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The aim of this paper is to investigate the existence of two positive solutions to subcritical and critical fractional integro-differential
equations driven by a nonlocal operatorLp

K . Specifically, we get multiple solutions to the following fractional p-Laplacian equations

with the help of fibering maps and Nehari manifold.
ð−ΔÞspuðxÞ = λuq + ur , u > 0 inΩ,

u = 0, inℝN \Ω:

(
. Our results extend the previous results

in some respects.

1. Introduction

In this work, we are concerned with the existence of solutions
for a nonlocal integro-differential equation

−Lp
Ku xð Þ = λuq + ur , u > 0 inΩ,

u = 0, inℝN \Ω,

(
ð1Þ

where Ω is a bounded smooth domain in ℝn, n > ps with s
∈ ð0, 1Þ, λ > 0, the exponents r and q fulfill 0 < q < 1 < r ≤
p∗s − 1 with the critical fractional Sobolev exponent p∗s = ðnp
/ðn − psÞÞðn > psÞ, and L

p
K is a kind of nonlocal integro-

differential operator defined by:

L
p
Ku xð Þ = 2 lim

ε⟶0+

ð
ℝN \Bε xð Þ

u xð Þ − u yð Þj jp−2 u xð Þð

− u yð ÞÞK x − yð Þdy,
ð2Þ

x ∈ℝN , and K : ℝN \ f0g⟶ ð0, +∞Þ is a measurable
function with the following property:

γK ∈ L1 ℝN� �
where γ xð Þ =min xj jp, 1� �

,
there exists a k0 > 0 such that,
K xð Þ ≥ k0 xj j− N+psð Þ for any x ∈ℝN \ 0f g,
K xð Þ = K −xð Þ for anyx ∈ℝN \ 0f g:

8>>>>><
>>>>>:

ð3Þ

In recent years, the existence and multiplicity of solutions
of elliptic equations in nonlinear analysis have attracted the
attention of many scholars. In particular, problems with reg-
ular nolinearities like uq + λup, p, q > 0 and singular nonline-
arities u−q + λup, p, q > 0. At the same time, elliptic problems
can be divided into two categories according to their order:
integer order and fractional order.

On the one hand, when s = 1, in [1], the authors consid-
ered a class of semilinear problems with singular nonlinear-
ities. Many results on the existence and multiplicity of
solutions for singular problems have appeared in the literature
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[2–6]. For example, authors have investigated a singular
problem with the kind of critical growth in [6],

−Δu = λu−q + u2
∗−1, u > 0 inΩ, u = 0 on ∂Ω, ð4Þ

where 0 < q < 1: They obtained the existence of solutions by
means of the Nehari manifold method in a suitable range
of λ.

On the other hand, in [7], Mukherjee and Sreenadh
considered the following critical fractional Laplace operator
equations with a singular nonlinearity

−Δð Þsu = λa xð Þu−q + u2
∗
s −1, u > 0 inΩ, u = 0 inℝn \Ω:

ð5Þ

They showed the existence and multiplicity of positive solu-
tions with respect to the parameter λ for above equation by
using variational methods. Furthermore, in [8], they studied
a class of critical fractional problems with a lower order per-
turbation by means of variational and topological methods;
precisely, they proved that the number of nontrivial weak
solutions is at least twice the multiplicity of the eigenvalue.
More details on the critical case of fractional p-Laplace equa-
tions can be referred to [9]. In subcritical case, the existence
of positive solutions to the following quasi-linear problem

−Δð Þspu = λg x, uð Þ − f x, uð Þ, x ∈Ω,

u = 0, x ∈ℝN \Ω,

(
ð6Þ

is studied by means of truncation and comparison techniques
in [10]. Zuo et al. [11] investigated a superlinear fractional
elliptic equations; the existence of infinity many solutions is
obtained by the fountain theorem in subcritical case. More-
over, they also get at least two solutions for a fractional p
-Laplace system by the Nehari manifold method in [12].
We will adopt a new technique, considering both subcritical
and critical cases in a more general operator context (see (1)).

