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The aim of this paper is to investigate the existence of two positive solutions to subcritical and critical fractional integro-differential
equations driven by a nonlocal operator Z.. Specifically, we get multiple solutions to the following fractional p-Laplacian equations

(=4),u(x)=Aul +u’, u>0inQ,

with the help of fibering maps and Nehari manifold. {

in some respects.

1. Introduction

In this work, we are concerned with the existence of solutions
for a nonlocal integro-differential equation

{ ~FLhu(x)= 1 +u, u>0inQ,

u=0, inRY\ O,

where Q is a bounded smooth domain in R", n > ps with s
€(0,1),A >0, the exponents r and ¢q fulfill 0<g<1l<r<
p: — 1 with the critical fractional Sobolev exponent p} = (np
/(n—ps))(n>ps), and Z% is a kind of nonlocal integro-
differential operator defined by:

P =2 lim u(x)—u -2
S =2jim [ ) )

—u())K(x ~y)dy,

u=0,

. Our results extend the previous results
inRN\ Q.

x€RY, and K : RN\ {0} — (0, +00) is a measurable
function with the following property:

YK e L'(RY) where y(x) = min {|x[, 1},
there exists a k, > 0 such that,
—(N+ N (3)
K(x) = ko|x| ™) foranyx e RV \ {0},
K(x) =K(-x) foranyx e RV \ {0}.

In recent years, the existence and multiplicity of solutions
of elliptic equations in nonlinear analysis have attracted the
attention of many scholars. In particular, problems with reg-
ular nolinearities like u? + Au?, p, g > 0 and singular nonline-
arities u™9 + Au?, p, g > 0. At the same time, elliptic problems
can be divided into two categories according to their order:
integer order and fractional order.

On the one hand, when s=1, in [1], the authors consid-
ered a class of semilinear problems with singular nonlinear-
ities. Many results on the existence and multiplicity of
solutions for singular problems have appeared in the literature
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[2-6]. For example, authors have investigated a singular
problem with the kind of critical growth in [6],

A= T+u¥ 7, u>0inQ, u=00n0Q, (4)
where 0 < g < 1. They obtained the existence of solutions by
means of the Nehari manifold method in a suitable range
of A.

On the other hand, in [7], Mukherjee and Sreenadh
considered the following critical fractional Laplace operator
equations with a singular nonlinearity

(-A)Y'u=2Ara(x)u 1+ W71 u>0inQ, u=0inR"\ Q.

(5)

They showed the existence and multiplicity of positive solu-
tions with respect to the parameter A for above equation by
using variational methods. Furthermore, in [8], they studied
a class of critical fractional problems with a lower order per-
turbation by means of variational and topological methods;
precisely, they proved that the number of nontrivial weak
solutions is at least twice the multiplicity of the eigenvalue.
More details on the critical case of fractional p-Laplace equa-
tions can be referred to [9]. In subcritical case, the existence
of positive solutions to the following quasi-linear problem

(A)pu=Ag(xu) ~f(xu), xeQ,
{ ) g(x, u %U), X ©

u=0, xe RN\ Q,
is studied by means of truncation and comparison techniques
in [10]. Zuo et al. [11] investigated a superlinear fractional
elliptic equations; the existence of infinity many solutions is
obtained by the fountain theorem in subcritical case. More-
over, they also get at least two solutions for a fractional p
-Laplace system by the Nehari manifold method in [12].
We will adopt a new technique, considering both subcritical
and critical cases in a more general operator context (see (1)).
In order to state our results, let us introduce some
notations. The space

X= {u | u: RN — R is measurable,

ulg € L7(Q) and (u(x) - u(y)){/K(x —y) € (Q) },
?)

where Q=R* \ (CQ x CQ) with CQ=RN \ Q. The space
X is endowed with the norm,

1p
July = il + ( | () ) |PK<x—y>dxdy) . (8)

and we define the closed linear subspace

Xy ={u€X : u=0almosteverywherein RN \ Q},  (9)
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with the norm

