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In this paper, we investigate the 3D incompressible chemotaxis-Euler equations. Taking advantage of the structure of axisymmetric

fluids, we establish the blowup criterion of the system using the Fourier localization method.

1. Introduction

The effect of oxygen attraction on the emergence of biocon-
vective patterns is studied in [1, 2]. Some experiments, such
as a colony of Bacillus subtilis suspending in a drop of water,
are carried out to identify this phenomenon. From paper [3-
6], we can also find the important role of chemotaxis between
sperm and eggs. The following model, in [1], is introduced to
analyze the above phenomenon:

n+u-Vn=An+yV-(nV(4)'c) + kn - un’,
(1)

Here, n and u represent the concentration of bacteria
and the velocity field of the transported water, respectively.
Besides, the vector field u is divergence free and indepen-
dent of n. The equation describes the evolution of the bac-
teria transported by the velocity field of the fluid.
Moreover, these cells are attracted by the oxygen concen-
tration generated by chemotaxis. For the term xV:(nV
(A)'¢), x>0 is a parameter controlling the influence of
the chemotactic effect. In addition, x is the strength
growth rate of the population and p is a parameter regu-
lating death by overcrowding.

n(x,0),x€d.

Apart from Equation (1), there are a lot of other models
illustrating the procedure of oxygen attraction in biology.
An increasing number of mathematicians studied the process
in the past years, see [7-15]. Our aim in this paper is to fur-
ther explore model (1), combined with an oxygen equation
and a Navier-Stokes equation, see [16]. Then, we obtain the
following model in d, d =2, 3,

n,+u-Vn=An- xV-(nVc) + kn — un’,

¢, +u-Ve=Ac—nc,

u, + (u- V) u-VP =nAu — nVo,

Vau=0,

1n(0, x) = ny(x), ¢(0, x) = ¢ (%), u(0, x) = ty(x).

(2)

The unknowns are #, ¢, 4, and P, standing for the bacte-
ria, the oxygen, the velocity field, and the pressure of the fluid
separately. The third equation of the above system contained
an extra force, buoyancy, which is produced by the density
and a given gravitational potential @. # is the dissipation
coeflicient. If k = y = 0 and # > 0, the global existence of weak
solutions in 2 was shown in [8, 12].
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In this paper, we choose y =k =y =1 and # =0, then (2)
can be changed into the following one:
n,+u-Vn=An-V-(nVc) +n—n’,
¢, +u-Ve=Ac—nc,

u, + (u- V) u-VP=-nVQ,
Vau=0,

1(0, x) = ny(x), ¢(0, x) = ¢ (%), (0, x) = uy(x).

The Euler equation is shown as the following form:

u, +u-Vu+VP =0,
Veu=0, (4)
u(0, x) = uy(x).

In three dimensional space, the vorticity equation has the
form

w,+u-Vo=w-Vu. (5)

But the chief difficulty is we are lacking information on
the vortex-stretching term w - Vu. Although the global exis-
tence of classical solutions for the 3D Euler equation is an
open problem, some known results are obtained under the
circumstances of axisymmetric flows without swirl. That a
vector field u is axisymmetric without swirl is defined as
follows:

x=(x),%,,2), 1= (xf + x%)m,

(6)

where (e,, ey, e,) is the cylindrical basis of 3 and the compo-
nents " and #* do not depend on the angular variable. With
this structure, vorticity takes the form

u(t,x)=u'(t,r,2)e, + u(t,r,z)e,,

w=(0,u" —0,u")eg = wyey (7)

and satisfies
r

atw+u-Vw:u—w. (8)
r

Hence, the quantity I'" := wy/r obeys to the equation
o +u-VI'=0. 9)

The goal of this paper is to build the blowup criterion of
smooth solutions for (3) by the Fourier localization tech-
nique. Here, we follow ideas introduced in [17-21]. Our
result reads as the following:

Theorem 1. For s> 3, suppose the triple (n, c,, u,) € H® X
H* x H! and ® e H*. Let u, be an axisymmetric
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divergence-free vector field and its vorticity satisfies w,/r €
L1, Assume that

neC([0, T]; HY) nL*([0, T]; H*),
ceC([o, T); H) n L ([0, T] s H*?), (10)
ueC([0, T); H™)

are the smooth solutions to (3). If the condition

JT (In(©)lF , )dr < co (1)

0

holds true, then the solutions (n, ¢, u) can be extended beyond
T>0.