In order to state our results, let us introduce some
notations. The space

X =
n
u ∣ u : ℝN ⟶ℝ is measurable,

ujΩ ∈ Lp Ωð Þ and u xð Þ − u yð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K x − yð Þp

p
∈ Lp Qð Þ

o
,

ð7Þ

where Q =ℝ2N \ ðCΩ × CΩÞ with CΩ =ℝN \Ω: The space
X is endowed with the norm,

∥u∥X = ∥u∥Lp Ωð Þ +
ð
Q
u xð Þ − u yð Þj jpK x − yð Þdxdy

� �1/p
, ð8Þ

and we define the closed linear subspace

X0 = u ∈ X : u = 0 almost everywhere inℝN \Ω
� �

, ð9Þ

with the norm

∥u∥X0
=
ð
Q
u xð Þ − u yð Þj jpK x − yð Þdxdy

� �1/p
: ð10Þ

Let

K : ℝN \ 0f g⟶ 0,+∞ð Þ, ð11Þ

fulfill condition (3). We have that C∞
0 ðΩÞ ⊂ X0, and ðX0,

∥ · ∥X0
Þ is a reflexive Banach space (see [13]). Moreover,

X ⊂Ws,p Ωð Þ,
X0 ⊂Ws,p ℝN� �

,
ð12Þ

where Ws,pðΩÞ is the usual fractional Sobolev space
endowed norm

∥u∥Ws,p Ωð Þ = ∥u∥Lp Ωð Þ +
ð
Ω×Ω

u xð Þ − u yð Þj jp
x − yj jn+ps dxdy

� �1/p
, ð13Þ

and the embedding

X0↪Lp
∗
s Ωð Þ, ð14Þ

C0ðN , p, sÞ such that, for any v ∈ X0, 1 < k < p∗s

∥v∥Lk Ωð Þ ≤ C0∥v∥X0
: ð15Þ

Definition 1. We say that u is a weak solution of problem
(1), if u fulfills

ð
Q
u xð Þ − u yð Þj jp−2 u xð Þ − u yð Þð Þ φ xð Þ − φ yð Þð ÞK x − yð Þdxdy

=
ð
Ω

λuq+ xð Þ + up+ xð Þð Þφ xð Þdx,

ð16Þ

for all φ ∈ X0, where u+ = max fu, 0g.

The main results of this article are as follows.

Theorem 2. Set s ∈ ð0, 1Þ, n > ps, K fulfilling condition (3), if
0 < q < 1, 1 < r < p∗s , then there exists λ★ > 0, such that for λ
∈ ð0, λ★Þ, equation (1) has at least two positive solutions.

Theorem 3. Set s ∈ ð0, 1Þ, n > ps, and Ω be an open bounded
domain in ℝn with Lipschitz boundary. K fulfilling the condi-
tion (3), if 0 < q < 1, r = p∗s − 1, assumes that there exists u0
∈ X0 \ f0g with u0 ≥ 0 almost everywhere in ℝn, such that

sup
t≥0

I K ,p∗s tu0ð Þ < s
n
Sn/psK , ð17Þ
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where I K ,p∗s will be introduced in Section 2. Then, there exists
λ2 > 0, such that for λ ∈ ð0, λ2Þ, problem (1) admits least two
solutions.

2. Preliminaries

We define the energy functional

Jλ : X0 ⟶ℝ, ð18Þ

associated to problem (1) as

Jλ uð Þ =I K ,p uð Þ −I λ uð Þ, ð19Þ

with

I K ,p uð Þ = 1
p

ð
Q
u xð Þ − u yð Þj jpK x − yð Þdxdy

−
1

r + 1

ð
Ω

ur+1+ xð Þdx,

I λ uð Þ = λ

q + 1

ð
Ω

uq+1+ xð Þdx:

ð20Þ

We can see that Jλ ∈ C1ðX0,ℝÞ and

Jλ′ uð Þ, φ
D E

X0
=
ð
Q
u xð Þ − u yð Þj jp−2 u xð Þ − u yð Þð Þ

× φ xð Þ − φ yð Þð ÞK x − yð Þdxdy
− λ
ð
Ω

uq+ xð Þφ xð Þdx −
ð
Ω

ur+ xð Þφ xð Þdx,

ð21Þ

for any φ ∈ X0.
Now, we give the Nehari manifold

N λ = u ∈ X0 \ 0f g: Jλ′ uð Þ, u
D E

= 0
n o

, ð22Þ

where h,i denotes the duality between X0 and its dual space.
Thus, u ∈N λ if and only if

uk kpX0
− λ
ð
Ω

uq+1+ xð Þdx −
ð
Ω

ur+1+ xð Þdx = 0: ð23Þ

The Nehari manifold N λ is closely related to the follow-
ing function φu : t↦ JλðtuÞ for t > 0 defined by

φu tð Þ≔ Jλ tuð Þ = tp

p
∥u∥pX0

− λ
tq+1

q + 1

ð
Ω

uq+1+ xð Þdx

−
tr+1

r + 1

ð
Ω

ur+1+ xð Þdx:
ð24Þ

Remark 4. Set u ∈ X0 \ f0g, then tu ∈N λif and only if φu′ðtÞ
= 0.