July, = (bu(x) ~ u(y) PK (x —y)dxdy) 7 o)

Let
K : RV \ {0} — (0,+00), (11)

fulfill condition (3). We have that C{°(Q) c X, and (X,
-l XU) is a reflexive Banach space (see [13]). Moreover,

X cW(Q),
X, ¢ WP (RY),

(12)

where W*P(Q) is the usual fractional Sobolev space
endowed norm

_ 4 1/P
”u"WS-P(_Q) = "u"LP(Q) + <J dedy) s (13)

and the embedding

Xy (), (14)

Co(N, p,s) such that, for any ve Xy, 1<k<p}
IVl x () < Collvilx, - (15)

Definition 1. We say that u is a weak solution of problem
(1), if u fulfills

jQu<x> — w2 (u(x) - 4(3) (9(x) - 9()K (x - y)dxdy

(16)
for all ¢ € X, where u, =max {u,0}.
The main results of this article are as follows.

Theorem 2. Set s € (0, 1), n> ps, K fulfilling condition (3), if
0<q<1,1<r<p;, then there exists A, >0, such that for A
€ (0,A,), equation (1) has at least two positive solutions.

Theorem 3. Set s € (0, 1), n> ps, and Q be an open bounded
domain in R" with Lipschitz boundary. K fulfilling the condi-
tion (3), if 0<q<1,r=p; — 1, assumes that there exists u,
€ X, \ {0} with u, > 0 almost everywhere in R", such that

sup-Fg e (tthg) < 3 SZ/PS, (17)
20 n



Journal of Function Spaces

where J .. will be introduced in Section 2. Then, there exists
A, >0, such that for A € (0, A,), problem (1) admits least two
solutions.

2. Preliminaries

We define the energy functional
I Xo— R, (18)
associated to problem (1) as
In(u) = T p(u) = Iy (1), (19)

with
1
T () = EJQ'”(’“) — u(y) PK (x - y)dudy

I\(u) A Jﬂuq“(x)dx.

Tari),

We can see that ], € C'(X,, R) and

(0, = 1)~ - i)
X (¢(x) = ¢(y))K(x - y)dxdy
-A| w@ptde- | @ptd
0

0
(21)

for any ¢ € X,,.
Now, we give the Nehari manifold

Ny= {u € X,\ {0}: <1;(u>, u> =o}, (22)

where (,) denotes the duality between X, and its dual space.
Thus, u € /), if and only if

Julfy ~A| wr e | @ pgde=0. @)

+

The Nehari manifold /) is closely related to the follow-
ing function ¢, : t — J,(tu) for t > 0 defined by

@, (1) = J(tu) a lullk, - A " J 17 (x)dx
= u)=—\u — u+ X
u A p Xo q+1)q

(24)

tr+1 .
+
- JQu+ (x)dx.

Remark 4. Set u€ X, \ {0}, then tu € #,if and onlyif ¢ (¢)
=0.

Moreover,

o) =0 tully, - |t ae-r [ wtas, (29)
0

Q

ul(t) = (P~ 1) lully, - ‘Wq_lj ul™ (x)dx
“ (26)

+

- rtHJ utt (x)dx.
Q

According to (25) and Remark 4, for u € /', we have

9l(1) = (p— D)lulf, - quufi“(x)dx— J ™ (x)dx

0

~p=r=1)] WA -g-1) @

= (p—q-Dlull, - (q+ r)J W ()

Q

=(p-r- 1)||u||1;(0 -Ag- r)J ul™ (x)dx.
Q

(27)
The /) is divided into three sets, which are local mini-

mum, local maximum, and local inflection point, respec-
tively, i.e.,

m;:{uem L 9'(1) >o},
N = {ue/VA L 9'(1) >o}, (28)

M = {uem : (p;(1)=o}.

To prove our result, we should start to show the following
auxiliary lemmas.