Remark 2. In paper [20], a regularity criterion in terms of two
items is established. But in Theorem 1, we give a different cri-
terion using the only bacteria concentration in 3. The bacte-
ria concentration plays a more important role in this model,
and the nonlinear term -V - (nVc) is difficult to estimate.
Hence, using bacteria concentration to show the regularity
is natural and physical.

Notation. Throughout the paper, C means a harmless con-
stant and may vary from line to line; C;- denotes a constant
Crelatingto T} ||'||p stands for the norm of the Lebesgue space

17,
2. Preliminaries

In this section, we give the definition of some function spaces
and recall some useful lemmas.

Firstly, we use the dynamic partition of the unity to give
the definition of Besov spaces. One may check [22] for exact
details. Let ¢ € Ci°(d) be set in C={&ed,3/4<|&|<8/3}
satisfying

Y 9279 =1, for&#0. (12)

qezZ

Let x(§) =1-Y n9(279). For f € §', Littlewood-Paley
operators are defined as follows:

AL f=x(D)f¥qeA,f=9(2D)f andVq e A f =92 D)f.
(13)

The low-frequency cut-offs are denoted:

Sf= Z Ayf
-1<gq <g-1
o (14)
Sf= Z A'f.
qsqfl

Now, we introduce the definition of the Besov space. For
s€R,1<p,r<oo, the homogenous Besov space B;,r is
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defined as the set of tempered distributions of f € §'/%
satisfying

1/r
Ifllg, = (qu" AJH;) <o, (13)
qeZ

where & is the polynomial space. The inhomogeneous space
B, is the set of tempered distribution f with the norm

I1f

1/r
5, = ( D 2ff"y|Aqu|;> < c0. (16)

q=-1

It is worthwhile to remark that B, and B, coincide
with the usual Sobolev spaces H® and the usual Holder space
C for s € R\ Z, respectively.

In our study, we require the space-time Besov spaces as
the following manner: for 7> 0 and p > 1, we denote by L.

B, the set of all tempered distribution f such that

Z o . 1/r
qez r (]Rd) I

Lemma 3 (see [22]). Let 1< p <q<oco. Suppose that f € LF,
then there exists a constant C independent of f, j such that

Af <co.  (17)

1l 2

sup pf € {|{€1<C2'} = 9°f], < C2Mr -ty

~ 1 . . :
sup pf C {Ezfsmsczf} = |Ifl, < 277 sup 12°f1],.

\Bl=le
(18)

Lemma 4 (see [22]). There exists a constant C > 0 such that
for s> 0, we have

vl < Cllullo V1 = + Clluell =1V o (19)

Lemma 5 (see [23]). Let u be a solution of the transport
equation

u,+v-Vu=0,
(20)

u(x, 0) = uy,
and define R, ==v-VAu—A,(v-Vu), ISp<p <oo, I<r
<co, and sé€suchthats>—d min (1/p,, 1/p")(ors>—1-d
min (1/p,, 1/p") if div v=0). There exists a sequence ¢, €
' (Z) such that |ic,lly =1 and a constant C depending only

on d,r,s, p, and p,, which satisfy

Vg e Z, 2%|R |, < chZ'(t)IluIIB;J, (21)

with

) d
V¥l gies o ifs<l+—,
o ;

Z'(t) =

d d
IVVligs1, if eithers>1+ — ors=1+ — forr=1.
prr P] pl

(22)

Lemma 6 (see [24]). Let [p, r] € [1,00]°, v be a divergence-free
vector-field belonging to the space L (R, ; Lip(R?) and let a
be a smooth solution of the following transport equation:

{at+v~Va:f, (23)

a(x, 0) = a.

If the initial data a, € B

> then we have for all t € +R

t
el = € (tanky, 1, ) (15 [ 190001 ).

(24)

3. Proof of Theorems

3.1. Local Well-Posedness. We construct the following
smoothing system:

2
nk+uk . vnk = Anf-v . (nchk> +nf - (nk> , keN,
kv = Ak -k
uk + (uk : V) W —VPk = AuF + nkvo,

Valk = 0,

(nk, Ck, uk)

0 = (Skno, SkCO, Skuo) .