Moreover,

φu′ tð Þ = tp−1∥u∥pX0
− λtq

ð
Ω

uq+1+ xð Þdx − tr
ð
Ω

ur+1+ xð Þdx, ð25Þ

φu′′ tð Þ = p − 1ð Þtp−2∥u∥pX0
− qλtq−1

ð
Ω

uq+1+ xð Þdx

− rtr−1
ð
Ω

ur+1+ xð Þdx:
ð26Þ

According to (25) and Remark 4, for u ∈N λ, we have

φu
′′ 1ð Þ = p − 1ð Þ∥u∥pX0

− λq
ð
up+1+ xð Þdx − r

ð
Ω

ur+1+ xð Þdx

= p − r − 1ð Þ
ð
Ω

ur+1+ xð Þdx + λ p − q − 1ð Þ
ð
Ω

uq+1+ xð Þdx

= p − q − 1ð Þ∥u∥pX0
− q + rð Þ

ð
Ω

ur+1+ xð Þdx

= p − r − 1ð Þ∥u∥pX0
− λ q − rð Þ

ð
Ω

uq+1+ xð Þdx:

ð27Þ

The N λ is divided into three sets, which are local mini-
mum, local maximum, and local inflection point, respec-
tively, i.e.,

N +
λ = u ∈N λ : φu

′′ 1ð Þ > 0
n o

,

N +
λ = u ∈N λ : φu′′ 1ð Þ > 0
n o

,

N 0
λ = u ∈N λ : φu

′′ 1ð Þ = 0
n o

:

ð28Þ

To prove our result, we should start to show the following
auxiliary lemmas.

Lemma 5. If u0 is a local minimizer of Jλ onN λ and u0 ∉N
0
λ,

then u0 is a critical point of Jλ.
Similar to Theorem 2.3 in [14], we can get this conclusion.
About fibering maps and the Nehari manifold, considering

the function ψu : ℝ
+ ⟶ℝ defined by

ψu tð Þ = t1−q∥u∥pX0
− tr−q

ð
Ω

ur+1+ dx: ð29Þ

Obviously, for any t > 0, tu ∈N λ if and only if

ψu tð Þ = λ
ð
Ω

uq+1+ dx: ð30Þ

Moreover,

ψu′ tð Þ = 1 − qð Þt−q∥u∥pX0
− r − qð Þtr−q−1

ð
Ω

ur+1+ dx, ð31Þ
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and moreover, we know that tu ∈N λ, then

tqψu
′ tð Þ = φu

′′ tð Þ: ð32Þ

So, tu ∈N +
λðorN −

λÞ if and only if ψu
′ðtÞ > 0 (or <0).

Assume u ∈ X0 and u+ ≠ 0: In view of (29), ψu fulfills the
following properties:

(i) ψu has a unique critical point at t = tmaxðuÞ =
ððð1 − qÞ∥u∥pX0

Þ/ððr − qÞÐ
Ω
ur+1+ dxÞÞ1/ðr−1Þ > 0

(ii) ψu↑ on ð0, tmaxðuÞÞ and ↓ on ðtmaxðuÞ, +∞Þ

limt⟶+∞ψu tð Þ = −∞: ð33Þ

Further, it follows from
Ð
Ω
uq+1+ dx > 0 that (30) has no

solutions if λ fulfills

λ
ð
Ω

uq+1+ dx > ψu tmax uð Þð Þ =
"

1 − q
r − q

� � 1−qð Þ/ r−1ð Þ

−
1 − q
r − q

� � r−qð Þ/ r−1ð Þ# ∥u∥ p r−qð Þð Þ/ r−1ð Þ
X0Ð

Ω
ur+1+ dx

� � 1−qð Þ/ r−1ð Þ :

ð34Þ

According to (25) and (30) if λ fulfills (34), then φu′ðtÞ > 0:
It seems φu′ðtÞ < 0 as λ is sufficiently large. Therefore, tu ∉N λ

for any t > 0: Moreover, if λ fulfills

0 < λ
ð
Ω

uq+1+ dx < ψu tmax uð Þð Þ, ð35Þ

then there exist t1 and t2 with t1 < tmaxðuÞ < t2, such that

ψu t1ð Þ = ψu t2ð Þ = λ
ð
Ω

uq+1+ dx, and ψu′ t1ð Þ > 0, ψu′ t2ð Þ < 0,

ð36Þ

combining (25) and (30), which imply that φu
′ðt1Þ = φu

′ðt2Þ = 0:
It follows from (32) that φu

′′ðt1Þ > 0, φu
′′ðt2Þ < 0, which mean

that the fibering map φu admits a local minimum t1u ∈N
+
λ

and a local maximum at t2u ∈N
−
λ:

3. The Subcritical Case: 0 < q < 1 < r < p∗s − 1
Firstly, we prove the following lemmas.

Lemma 6. There exists λ⋆ > 0, such that for any λ ∈ ð0, λ⋆Þ,
we have N 0

λ =∅.

