n1δcð Þ − ∂i c2δnð Þ:

ð48Þ

Taking the L2-inner product for the above equation with
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∂iδc, we obtain

1
2
d
dt

∥∇δc tð Þ∥22+∥Δδc tð Þ∥22 = −〠
i

ð
ℝd
∂i δu · ∇c1ð Þ∂iδcdx

−〠
i

ð
ℝd
∂iu2 · ∇δc∂iδcdx

−〠
i

ð
ℝd
∂i n1δcð Þ∂iδcdx

−〠
i

ð
ℝd
∂i c2δnð Þ∂iδcdx =

ð
ℝd

δu · ∇c1ð ÞΔδcdx

−
ð
ℝd

∇δc · ∇ð Þu2 · ∇δcdx +
ð
ℝd
n1δcΔδcdx

+
ð
ℝd
c2δnΔδcdx ≤ C∥δu∥22∥c1∥

2
Hs+1 + 1

8 ∥Δδc∥
2
2

+ C∥∇δc∥22∥u2∥Hs+1 + C∥δc∥22∥n1∥
2
Hs + 1

8 ∥Δδc∥
2
2

+ C∥δn∥22∣c2∥
2
Hs+1 + 1

8 ∥Δδc∥
2
2:

ð49Þ

Hence, we have

d
dt

∥∇δc tð Þ∥22+∥Δδc tð Þ∥22 ≤ C ∥δu∥22∥c1∥
2
Hs+1+∥∇δc∥22∥u2∥Hs+1

�
+∥δc∥22∥n1∥2Hs+∥δn∥22 ∣ c2∥2Hs+1

�
:

ð50Þ

Multiplying the third equation of system (43) by δu and
integrating in spaces, we get

1
2
d
dt

∥δu tð Þ∥22 = −
ð
ℝd

δu · ∇ð Þu1ð Þ · δudx +
ð
ℝd
δn∇Φ · δudx

≤ C∥δu∥22∥u1∥Hs+1 + C ∥δn∥22+∥δu∥22
� �

:

ð51Þ

Thus,

d
dt

∥δu tð Þ∥22 ≤ C ∥δu∥22∥u1∥Hs+1+∥δn∥22+∥δu∥22
� �

: ð52Þ

From (45)–(52), we obtain

d
dt

∥δn tð Þ∥22+∥δc tð Þ∥22+∥∇δc tð Þ∥22+∥δu tð Þ∥22
� �

+∥∇δn∥22
+∥∇δc∥22+∥Δδc∥22 ≤ C ∥δu∥22+∥δn∥22∥n1∥2Hs+∥δn∥22∥c1∥2Hs+1

�
+∥n2∥2Hs∥∇δc∥22+∥δn∥22+∥n1∥Hs∥δn∥22+∥n2∥Hs∥δn∥22+∥δu∥22
+∥δc∥22∥c1∥2Hs+1+∥δc∥22∥n1∥Hs+∥δn∥22+∥δc∥22∥c2∥2Hs+1

+∥δu∥22∥c1∥2Hs+1+∥∇δc∥22∥u2∥Hs+1+∥δc∥22∥n1∥2Hs

+∥δn∥22 ∣ c2∥2Hs+1+∥δu∥22∥u1∥Hs+1+∥δn∥22+∥δu∥22
�
:

ð53Þ

Then, we have

d
dt

∥δn tð Þ∥22+∥δc tð Þ∥22+∥∇δc tð Þ∥22+∥δu tð Þ∥22
� �
≤ CF tð Þ ∥δn∥22+∥δc∥22+∥∇δc∥22+∥δu∥22

� �
,

ð54Þ

where

F tð Þ = 1+∥n1∥Hs+∥n2∥Hs+∥u1∥Hs+1+∥u2∥Hs+1+∥n1∥2Hs+∥n2∥2Hs

+∥c1∥2Hs+1+∥c2∥2Hs+1 :

ð55Þ

From (3), we infer that FðtÞ is integrable. Using the
Gronwall inequality gives the uniqueness.