Step 1. Uniform boundedness.

Taking the operation A, with g > —1 on the first equation
of (25), we obtain

2
k Kk ow k) _ k o . kg K k
Aqnt+Aq<u ~Vn>—AAqn v Aq(n VC)+Aqn Aq(n) .

(26)



Making the L*-inner product for (26) with A, n* yields

1d
zalmqn"ll%+llw""%:‘Lﬁq (-9 )artax

- J]RdV-Aq (nchk> Aandx + J

2
—J A, (n) At < 14, (1 Vi) 1A+,
R

A kA nFdx
w14

2

- (VN LIV AR I 1A 1A, (1) 18,1 .
(27)

Multiplying 2°# on both sides of the above inequality,

then taking the €' norm, using Holder’s inequality and
Young’s inequality together with Lemma 4, we have

1d k|2 k)2 k k k k k
P T L PR D P L P 1 Vel oo

T () T I < Ol g

+ CllM e N g I g 11 175 + Clln® 131 e
< Cluf Il 17, + énnknf{m + Clrf I I 7

I+ C (Il ).

(28)

Then, we conclude

d. k2 k2 K12 1(,.k)12 k2 k2 k2 ky4
T 17 N I g SC(IIu ezl Wl e ™ W+ e+l IIHs)-

(29)
In a similar way to (29), we obtain
1d
S IEM I+ 1 < Clud e I EF 12

(30)

1 1
b1+ CI N + < IRy
8 8
Thus, we have

d 1
k|2 k)2 k)2 k)12 k4 k)2
alIc ||Hs+1+||C ||Hs+2 < C(”M ||Hs+1 ||C ||Hs+1+||C ||Hs+l) + g"l’l "H’”'
(31)

Operating A, with g > -1 to the third equation of (25)
implies

k k k k k k
Agug + (u -V)Aqu VAP = (u -V)Aqu
- Aq<(uk . V) uk) -4, (nkV<D).

Taking the L*-inner product for the above equality with

(32)
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Ak gives

1d kp2 k k k k k
5 18I :Jw((” V) Ak =4, ((u-V)ut) ) At
—J 4, <nkV(D>Aqukdx§ I <uk . V) Aquk
]Rd
-4, ( (uk : v) uk> L4, 1, +14, (nkV(D> o146,

(33)

Multiplying 224¢*1) on both sides of the above inequality
and taking the ! norm, we conclude

d k k 1 k
Ellu 120 < IVl Nt 1 + g||n [ ]
1
k k k
< C(I Mt B ) + G I .
Collecting (29)-(34), we have

d k2 k12 k2 k2 k12
= (||n et I+ ||H_M)+||n [FAREELTE

k2 k)2 k2 k|2 k2 k2
SC(IIn I F s+ ||HM) (1 el ||Hm)
2
k2 k|2 k2
< <1+||n 2 I H s+ ||HM) .
(35)

We obtain from the Gronwall inequality that

2 2 2
L o e 7
2 2 2 .
1- C(1+||n§||HS+||c’(§||HM+||u’(§||Hs+1)t

(36)

k2 k)12 k)12
T+ sl Mg+l e <

Let

1
T= >0, (37)
2C(1+I b+ el +lluaflI )

then we obtain

sup (||nk(t)||f15+||ck(t)||?{s+1+||uk(t)||§{s+1>

te[0,T]

+ Jt (I By 1y ) (1) (38)

0
< 2Ll +Ief I+l I ).
Step 2. Extracting sequences.
According to (38), we get
n* € L([0, T], H*) n L* ([0, T], H**"),
¢t eL®([0, T, H*') nL* ([0, T}, H**?), (39)
u* e L ([0, T}, H*).
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In order to prove the convergence, we require uniform
boundedness for 9,7, 9,c%, and 9,u*. By the first equation
of (25), we infer

k k k k
o,n "Lfohrl <|An ||L?0H71+||u -Vn ”L;’oH*""”V

2
kv k k k
(P g 0 g4 () i
< "nk”LfOHS"'"uk”LfOHHl ||nk||L;x,Hs+||nk||L;x,Hs "Ck”LfOH“l
k k2
g I oo < C.