Proof. Using the inverse method, if N 0
λ ≠∅ for any λ > 0:

Then,

Jλ′ uð Þ, u
D E

X0
= 0,

φu
′′ 1ð Þ = 0:

ð37Þ

for u ∈N 0
λ.

Namely,

∥u∥pX0
= λ
ð
Ω

uq+1+ ds +
ð
Ω

ur+1+ dx, and∥u∥2X0

= λq
ð
Ω

uq+1+ ds + r
ð
Ω

ur+1+ dx:
ð38Þ

Thus,

1 − qð Þ∥u∥pX0
= r − qð Þ

ð
Ω

ur+1+ dx, and r − 1ð Þ∥u∥pX0

= λ r − qð Þ
ð
Ω

uq+1+ dx:
ð39Þ

Using the Hölder inequality and Remark 4, there exist
two positive constants C1, C2 such that

∥u∥pX0
≤ C1∥u∥

r+1
X0

and∥u∥pX0
≤ λC2∥u∥

q+1
X0

: ð40Þ

It yields that C1/ðp−r−1Þ
1 ≤ ∥u∥X0

≤ ðλC2Þ1/ðp−q−1Þ: If λ is
small enough, then it is impossible. Thus, assuming no, the
original set is empty.

Lemma 7. Jλ is coercive and bounded from below on N λ for
λ ∈ ð0, λ⋆Þ.

Proof. Let u ∈N λ, (19) and (23) we get

Jλ uð Þ = 1
p
−

1
r + 1

� �
∥u∥pX0

− λ
1

q + 1 −
1

r + 1

� �ð
Ω

uq+1+ dx:

ð41Þ

Using Remark 4 and Hölder inequality, we get

ð
Ω

uq+1+ dx ≤ Cn,q,s,θ, Ωj j∥u∥
q+1
X0

: ð42Þ

Prove complete due to 0 < q < 1 < r:
By Lemmas 6 and 7, for any λ ∈ ð0, λ⋆Þ, we get N λ =

N +
λ ∪N −

λ , and so, Jλ is coercive and bounded from below
on N +

λ and N −
λ . Therefore, we define

α+λ = inf
u∈N +

λ

Jλ uð Þ, α−λ = inf
u∈N −

λ

Jλ uð Þ: ð43Þ

We have the following result.
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Proposition 8. If 0 < λ < λ⋆, then the functional Jλ has a
minimizer u1 in N +

λ and satisfies

(1) Jλðu1Þ = infu∈N +
λ
JλðuÞ < 0.

(2) u1 is a solution of problem (1).

Proof. Since the bounded from below of Jλ on N +
λ , there

exists a minimizing sequence fukg ⊂N +
λ , such that

lim
k⟶∞

Jλ ukð Þ = inf
u∈N +

λ

Jλ uð Þ: ð44Þ

We know that the sequence fukg is bounded in X0 by
Lemma 7. ðX0, ∥ · ∥X0

Þ is a Hilbert space (see Lemma 7 in
[15]); thus, there exists u1 ∈ X0 such that, up to a subse-
quence,

ð
Q
uk xð Þ − uk yð Þj jp−2 uk xð Þ − uk yð Þð Þ ϕ xð Þ − ϕ yð Þð ÞK x − yð Þdxdy

⟶

ð
Q
u1 xð Þ − u2 yð Þj jp−2 u1 xð Þ − u1 yð Þð Þ

� ϕ xð Þ − ϕ yð Þð ÞK x − yð Þdxdy for∀ϕ ∈ X0,
ð45Þ

when k⟶∞: Further, by Lemma 8 in [15], we have

uk ⟶ u1 in Lr ℝnð Þ, uk ⟶ u1 a:eℝn, ð46Þ

as k⟶∞, and by ([16], TheoremIV− 9), there exists ℓ ∈
LrðℝnÞ such that

uk xð Þj j ≤ ℓ xð Þ a:e inℝn, ð47Þ

for any 1 ≤ r < p∗s = np/ðn − psÞðn > psÞ: It follows from the
dominated convergence theorem that

ð
Ω

ukð Þq+1+ dx⟶
ð
Ω

u1ð Þq+1+ dx, and
ð
Ω

ukð Þr+1+ dx

⟶

ð
Ω

u1ð Þr+1+ dx,
ð48Þ

ask⟶∞: So, there exists t1 such that t1u1 ∈N
+
λ and

Jλðt1u1Þ < 0. Therefore, we get inf
u∈N +

λ

JλðuÞ < 0.