Lemma 5. If u, is a local minimizer of J, on V) and u, ¢ N7,
then u, is a critical point of J,.
Similar to Theorem 2.3 in [14], we can get this conclusion.

About fibering maps and the Nehari manifold, considering
the function v, : R" — R defined by

v () = 1 ul;, - t"QJ . (29)
Q
Obviously, for any t > 0, tu € Ny if and only if

v.(t) = Ajguz“dx. (30)

Moreover,

Wﬁ(f)=(1-q)f’qllullio—(r—q)tr”i’lj uldx, (31
0



and moreover, we know that tu € /'y, then
thy (1) = py1). (32)

So, tue Ni(orN7y) if and only if y.(t)>0 (or <0).
Assume u€ X, and u_#0. In view of (29), v, fulfills the
following properties:

(i) v, has a unique critical point at t=t , (u)=
(1= Il /((r = @) [ i) > 0
(i) v, 1 on (0, tryy (1)) and | on (£y,, (1), +00)

limt—wooWu(t) =—00. (33)

Further, it follows from fou$+ldx> 0 that (30) has no

solutions if A fulfills

1= g\ -9/
Ayttt = | (722)
Q r—q

(1-4 (r-a)/(r=1) ||u||g’0(f—q>)/(f—1)
r=q ([ udx) (L=g)/(r=1) *

(34)

According to (25) and (30) if A fulfills (34), then (p;(t) > 0.
It seems @ (t) < 0 as A is sufficiently large. Therefore, tu ¢ /')
for any t > 0. Moreover, if A fulfills

0</\J W8 <, (b (), (35)
Q

then there exist t, and t, with t, <t (u) < t,, such that

Vult) = vt =2 e andy (1) > 0.y/() <0,
Q

(36)

combining (25) and (30), which imply that ¢ (t,) = ¢.(t,) = 0.
1t follows from (32) that ¢.(t;) > 0, ¢.(t,) <0, which mean
that the fibering map ¢, admits a local minimum tu € N}
and a local maximum at t,u € N .

3. The Subcritical Case: 0 <g<1<r<p; -1
Firstly, we prove the following lemmas.

Lemma 6. There exists A, > 0, such that for any A€ (0,1,),
we have N = @.
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Proof. Using the inverse method, if ./ # & for any A > 0.
Then,

<]/{(u), u>X0 =0 (37)

(Pu(l) =0.

for u e 9.
Namely,

hlf, =2 wt?'ds | 10, andl,
Q Q (38)
=AqJ u‘flds+rj uHdx.
0 o

Thus,

(1- q)||u||P0 =(r— q)J W dx, and (r - 1)||u||§(0
“ (39)
=Mr- q)J uldx.

Q

Using the Holder inequality and Remark 4, there exist
two positive constants C,, C, such that

1 1
lulfy, < Cylluly andlully, <AC,Iulf’.  (40)

It yields that C;'*" ™ <lully < (AC,)"""V. If 1 is
small enough, then it is impossible. Thus, assuming no, the
original set is empty.

Lemma 7. ], is coercive and bounded from below on N, for
Ae(0,1,).

Proof. Let u € /'y, (19) and (23) we get

B 1_ 1 p 1 B 1 +1
0= (5= A = ) o

(41)
Using Remark 4 and Hoélder inequality, we get
J W dx < G ol (42)
o

Prove complete due to 0 < g < 1<r.

By Lemmas 6 and 7, for any A€ (0, A,), we get Ay =
NT U7, and so, J, is coercive and bounded from below
on /} and /5. Therefore, we define

T = inf , a; = inf . 4
% uler.l/VX]A(u) %1 MLI}VXIA(L‘) ( 3)

We have the following result.
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Proposition 8. If 0< A< A,, then the functional J, has a
minimizer u; in A5 and satisfies

(1) Ja(uy) =inf i Ty (u) <O0.

(2) u, is a solution of problem (1).