(40)
In a similar process, we have

k k k k k_k
llo,c "L;X’H-l <|Ac ||L§’°H‘1+"” -Vc ||L;»H-1+||C n ||L;>0H—1
k k k
<|¢ ||L130Hs+1+"u ”L?OHHI llc ||L100H5+1

HH o 11 o < C.
k k k k
10,44 peopr <1 (u -V)u lpsopr HIm VDl gy

k|2 k
< 1 o+l gy < C.

(41)

Since L?* is locally compactly embedded in H™!, we can

apply the Aubin-Lions Lemma to deduce that, extracting a
subsequence, the approximate solution sequence (n*, ¢, u*)
strongly converges in L®([0, T]; H!) to some function (n,

¢, u) such that

n* € L°([0, T]; H') n L*([0, T], H**"),
&eL™([o, T); H*) nL*([0, T), H*?), (42)

ut e L ([0, T); H™).

By the above estimates, we can easily have the limit in the
approximate system (25) and (n, ¢, u) solve (3) in the sense of
distribution. Using a classical method [12], we have n € C(|
0, T); H), ce C([0, T] s H**'), and u € C([0, T] ; H*!).

Step 3. Uniqueness.

Let us consider the two solutions (1, ¢, 4;) and (n,, c,
,u,) associated with the same initial data and satisfy (3).
We use the notation n=n, —n,, 6c=c¢, —c,, and Su=u,
— u,. Then, we have

0,0n+08u-Vn  +u,-Vén=Aén-V - (6nVc,)-V - (n,Voc) + 8n — n,6n — n,dn,
0,0¢c+08u-Vey +uy - Véc=Adc — ny8c - ¢,0m,
0,0u+ (8u-V)u, + (u,-V)ou-V(P, = P,) = Adu + 6nVP.

(43)

Multiplying the first equation of (43) by é» and integrat-

ing in spaces, we obtain

(6u-Vn,)0ndx
]Rd

1d
2 I8n(8)I5+1Von(t)]l5 = —J

- J V-(8uVc,)0ndx - J V-(n,Véc)dndx
RY RY

+ J Sndndx — J n,6néndx — J
RY R R

2 2 2 2
< C(I8ul3+I8nl3 In,lI7:) + Clonlle, I

n,6ndéndx

1 1
+ g IVOnlE + Cliny 3 IVSel + o IVonl+Ionll;
iy g 10l +H g 1Sm13,

(44)

from which we conclude

d
7 167 () I3+1VSn(t)l15 < C(I8ull3+ISnl3 1, I

2512 2 2 2
+H6nll3lley s +ln, g1Vl +10mll

2 2
g NOnll5+ 1, g N0l

Then, multiplying the second equation of (43) by §c and
integrating in spaces, we know

 Noe(t) V(1)1 = —J (8u- Ve, )Sedx

Rd
- J ScnyOcdx — J onc,0cdx

R R

< CI8ull3+HI8cl ey I +HISCN3
+Hlonl3+I8cl3llcy 7 ) -

(46)

Hence, we get

d
7 18e()I5+IV8e(2)15 < C(I8ull5+IScl3lley I ISl

2 21112
+onll3+1Scl3lle I )-

(47)

Applying 0; on both sides of the second equation of
Equation (43) gives

0,0;0¢+u, - Vo,Vc — A0,6¢c = —-0;(0u - Ve, ) — 0;u, - VOc
—0;(n,8¢) — 0;(c,0n).

(48)

Taking the L*-inner product for the above equation with



0,0¢, we obtain

1d , ,
S IV 5 H1ASe()I; = —ZJ 3,(8u - Ve,),8cdx

i JR?

- Z 0,u, - V8co,6cdx
d

i JR

->| 0i(n,6c)9,6cdx

i JRA

- ZJ 9,(c,0n)0,8cdx = J (8u-Ve,)Adcdx
7 ]Rd ]Rd

- J (VOc-V)u, - Vocdx + J n,0cAS8cdx
R? R?