In order to prove that uk ⟶ u1 strongly in X0: Still use
the arc method if not, then ku1kX0

< liminf k⟶∞kukkX0
:

Hence, for fukg ∈N +
λ , we get

lim
k⟶∞

φuk
′ t1ð Þ = lim

k⟶∞

�
t1 ukk kpX0

− λtq1

ð
Ω

ukð Þq+1+ dx

− tr1

ð
Ω

ukð Þr+1+ dx
�
> t1 u1k kpX0

− λtq1

ð
Ω

u1ð Þq+1+ dx − tr1

ð
Ω

u1xð Þr+1+ dx

= φu1
′ t1ð Þ = 0:

ð49Þ

That is, φuk
′ ðt1Þ > 0 for k large enough. Since uk = 1, uk ∈

N +
λ , we infer that φuk

′ ðtÞ < 0 for t ∈ ð0, 1Þ and φuk
′ ð1Þ = 0 for

all k: So, must be t1 > 1: In addition because φu1
ðtÞ is decreas-

ing on ð0, t1Þ, and so,

Jλ t1u1ð Þ ≤ Jλ u1ð Þ < lim
k⟶∞

Jλ ukð Þ = inf
u∈N +

λ

Jλ uð Þ: ð50Þ

Obviously, the above equation is a contradiction.
Therefore, uk ⟶ u1 strongly in X0: It means that

Jλ ukð Þ⟶ Jλ u1ð Þ = inf
u∈N +

λ

Jλ uð Þ as k⟶∞, ð51Þ

i.e., u1 is a minimizer if Jλ on N +
λ: By Lemma 5, u1 is a

solution to problem (1).

Proposition 9. If 0 < λ < λ1, then Jλ admits a minimizer u2 in
N −

λ and satisfies

(1) Jλðu2Þ = infu∈N −
λ
JλðuÞ > 0.

(2) u2 is a solution to problem (1).

Proof. Since the bounded from below of Jλ on N −
λ , there

exists a minimizing sequence f~ukg ⊂N −
λ , such that

lim
k⟶∞

Jλ ~ukð Þ = inf
u∈N −

λ

Jλ uð Þ: ð52Þ

Similar to Proposition 8, there exists u2 ∈ X0 such that

ð
Q
~uk xð Þ − ~uk yð Þj jp−2 ~uk xð Þ − ~uk yð Þð Þ ϕ xð Þ − ϕ yð Þð ÞK x − yð Þdxdy

⟶

ð
Q
u2 xð Þ − u2 yð Þj jp−2 u2 xð Þ − u2 yð Þð Þ

� ϕ xð Þ − ϕ yð Þð ÞK x − yð Þdxdy for∀ϕ ∈ X0,
ð53Þ

as k⟶∞, and
ð
Ω

~ukð Þq+1+ dx⟶
ð
Ω

u2ð Þq+1+ dx, andð
Ω

~ukð Þr+1+ dx⟶
ð
Ω

u2ð Þr+1+ dx,
ð54Þ
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as k⟶∞: Moreover, from the nature of the fibering maps
φuðtÞ, we infer that there exist t1, t2 with t1 < tmaxðuÞ < t2
such that t1u ∈N

+
λ , t2u ∈N −

λ , and Jλðt1uÞ ≤ JλðtuÞ ≤ Jλðt2uÞ.
Next, we show that ~uk ⟶ u2 strongly in X0. If not, then

ku2kX0
< lim inf k⟶∞k~ukkX0

: Thus, for f~ukg ∈N −
λ , we have

Jλð~ukÞ ≥ Jλðt~ukÞ for all t ≥ tmaxðuÞ, and

Jλ t2u2ð Þ = tp2
p

u2k kpX0
− λ

tq+12
q + 1

ð
Ω

u2ð Þq+1+ dx − tr+12
r + 1

ð
Ω

u2ð Þr+1+ dx

< lim
k⟶∞

 
tp2
p

~ukk kpX0
− λ

tq+12
q + 1

ð
Ω

~ukð Þq+1+ dx

−
tr+12
r + 1

ð
Ω

~ukð Þr+1+ dx
!
= lim

k⟶∞
Jλ t2~ukð Þ

≤ Jλ ~ukð Þ = inf
u∈N −

λ

Jλ uð Þ,

ð55Þ

in a similar way, we still can get a contradiction. Thus, ~uk
⟶ u2 strongly in X0: It means that