Proof. Since the bounded from below of J, on ./}, there
exists a minimizing sequence {u; } C /#}, such that

Jm Ty (i) = uier}%h(“)' (44)

We know that the sequence {u;} is bounded in X, by
Lemma 7. (X, || - "Xu) is a Hilbert space (see Lemma 7 in

[15]); thus, there exists u; € X, such that, up to a subse-
quence,

J;wuw—uuﬂvﬂwaw—uuwxw@—¢v»Ku—yan
— [ 9 =10 =)
Q

(@(x) = ¢(r))K (x ~ y)dxdy forVe € X,

when k — oo. Further, by Lemma 8 in [15], we have
u, — u; in L' (R"),

u, — u; a.eR", (46)

as k — 00, and by ([16], TheoremIV —9), there exists £ €
L"(R") such that

|up(x)| < 8(x)a.einR”, (47)

for any 1<r<p} =np/(n—ps)(n>ps). It follows from the
dominated convergence theorem that

Jg(uk)Z“dx - JQ

—ﬁ%m?m
0

()2 e and | (1)
@ (48)

ask — 00. So, there exists ¢, such that f;u, € #7 and
J(t,u;) < 0. Therefore, we get inf J,(u) <O0.
ueN;

In order to prove that u;, — u,; strongly in X,. Still use
the arc method if not, then ||uy|ly, <liminf, _[lully,-

Hence, for {u;} € /7, we get

5
Jim gl )= Jim (], 1] ()2
—>00 —00 Q
—t7 | () rdx ) >t ||y |5
[ woras)sallt,

—Aﬂj(mﬂ“MFﬂJ(%@Tﬂx
(0] (0]
= ‘P:JI(H) =0.

That is, (ka(tl) > 0 for k large enough. Since u; =1, u; €
A3, we infer that q);k(t) <0 for t€(0,1) and go;k(l) =0 for
all k. So, must be ¢, > 1. In addition because ¢, (t) is decreas-
ing on (0, ¢,), and so,

a(tyt) < Jy(u) < lim Jy(g) = inf Jy(u).  (50)

Obviously, the above equation is a contradiction.
Therefore, 4, — u; strongly in X,,. It means that

Ja(u) — Ja(uy) = ig}ﬁh(”) ask— oo,  (51)
uely
ie, u, is a minimizer if J, on //}. By Lemma 5, u, is a
solution to problem (1).

Proposition 9. If 0 < A < A,, then ], admits a minimizer u, in
N and satisfies

(1) Ja(uy) =inf ¢ Ty (u) > 0.

(2) u, is a solution to problem (1).

Proof. Since the bounded from below of ], on ./, there
exists a minimizing sequence {i,} € /3, such that

lim J, (i) = inf J(u). (52)

k—00

Similar to Proposition 8, there exists u, € X, such that

JQlﬁk(X) = iy (7)1 (g (%) = () (9(x) = @(y))K (3 = y)dxdy

—*LM@%%@WW%m—%w>

- (@(x) = ¢()) K (x — y)dxdy forv¢ € X,

(53)
as k — 00, and
|| @riar— | (u)27dx and
(0] (0] (54)
| @riar— | (w)a
Q Q



as k — 00. Moreover, from the nature of the fibering maps
¢,(t), we infer that there exist t,t, with ¢, <t . (u)<t,
such that t,u € A, tyu e A, and ], (t,u) < J)(tu) < ] (tu).

Next, we show that &t — u, strongly in X,,. If not, then
[y, <liminf,_ o [|i[ly, - Thus, for {z;} € 47, we have

]A(’:‘k) > ]A(ti‘k) for all t>t (u), and

max

tIZ’ 4 thrl 1 t£+1 1
L) = = -2 Tdx — 2 — "dx
Tattas) = Zaalfy, A2 | ()it B )

tp tq+1 .
< lim | 2|k - 12 i) 1" dx
kglm<p||ukllx0 a1,

r+1

2 J (i‘k):ﬂdx) = lim Jy(t,uy)
0 k—00

B r+1
< Ja(t) :uier}f,]/\(”)’

(55)

in a similar way, we still can get a contradiction. Thus, i,
— u, strongly in X,. It means that

Ja(ite) — Ja(up) = inf Jy(u)ask—co.  (56)

Namely, u, is a minimizer if J; on /4 .u, is a solution to
problem (1) according to Lemma 5.