1

+ J ¢,0nA8cdx < CllSull3 e, 12 + 5 1AS¢lI?
]Rd

1

+ CIVSel3llus s + CllSell3liny I + 3 1A8¢l3
1
+ Cllonll3le, 12 + g ASC]l?.
(49)

Hence, we have

d
T IVOC()I3+1A8c()I} < C(I8ul ey s +IVOCI it e
HISCl3 llmy 7 +187115 | ¢l ).-

(50)

Multiplying the third equation of system (43) by du and
integrating in spaces, we get

OB == (-9 -duds |

< Cldull3llu e + CISnIZ+1Sull).-

onVao - Sudx
]Rd
(51)

Thus,

d

7 18u(t)I3 < C(I8ul3lluy g +Sn5+Sull3). (52)
From (45)-(52), we obtain

d
T (II8n(t)||§+||8c(t)||§+||V8c(t)||§+||6u(t)||§)+||V8n||§

HIVSCll3+148¢ll5 < CISull5+Idnl I, I +Idnl5 e I
Hiy I IVSell5+18n15+ 1, s 18715+, s 18n115-+ 1 Sull;
HIOCll3lley 1w +18ell3 i N +HISmI5+ISel3 e e
HIOul3lley I +IVECll3 Nty llpos +18ell3 i, I

187115 | ¢ +HISwl3 1ty lloos + 115 +ISull3)

(53)
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Then, we have

d
7 (I8n(OI+18¢(1) 5 +198e() 3+18u(r)
< CE(t) (I8nl5+18cl3+1VScll5 +18ull3),

B (s

where

2 2
F(t) = 1+llny g lmo s+l e+l L gen +lmg L 17, 155
2 2
Hley ln+llea e

(55)
From (3), we infer that F(¢) is integrable. Using the
Gronwall inequality gives the uniqueness.
3.2. Blowup Criterion. Operating A, with g > -1 to the first
equation of (3) gives
Ay +u-VAn=AAn+u-VAn—A (u-Vn)-V-A (nVc)
2
+An—An.
(56)

Taking the L*-inner product for the above equation with
Agn, we get

1d 2 2
3 14,nl+IVAnl; = L (u VA n—Ay(u- Vn))Aqndx

+ LAq(nVc) . VAqndx + JqunAqndx

- LAqnqundx < lu- VA - A (u- V)L, IA il
AV LIV A HA AR IA 1A ],
(57)

Multiplying 2% on both sides of the above inequality and
performing ¢, norm, we have

d o 2 2 2
g 1l nlgses < IVloo Il +ln Vel e il e+l

2
Hln gl e

(58)

Using Young’s inequality, we conclude

d 2 2 2 2 2
I Il +nlzs < ClIVullglnliz + Cllallc Vel
1
2 2 2 2 2 2
+ ClinllglVells, + 3 Il +lnllgs + Clinllg Il

1
+ 3 ||n||§{s+1.

(59)
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In terms of the second equation of (3), we know

Age+u-VAc=AAc+u-VAc— A (u-Ve) - Ay (ne).
(60)

Multiplying the above equality by A c and integrating in
spaces mean

1d
37 14, cl3+IVAcll; = J ) (u- VA~ Ay (u-Ve))Aycdx
R
+ JRqu(nc)chdx <Nu-VA,c= A (u-Ve)l,1Acl,
1, (1) 18,cl
(61)

Multiplying 224¢*1) on both sides of the above inequality
and taking ¢, norm, we obtain

d, o 2 2
T lellzpee +lcllzpen < IVull el +ncl g llelge. (62)
Utilizing Young’s inequality, we have

2 2 2 2 2
7 el +lclze < ClVullgllellze + Cllnlls el fn

1
2 2 2
+ Cleligllell e + g||n||Hs+1.

According to the third equation of (3), we get

Aqu, + (u- V)Aqu—VAqP =(u- V)Aqu - Aq((u -Vu) - Aq(nVGD).
(64)

Taking the L*-inner product for the above equality with
A,u implies

1d
5% A ull; = J]Rd ((u-V)Au—A,((u-V)u))A udx
- J A (nVD)Ajudx < ||(u-V)Au
]Rd
= A, ((u-V)u) I, 1A,ull,+14,(nVO) 1,114, ull,.-
(65)

Multiplying 2246*1) on both sides of the above inequality
and taking the ¢, norm, we have

d 1
7 lull7en < ClIVuUll o 70 + 3 7070 + Cllull7en.  (66)

7
Collecting (59)-(66), we deduce
4 (Il +lualFie )+l + el
dt HS Hs+1 Hs+1 Hs+1 Hs+2
< (Inlfs el HlulFen ) (LI Vil o +HIn 2, +1Vel?, )
(67)
The Gronwall inequality implies
(I () I+ Ne(E) N Fpsen +lla(E) 701 )
t
+J (In(2) I3 +le() Iz ) dT
0
t
<Cexp <J (1+||Vu(T)||OO+||n(T)||i0+||VC(T)||iO)dT>.
0
(68)