Jλ ~ukð Þ⟶ Jλ u2ð Þ = inf
u∈N −

λ

Jλ uð Þ as k⟶∞: ð56Þ

Namely, u2 is a minimizer if Jλ on N −
λ:u2 is a solution to

problem (1) according to Lemma 5.

Proof of Theorem 10. We obtain that problem (1) has two
solutions u1 ∈N

+
λ and u2 ∈N

−
λ in X0 due to the Propositions

8 and 9 and Lemma 5; moreover, we know that two solutions
are distinct since N +

λ ∩N −
λ =∅:

4. The Critical Case: 0 < q < 1, r = p∗s − 1
For the critical case, since the embedding X0↪Lp

∗
s ðΩÞ is not

compact, then the energy functional does not satisfy the
Palais-Smale condition globally, but it is true for the energy
functional in a suitable range related to the best fractional
critical Sobolev constant in the embedding X0↪Lp

∗
s ðℝnÞ:

For this, we define fractional Sobolev best constant SK as

SK = inf
v∈X0\ 0f g

Ð
ℝ2n v xð Þ − v yð Þj jpK x − yð ÞdxdyÐ

Ω
v xð Þj jp∗s� �p/p∗s for v ∈ X0 \ 0f g:

ð57Þ

Before we give the Proof of Theorem 13, we start by
some auxiliary results. Firstly, using the same proofs of
Lemma 6, we deduce that there exists λ∗ > 0 such that N 0

λ
=∅ for each λ ∈ ð0, λ∗Þ. Also, it is clear that Jλ is coercive
and bounded from below on N λ for λ ∈ ð0, λ∗Þ by Lemma
7. So, for any λ ∈ ð0, λ∗Þ, we also obtain that N λ =N +

λ ∪

N −
λ , and Jλ is coercive and bounded from below on N +

λ
and N −

λ: We define

~α+λ = inf
u∈N +

λ

Jλ uð Þ, ~α−λ = inf
u∈N −

λ

Jλ uð Þ: ð58Þ

Proposition 11. Letfukg ⊂ X0 be a ðPSÞc sequence for Jλ with

c < s
n
Sn/psK −Mλp

∗
s /p★s −q, ð59Þ

then there exists a subsequence of fukg, which converges
strongly in X0, where SK is defined in (57) and M > 0 is
defined by

M = 2n − n − 2sð Þ q + 1ð Þð Þ 1 − qð Þ
4 q + 1ð Þ

� 1 − qð Þ n − 2sð Þ
4s

� � q+1ð Þ/ p★s − q+1ð Þð Þ
Ωj j:

ð60Þ

Proof. It follows from fukg is bounded in X0 that there exists
u∞ ∈ X0 such that uk ⟶ u∞ weakly in X0, that is

ð
Q
uk xð Þ − uk yð Þj jp−2 uk xð Þ − uk yð Þð Þ ϕ xð Þ − ϕ yð Þð ÞK x − yð Þdxdy

⟶

ð
Q
u∞ xð Þ − u∞ yð Þj jp−2 u∞ xð Þ − u∞ yð Þð Þ

� ϕ xð Þ − ϕ yð Þð ÞK x − yð Þdxdy for∀ϕ ∈ X0,
ð61Þ

as k⟶∞: Moreover, using the same arguments as lemma
9 ([17]), we get that

uk ⟶ u∞weakly in Lp∗s ℝnð Þ ;
uk ⟶ u∞ in Lr ℝnð Þ ;
uk ⟶ u∞ a:e:inℝn,

ð62Þ

as k⟶∞, and by ([16], TheoremIV− 9], there exists ℓ ∈
LrðℝnÞ such that

uk xð Þj j ≤ ℓ xð Þ a:e:inℝn, ð63Þ

for any 1 ≤ r < p∗s = np/ðn − psÞðn > psÞ: Then, using domi-
nated convergence theorem, we have that

ð
Ω

ukð Þq+1+ dx⟶
ð
Ω

u∞ð Þq+1+ dx: ð64Þ

Also, by the same method as in ([18], Lemma 1.32),
we get
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ð
Q
uk xð Þ − uk yð Þj jpK x − yð Þdxdy