Proof of Theorem 10. We obtain that problem (1) has two
solutions u; € '} and u, € //} in X, due to the Propositions
8 and 9 and Lemma 5; moreover, we know that two solutions
are distinct since A3 NN} = 3.

4. The Critical Case: 0 <g<1,r=p; -1

For the critical case, since the embedding X,—L? (Q) is not
compact, then the energy functional does not satisty the
Palais-Smale condition globally, but it is true for the energy
functional in a suitable range related to the best fractional
critical Sobolev constant in the embedding XL (R").
For this, we define fractional Sobolev best constant Sy as

— P —
Se= inf melV® VO K7y gy ex,\ {0},
veX,\{0} (J”Q|v(x) |PS )P Ps

(57)

Before we give the Proof of Theorem 13, we start by
some auxiliary results. Firstly, using the same proofs of
Lemma 6, we deduce that there exists A, >0 such that
=@ for each A € (0,A,). Also, it is clear that J, is coercive
and bounded from below on /) for A € (0,A,) by Lemma
7. So, for any A€ (0,1,), we also obtain that /) =AU
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A7, and J, is coercive and bounded from below on /]
and /3. We define

ay = inf+]A(u), &, = inf J,(u). (58)

ueNy eNy
Proposition 11. Let{u, } ¢ X, be a (PS), sequence for J, with
N 1ok
c< S - MAPIPE (59)
n

then there exists a subsequence of {u,}, which converges
strongly in X,, where Sy is defined in (57) and M >0 is
defined by

po @n-(n-2s)(g+1))(1-q)

4(q+1)
: (W) (g+1)/(p~(g+1)) a (60)
4s

Proof. It follows from {u, } is bounded in X, that there exists
Uy, € X, such that u, — u_, weakly in X, that is

JQluk(x) = u ()P (e (%) = () (6(x) = $())K (x - y)dxdy

— jQ|uoo<x> b ()2 (140 (%) o (1)
- (B(¥) - $(r))K (x - y)dxdy forv € X,,
(61)

as k — 00. Moreover, using the same arguments as lemma
9 ([17]), we get that

w, — ug weakly in L7 (R") ;
U, — Uy, inL"(R"); (62)

: n
U, — Uy a.e.inR",

as k — 00, and by ([16], TheoremIV —9], there exists £ €
L"(R") such that

|ug(x)] <€(x)a.e.inR”, (63)

for any 1 <r<p!=np/(n—-ps)(n>ps). Then, using domi-
nated convergence theorem, we have that

[, worrar— | uo)pta (64)

Also, by the same method as in ([18], Lemma 1.32),
we get
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jQ|uk<x> ~ () PK (x - y)dady

|14 (%) = oo (%) = () + 1o () PK (3 = y)dxdy

=

0o (X) =ty () PK (x — y)dxdy + o(1),

|| tmoptiar= (- o))t a
+jQ<uoo<x>>%* dx+ o(1),

(65)

as k — 00. Then,

(), = | ) =m0 K- asdy

0

) [CONR S ROVEe

Q
= Jg|uk(x) — U (%) — i (¥)

+ oo () PK (x = y)dxdy

[ ) = ) PG5~ )ty

Q
- et as— (] (-u)
) (x))lidx+J (o) dx + o(l)) +o(1)
Q

) J (1t = thoo ) () = (1 = 1) ()P

Q

-K(x—y)dxdy - JQ((”k - ”oo)(x))lfdx

+ <]i(uoo), uOO>X0 +0o(1).
(66)

By (J1(to)s o)y, =0 and (J3(u), ) —0 as k
— 00, we know that

1t = v |, = JQK”k — thoo) (%) = (4 = o) )
-K(x—y)dxdy — b, (67)