Next, we turn to prove condition (11). Applying V on
both sides of the second equation of (3) means

9,Vc+u-Vc— AVe=-V(nc)-Vu - Vc. (69)

Multiplying the above equality with [Vc[’ >V, we obtain

1d 4(p-1
S I9el? + J u- V2|Vl 2Vedx + % V|22 =
]Rd

—J V(nc)\Vc|P’2Vcdx—J Vi - Ve|Velf2Vedx
R? R?

<(p- I)J dnc|Vc\P’2Acdx+||Vu||mIIVCIIg
R

2(p-1 _
< %unumncupnwc\@ 2, VTPVl IVl

2(p-1) P 2 2 2 2(p-1) D122
< b (2(})_ Te Il el Nve -, + TIIVIVCI 3
HIVull o IVellh.
(70)
Because of

1
J u-V2c|Vc|P’2Vcdx=—J u-V|Velfdx=0,  (71)
R P Jwd
we get
4 IVell? < CllnllZ, +1Vull o I Vell? (72)
dt - [ee] o0 p'

Utilizing Gronwall’s inequality, we have

t t
IIVc(t)II2 < C<||VCO||p + J ||n(T)||iodT> exp J IVu(1)llnd
0 0

t t
< C(||c0||Hs + J ||n(‘r)||iod'r) exp J IVu()ll o dr.

(73)



Setting p — 00, we conclude

IVe(t)IZ, < <||c0||Hs + Jt In(z) ||§Odr) exp Jt IVi(7)ll o d.
(74)

Submitting (74) into (68) gives

t

I () 3+ (E) 7o+ () 7o +J (In() 3 +llc(T) 32 ) d

0

< Cexpexp (J;1+||Vu(‘[) l oo +ll72(7) "io) dr.
(75)

On the other hand, using the inhomogeneous dynamic
partition of the unity, we have

(0]
IValpo = 11Y, VAUl < IVA_yull oo + D IVA o0
j=-1 j=0

<C <||uo||Lz +) ||Ajw||Lm> <C (ol +lwl, )-
j=0
(76)

Taking the curl to the third equation of (3) implies

w, +u-Vw= u7w - curl (nV¢). (77)

Using Lemma 6, we obtain

t r
u
ol < c(nwonto + [ Teurt(n99) 21, 1 rw||320v‘>

x <1 + J;||VM(T)||LoodT>

t uf'
< c(nwonto 4 et i90) 0, 415 b, )
o | |

x (1 + J;"Vu(‘r)HLde).

For the term [[curl (nV¢)(7)llp . using Bony’s decompo-

(78)

sition, we have

leurl (n99)(r)ly, = Y 214, (S, 0 V) I

|q_q’\s4
Y 2q||Aq(Sq"1V¢Aq'n) .
lg—q't=
D)
lq""~q'I<1
q'Zq—3

21]4, (Aq’nAq”Wp) lyo 21, +1, + 1.

(79)
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For the term I,, we have

L<C Y ) 204, Vel < IVl linlg -

lg—q"* j<q'-2
(80)
Similarly,
L <CIVly_lInl . (81)
As for I,
LsC Yy 277204 Ve A, nl e
pis L
< CIV4ly Nl .
Plugging (80)-(82) into (79) yields
leurl (nVe)(T)llp, < CIVOlp lnlg - (83)

Putting (83) into (78), using the fact [|u"(¢)/r;~ < Cllw,
/]l ;51 [25] and Gronwall’s inequality, we have

t t
u(7)|| oo dr
||w||BgQ1 < C(IIwOIIBgQ1 +J ||H(T)||Bgo)ld‘[> efn"V (*)lleodr (84)
0
Substituting (84) into (76) gives

t t
IVl oo < C(IIuOIIHs + J (7). ]d'r) vt gy
0 8

Applying the Gronwall inequality, we get

xp ([ In(@)lo )
IVl < Ce ( St ) (86)

Substituting (86) into (75) and using the fact Bgo’loL"O, we
obtain the desired result.
This completes the proof of Theorem 1.
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