3.2. Blowup Criterion. Operating Δq with q ≥ −1 to the first
equation of (3) gives

Δqnt + u · ∇Δqn = ΔΔqn + u · ∇Δqn − Δq u · ∇nð Þ−∇ · Δq n∇cð Þ
+ Δqn − Δqn

2:

ð56Þ

Taking the L2-inner product for the above equation with
Δqn, we get

1
2
d
dt

∥Δqn∥
2
2+∥∇Δqn∥

2
2 =
ð
d

u · ∇Δqn − Δq u · ∇nð Þ� �
Δqndx

+
ð
d
Δq n∇cð Þ · ∇Δqndx +

ð
d
ΔqnΔqndx

−
ð
d
Δqn

2Δqndx ≤ ∥u · ∇Δqn − Δq u · ∇nð Þ∥2∥Δqn∥2

+∥Δq n∇cð Þ∥2∥∇Δqn∥2+∥Δqn∥
2
2+∥Δqn

2∥2∥Δqn∥2:

ð57Þ

Multiplying 22qs on both sides of the above inequality and
performing ℓ1 norm, we have

d
dt

∥n∥2Hs+∥n∥2Hs+1 ≤ ∥∇u∥∞∥n∥2Hs+∥n∇c∥Hs∥n∥Hs+1+∥n∥2Hs

+∥n2∥Hs∥n∥Hs :

ð58Þ

Using Young’s inequality, we conclude

d
dt

∥n∥2Hs+∥n∥2Hs+1 ≤ C∥∇u∥∞∥n∥2Hs + C∥n∥2∞∥∇c∥2Hs

+ C∥n∥2Hs∥∇c∥2∞ + 1
8 ∥n∥

2
Hs+1+∥n∥2Hs + C∥n∥2∞∥n∥2Hs

+ 1
8 ∥n∥

2
Hs+1 :

ð59Þ
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In terms of the second equation of (3), we know

Δqct + u · ∇Δqc = ΔΔqc + u · ∇Δqc − Δq u · ∇cð Þ − Δq ncð Þ:
ð60Þ

Multiplying the above equality by Δqc and integrating in
spaces mean

1
2
d
dt

∥Δqc∥
2
2+∥∇Δqc∥

2
2 =
ð
ℝd

u · ∇Δqc − Δq u · ∇cð Þ� �
Δqcdx

+
ð
ℝd
Δq ncð ÞΔqcdx ≤ ∥u · ∇Δqc − Δq u · ∇cð Þ∥2∥Δqc∥2

+∥Δq ncð Þ∥2∥Δqc∥2:

ð61Þ

Multiplying 22qðs+1Þ on both sides of the above inequality
and taking ℓ1 norm, we obtain

d
dt

∥c∥2Hs+1+∥c∥2Hs+2 ≤ ∥∇u∥∞∥c∥2Hs+1+∥nc∥Hs+1∥c∥Hs+1 : ð62Þ

Utilizing Young’s inequality, we have

d
dt

∥c∥2Hs+1+∥c∥2Hs+2 ≤ C∥∇u∥∞∥c∥2Hs+1 + C∥n∥2∞∥c∥2Hs+1

+ C∥c∥2∞∥c∥2Hs+1 + 1
8 ∥n∥

2
Hs+1 :

ð63Þ

According to the third equation of (3), we get

Δqut + u · ∇ð ÞΔqu−∇ΔqP = u · ∇ð ÞΔqu − Δq u · ∇ð Þuð Þ − Δq n∇Φð Þ:
ð64Þ

Taking the L2-inner product for the above equality with
Δqu implies

1
2
d
dt

∥Δqu∥
2
2 =
ð
ℝd

u · ∇ð ÞΔqu − Δq u · ∇ð Þuð Þ� �
Δqudx

−
ð
ℝd
Δq n∇Φð ÞΔqudx ≤ ∥ u · ∇ð ÞΔqu

− Δq u · ∇ð Þuð Þ∥2∥Δqu∥2+∥Δq n∇Φð Þ∥2∥Δqu∥2:

ð65Þ

Multiplying 22qðs+1Þ on both sides of the above inequality
and taking the ℓ1 norm, we have

d
dt

∥u∥2Hs+1 ≤ C∥∇u∥∞∥u∥2Hs+1 + 1
8 ∥n∥

2
Hs+1 + C∥u∥2Hs+1 : ð66Þ

Collecting (59)–(66), we deduce

d
dt

∥n∥2Hs+∥c∥2Hs+1+∥u∥2Hs+1
� �

+∥n∥2Hs+1+∥c∥2Hs+2

≤ ∥n∥2Hs+∥c∥2Hs+1+∥u∥2Hs+1
� �

1+∥∇u∥∞+∥n∥2∞+∥∇c∥2∞
� �

:

ð67Þ

The Gronwall inequality implies

∥n tð Þ∥2Hs+∥c tð Þ∥2Hs+1+∥u tð Þ∥2Hs+1
� �

+
ðt
0
∥n τð Þ∥2Hs+1+∥c τð Þ∥2Hs+2
� �

dτ

≤ C exp
ðt
0
1+∥∇u τð Þ∥∞+∥n τð Þ∥2∞+∥∇c τð Þ∥2∞
� �

dτ
� �

:

ð68Þ

Next, we turn to prove condition (11). Applying ∇ on
both sides of the second equation of (3) means

∂t∇c + u · ∇2c − Δ∇c = −∇ ncð Þ−∇u · ∇c: ð69Þ

Multiplying the above equality with j∇cjp−2∇c, we obtain

1
p
d
dt

∥∇c∥pp +
ð
ℝd
u · ∇2c ∇cj jp−2∇cdx + 4 p − 1ð Þ

p2
∥∇ ∇cj jp/2∥22 =

−
ð
ℝd
∇ ncð Þ ∇cj jp−2∇cdx −

ð
ℝd
∇u · ∇c ∇cj jp−2∇cdx

≤ p − 1ð Þ
ð
ℝd
nc ∇cj jp−2Δcdx+∥∇u∥∞∥∇c∥pp

≤
2 p − 1ð Þ

p
∥n∥∞∥c∥p∥ ∇cj j p−2ð Þ/2∥2p/ p−2ð Þ∥∇ ∇cj jp/2∥2+∥∇u∥∞∥∇c∥pp

≤
2 p − 1ð Þ

p
p

2 p − 1ð Þε ∥n∥
2
∞∥c∥2p∥∣∇c ∣ ∥

2
p−2 +

2 p − 1ð Þε
p

∥∇ ∇cj jp/2∥22
� �

+∥∇u∥∞∥∇c∥pp:

ð70Þ

Because of

ð
ℝd
u · ∇2c ∇cj jp−2∇cdx = 1

p

ð
ℝd

u · ∇ ∇cj jpdx = 0, ð71Þ

we get

d
dt

∥∇c∥2p ≤ C∥n∥2∞+∥∇u∥∞∥∇c∥2p: ð72Þ

Utilizing Gronwall’s inequality, we have

∥∇c tð Þ∥2p ≤ C ∥∇c0∥p +
ðt
0
∥n τð Þ∥2∞dτ

� �
exp

ðt
0
∥∇u τð Þ∥∞dτ

≤ C ∥c0∥Hs +
ðt
0
∥n τð Þ∥2∞dτ

� �
exp

ðt
0
∥∇u τð Þ∥∞dτ:

ð73Þ
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Setting p→∞, we conclude

∥∇c tð Þ∥2∞ ≤ ∥c0∥Hs +
ðt
0
∥n τð Þ∥2∞dτ

� �
exp

ðt
0
∥∇u τð Þ∥∞dτ:

ð74Þ

Submitting (74) into (68) gives

∥n tð Þ∥2Hs+∥c tð Þ∥2Hs+1+∥u tð Þ∥2Hs+1 +
ðt
0
∥n τð Þ∥2Hs+1+∥c τð Þ∥2Hs+2
� �

dτ

≤ Cexpexp
ðt
0
1+∥∇u τð Þ∥∞+∥n τð Þ∥2∞

� �
dτ:

ð75Þ

On the other hand, using the inhomogeneous dynamic
partition of the unity, we have

∥∇u∥L∞ = ∥〠
j≥−1

∇Δju∥L∞ ≤ ∥∇Δ−1u∥L∞ + 〠
∞

j=0
∥∇Δj∥L∞

≤ C ∥u0∥L2 + 〠
∞

j=0
∥Δjω∥L∞

 !
≤ C ∥u0∥L2+∥ω∥B0

∞,1

� �
:

ð76Þ

Taking the curl to the third equation of (3) implies

ωt + u · ∇ω = ur

r
ω − curl n∇ϕð Þ: ð77Þ

Using Lemma 6, we obtain

∥ω∥B0
∞,1

≤ C ∥ω0∥B0∞,1
+
ðt
0
∥curl n∇ϕð Þ τð Þ∥B0

∞,1
+∥ u

r

r
ω∥B0∞,1

� �

× 1 +
ðt
0
∥∇u τð Þ∥L∞dτ

� �

≤ C ∥ω0∥B0∞,1
+
ðt
0
∥curl n∇ϕð Þ τð Þ∥B0

∞,1
+∥ u

r

r
∥L∞∥ω∥B0

∞,1

� �

× 1 +
ðt
0
∥∇u τð Þ∥L∞dτ

� �
:

ð78Þ

For the term ∥curl ðn∇ϕÞðτÞ∥B0
∞,1
, using Bony’s decompo-

sition, we have

∥curl n∇ϕð Þ τð Þ∥B0∞,1
= 〠

∣q−q′∣≤4
2q∥Δq Sq′−1nΔq′∇ϕ

� �
∥L∞

+ 〠
∣q−q′∣≤4

2q∥Δq Sq′−1∇ϕΔq′n
� �

∥L∞

+ 〠
∣q′′−q′∣≤1
q′≥q−3

2q∥Δq Δq′nΔq′′∇ϕ
� �

∥L∞ ≜ I1 + I2 + I3:

ð79Þ

For the term I1, we have

I1 ≤ C 〠
∣q−q′∣≤4

〠
j≤q′−2

2q∥Δq′∇ϕ∥L∞∥Δjn∥L∞ ≤ C∥∇ϕ∥B1∞,∞
∥n∥B0

∞,1
:

ð80Þ

Similarly,

I2 ≤ C∥∇ϕ∥B1
∞,∞

∥n∥B0
∞,1
: ð81Þ

As for I3,

I3 ≤ C 〠
∣q′′−q′∣≤1
q′′≥q−3

2q−q′′2q′′∥Δq′′∇ϕ∥L∞∥Δq′n∥L∞

≤ C∥∇ϕ∥B1∞,∞
∥n∥B0

∞,1
:

ð82Þ

Plugging (80)–(82) into (79) yields

∥curl n∇ϕð Þ τð Þ∥B0
∞,1

≤ C∥∇ϕ∥B1
∞,∞

∥n∥B0∞,1
: ð83Þ

Putting (83) into (78), using the fact ∥urðtÞ/r∥L∞ ≤ C∥ω0
/r∥L3,1 [25] and Gronwall’s inequality, we have

∥ω∥B0
∞,1

≤ C ∥ω0∥B0
∞,1

+
ðt
0
∥n τð Þ∥B0

∞,1
dτ

� �
e
Ð t

0
∥∇u τð Þ∥L∞dτ

: ð84Þ

Substituting (84) into (76) gives

∥∇u∥L∞ ≤ C ∥u0∥Hs +
ðt
0
∥n τð Þ∥B0

∞,1
dτ

� �
e
Ð t

0
∥∇u τð Þ∥L∞dτ

: ð85Þ

Applying the Gronwall inequality, we get

∥∇u∥L∞ ≤ Ce
exp C

Ð t
0
∥n τð Þ∥B0∞,1

� �
: ð86Þ

Substituting (86) into (75) and using the fact B0
∞,1

°L∞, we
obtain the desired result.

This completes the proof of Theorem 1.
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