[ (G- iar—b, ask—co

If b=0, is clearly true. If b>0, in view of the defini-
tion of Sy in 17, we get

= sl 25 ] (=20 dx)m- (68)

Thus, we have b>S, b . That is, b>S¢”. On the
other hand, we have

=1 =1 1 P A 1 a1 qy
c= lim Jy(u)= lim 1;||”k||x0— a1 Q(”k(x))+

- %JQ(”k(x))i*dx> > ] (o) + %s}g’l’ﬂ
(69)

By the assumption that ¢ < (s/n)Si", we have J; (i)
<0. In particular, u,, #0 and

1 1 . 1 N
0< el < o | e d g [ ()2
(70)

Then,

1
c= lim J,(u)= lim (]A(“k) " <]),t(”k)> ”k>XO)

= tim (5] (w0 | u(eas

k—oo \ 1 n

o))
= 2be | aeed (5 - )| (o)t a

N

> %s}?’s + ZJQ(uOO(x))fdx+A<}) - ﬁ) L(uoo(x))zﬂdx.
(71)

Moreover, by Holder inequality, we have

P . (q+1)/p5
|, (ro(enzan<|ayr- (jgwoo(x))% dx) |

(72)
Thus,
S _nlps N *
c> ;SKP + - (JQ(uoo(x)){’; dx)
1 1 . .
- (b7 =(q+1))/p;
(3= ) 73)

) @V g
- (J (o ()2 dx) = S5 4 (),
Ie) n

where

1 1

=t A5 -

- (], tteian) "

) |Q|(P§—(q+1))/P§‘ nt* with

(74)



So, h(n) attains its minimum at #,=(A(p—g-1)
(n = ps)i2ps)"" P QP and

(2n-(n-ps)(q+1))(p-9-1)

h(ny) =-
) 2p(q +1)

' <(p -1-g)(n- 25)> (q+1)/(p? *(q+1))lgl}w:/(p:_(qﬂ)>

2ps

= —MAP: P (a+])
(75)

Therefore,

c> % SIUPS VAP i =@t D), (76)
which is a contradiction. Therefore, b=0 and we

obtain that u;, — u, strongly in X.

Proposition 12. There exists A, > 0 and u, € X, such that

sup]A(tuo) < %S;’{/PS _M/\Pé‘/(P?*(‘ZH)), (77)
>0

for A €(0,A,). In particular

& < %S?{/‘DS — M pi=(g+ D)) (78)

Proof. We suppose there exists A,, >0 such that (s/n)Sg?"

— MA@ 5 0 for all A e (0,A,,). By condition (17)
we have that there is u, € X, \ {0} such that

tq+1
Ja(tug) <sup Iy o (tug) = A—— | (1)1 dx
150 s q+1 o +
s tqul (79)
< g2 (1) T dx.
n 1)

Let A*** = (thrlJQ(uO)z*ldx/(M(q + 1)))@:7<q+1>>/(‘1+1).

Therefore, for A € (0,4,,, ), we obtain that

q+1

pry )\J ()1 dx < —MAP P ~(a D), (80)
(0}

Then, we have (77) holds.

Finally, let A, = min {A,,A,,,A,,, }, we obtain that

38k 3k

i < %S;gps — MAPBE=(a+1) (81)

for A € (0, A,) by the nature of fibering maps ¢, (t) = J, (tu).
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Proof of Theorem 13. There exist two sequences {u;} and
{ug} in X, such that

Ta(uf) — &, Ti(ug) — Oand ] (u;) — &y, T3 (4) — 0,
(82)

as k— 0o because of Propositions 11 and 12. From
related properties of fibering maps ¢, (t), we have &, <0.
Similar to the Proof of Theorem 10, problem (1) admits
two solutions #, € 47 and @, € /| in X,,. Moreover, these
two solutions are distinct since /] NN =@.
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