⟶

ð
Q
uk xð Þ − u∞ xð Þ − uk yð Þ + u∞ yð Þj jpK x − yð Þdxdy

+
ð
Q
u∞ xð Þ − u∞ yð Þj jpK x − yð Þdxdy + o 1ð Þ,

ð
Ω

uk xð Þð Þp∗s+ dx =
ð
Ω

uk − u∞ð Þ xð Þð Þp∗s+ dx

+
ð
Ω

u∞ xð Þð Þp∗s+ dx + o 1ð Þ,

ð65Þ

as k⟶∞: Then,

Jλ′ ukð Þ, uk
D E

X0
=
ð
Q
uk xð Þ − uk yð Þj jpK x − yð Þdxdy

− λ
ð

uk xð Þð Þq+1+ dx −
ð
Ω

uk xð Þð Þp∗s+ dx

=
ð
Ω

uk xð Þ − u∞ xð Þ − uk yð Þj
+ u∞ yð ÞjpK x − yð Þdxdy
+
ð
Q
u∞ xð Þ − u∞ yð Þj jpK x − yð Þdxdy

− λ
ð
Ω

uk xð Þð Þq+1+ dx −
�ð

Ω

uk − u∞ð Þð

� xð ÞÞp∗s+ dx +
ð
Ω

u∞ð Þr+dx + o 1ð Þ
�
+ o 1ð Þ

=
ð
Q

uk − u∞ð Þ xð Þ − uk − u∞ð Þ yð Þj jp

� K x − yð Þdxdy −
ð
Ω

uk − u∞ð Þ xð Þð Þp∗s+ dx

+ Jλ′ u∞ð Þ, u∞
D E

X0 + o 1ð Þ:
ð66Þ

By hJλ′ðu∞Þ, u∞iX0
= 0 and hJλ′ðukÞ, ukiX0

⟶ 0 as k
⟶∞, we know that

uk − u∞k kpX0
=
ð
Q

uk − u∞ð Þ xð Þ − uk − u∞ð Þ yð Þj jp

� K x − yð Þdxdy⟶ b,ð
Ω

uk − u∞ð Þ xð Þð Þp∗s+ dx⟶ b,  as k⟶∞:

ð67Þ

If b = 0, is clearly true. If b > 0, in view of the defini-
tion of SK in 17, we get

uk − u∞k kpX0
≥ SK

ð
Ω

uk − u∞ð Þ xð Þð Þp∗s+ dx
� �p/p2s

: ð68Þ

Thus, we have b ≥ SKb
p/p∗s : That is, b ≥ Sn/psK : On the

other hand, we have

c = lim
k⟶∞

Jλ ukð Þ = lim
k⟶∞

� 1
p

ukk kpX0
− λ

1
q + 1

ð
Ω

uk xð Þð Þq+1+ dx

−
1

r + 1

ð
Ω

uk xð Þð Þp★+ dx
�
≥ Jλ u∞ð Þ + s

n
Sn/psK :

ð69Þ

By the assumption that c < ðs/nÞSn/psK , we have Jλðu∞Þ
< 0: In particular, u∞ ≠ 0 and

0 < 1
p

u∞k kpX0
< 1
p∗s

ð
Ω

u∞ xð Þð Þp∗s+ dx + λ
1

q + 1

ð
Ω

u∞ xð Þð Þq+1+ dx:

ð70Þ

Then,

c = lim
k⟶∞

Jλ ukð Þ = lim
k⟶∞

Jλ ukð Þ − 1
p

Jλ′ ukð Þ, uk
D E

X0

� �

= lim
k⟶∞

�
s
n

ð
Ω

uk − u∞ð Þ xð Þð Þp∗s+ dx + s
n

ð
Ω

u∞ xð Þð Þp∗s+ dx

+ λ
1
p
−

1
q + 1

� �ð
Ω

uk xð Þð Þq+1+ dx
�

= s
n
b + s

n

ð
Ω

u∞ xð Þð Þp∗s+ dx + λ
1
p
−

1
q + 1

� �ð
Ω

u∞ xð Þð Þq+1+ dx

≥
s
n
Sn/psK + s

n

ð
Ω

u∞ xð Þð Þp∗+ dx + λ
1
p
−

1
q + 1

� �ð
Ω

u∞ xð Þð Þq+1+ dx:

ð71Þ

Moreover, by H€older inequality, we have

ð
Ω

u∞ xð Þð Þq+1+ dx ≤ Ωj j p∗s − q+1ð Þð Þ/p∗s
ð
Ω

u∞ xð Þð Þp∗s+ dx
� � q+1ð Þ/p∗s

:

ð72Þ

Thus,

c ≥
s
n
Sn/psK + s

n

ð
Ω

u∞ xð Þð Þp∗s+ dx
� �

+ λ
1
p
−

1
q + 1

� �
Ωj j p∗s − q+1ð Þð Þ/p∗s

�
ð
Ω

u∞ xð Þð Þp∗s+ dx
� � q+1ð Þ/ps

≔
s
n
Sn/psK + h ηð Þ,

ð73Þ

where

h ηð Þ = s
n
ηp

∗
s + λ

1
p
−

1
q + 1

� �
Ωj j p∗s − q+1ð Þð Þ/p∗s ηq+1 with η

=
ð
Ω

u∞ xð Þð Þp∗s+ dx
� �1/p∗s

:

ð74Þ
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So, hðηÞ attains its minimum at η0 = ðλðp − q − 1Þ
ðn − psÞ/2psÞ1/ðp★s −ðq+1ÞÞjΩj1/p★s and

h η0ð Þ = −
2n − n − psð Þ q + 1ð Þð Þ p − q − 1ð Þ

2p q + 1ð Þ

� p − 1 − qð Þ n − 2sð Þ
2ps

� � q+1ð Þ/ p★s − q+1ð Þð Þ
∣Ω∣λp

∗
s / p∗s − q+1ð Þð Þ

= −Mλp
∗
s /p∗s − q+1ð Þ:

ð75Þ

Therefore,

c ≥
s
n
Sn/psK −Mλp

∗
s / p∗s − q+1ð Þð Þ, ð76Þ

which is a contradiction. Therefore, b = 0 and we
obtain that uk ⟶ u∞ strongly in X0:

Proposition 12. There exists λ2 > 0 and u0 ∈ X0 such that

sup
t>0

Jλ tu0ð Þ < s
n
Sn/psK −Mλp

∗
s / p∗s − q+1ð Þð Þ, ð77Þ

for λ ∈ ð0, λ2Þ: In particular

~α−λ <
s
n
Sn/psK −Mλp

∗
s / p∗s − q+1ð Þð Þ: ð78Þ

Proof. We suppose there exists λ∗∗ > 0 such that ðs/nÞSn/psK

−Mλp
∗
s /ðp★s −ðq+1ÞÞ > 0 for all λ ∈ ð0,λ∗∗Þ: By condition (17)

we have that there is u0 ∈ X0 \ f0g such that

Jλ tu0ð Þ ≤ sup
t≥0

I K ,p∗s tu0ð Þ − λ
tq+1

q + 1

ð
Ω

u0ð Þq+1+ dx

< s
n
Sn/psK − λ

tq+10
q + 1

ð
Ω

u0ð Þq+1+ dx:
ð79Þ

Let λ∗∗∗ ≔ ðtq+10
Ð
Ω
ðu0Þq+1+ dx/ðMðq + 1ÞÞÞðp

∗
s −ðq+1ÞÞ/ðq+1Þ.

Therefore, for λ ∈ ð0,λ∗∗∗Þ, we obtain that

−
tq+10
q + 1 λ

ð
Ω

u0ð Þq+1+ dx < −Mλp
∗
s / p∗s − q+1ð Þð Þ: ð80Þ

Then, we have (77) holds.
Finally, let λ2 = min fλ∗,λ∗∗,λ∗∗∗g, we obtain that

~α−λ <
s
n
Sn/psK −Mλp

∗
s / p∗s − q+1ð Þð Þ, ð81Þ

for λ ∈ ð0, λ2Þ by the nature of fibering maps φuðtÞ = JλðtuÞ:

Proof of Theorem 13. There exist two sequences fu+kg and
fu−kg in X0 such that

Jλ u+kð Þ⟶ ~α+λ , Jλ′ u+kð Þ⟶ 0 and Jλ u−kð Þ⟶ ~α−λ , Jλ′ u−kð Þ⟶ 0,
ð82Þ

as k⟶∞ because of Propositions 11 and 12. From
related properties of fibering maps φuðtÞ, we have ~α+λ < 0:
Similar to the Proof of Theorem 10, problem (1) admits
two solutions ~u1 ∈N

+
λ and ~u2 ∈N

−
l in X0: Moreover, these

two solutions are distinct since N +
λ ∩N −

λ =∅:
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