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Recently, hypergeometric functions of four variables are investigated by Bin-Saad and Younis. In this manuscript, our goal is to
initiate a new quadruple hypergeometric function denoted by Xð4Þ

84 , and then, we ensure the existence of solutions of systems of
partial differential equations for this function. We also establish some integral representations involving the quadruple

hypergeometric function Xð4Þ
84 .

1. Introduction

Special functions, in recent years, are a piece of research that
turned out to be very attractive to many scholars, hunting
generalisations which are almost always evoked by applica-
tions. Hypergeometric functions of several variables have
many applications in mathematical physics, statistical sci-
ences, physics, dynamics, quantum mechanics, chemistry,
and engineering (see, e.g., [1–7]). Multivariable hypergeo-
metric functions occur in diverse areas of mathematics such
as approximation theory, partition theory, representation
theory, group theory, mirror symmetry, and algebraic geom-
etry. They possess important properties such as recurrence
and explicit relations, summation formulas, symmetric and
convolution identities, and algebraic properties. Further-
more, multidimensional hypergeometric functions are used
to solve boundary value problems (Dirichlet problem, Neu-
mann problem, and Holmgren problem) for multidimen-
sional degenerate differential equations (see [8–12]).

In [13], Bin-Saad and Younis introduced several integral
representations of Euler type and Laplace type for new hyper-
geometric functions in four variables. The authors, in [14],
defined four new quadruple hypergeometric functions,

namely, Xð4Þ
80 , X

ð4Þ
81 , X

ð4Þ
82 , andX

ð4Þ
83 , and they obtained frac-

tional derivative formulas, integral representations, and
operational formulas for these quadruple hypergeometric
functions. More recently, Younis et al. [15] introduced and
studied further quadruple hypergeometric functions denoted

by Xð4Þ
85 , X

ð4Þ
86 ,⋯, Xð4Þ

90 . Each quadruple function in [13–15]
can be expressed as

X 4ð Þ ·ð Þ = 〠
∞

m,n,p,q=0
Θ m, n, p, qð Þ x

m

m!

yn

n!
zp

p!
uq

q!
, ð1Þ

where Θðm, n, p, qÞ is a sequence of complex parameters
and there are twelve parameters in every series Xð4Þð·Þ
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(eight a’s and four c’s). The 1st, 2nd, 3rd, and 4th param-
eters in Xð4Þð·Þ are connected with the integers m, n, p, and
q, respectively. Every repeated parameter in the series
Xð4Þð·Þ points out a term with double parameters in Θðm, n,
p, qÞ. Hence, it is possible to form various combinations of
indices. It seems that there is no way to establish indepen-
dently the number of distinct Gaussian hypergeometric series
for each arbitrary integer n ≥ 2 without giving explicitly all
such series. Hence, in each situation with n = 4, one ought to
start with actually building the set like the case n = 3 (refer to
[16]).

Motivated by the works [13–15], we define here the fol-
lowing quadruple hypergeometric function:

X 4ð Þ
84 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tð Þ

= 〠
∞

m,n,p,q=0

ℓ1ð Þ2m+n ℓ2ð Þn+p ℓ3ð Þp+q ℓ4ð Þq
j1ð Þm+p j2ð Þn j3ð Þq

xm

m!

yn

n!
zp

p!
tq

q!

� xj j < 1
4 , yj j < 1 < zj j < 1 < tj j < 1

� �
,

ð2Þ

where ðℓÞn is the well-known Pochhammer symbol given as

ℓð Þn ≔
1, n = 0,
ℓ ℓ + 1ð Þ⋯ ℓ + n − 1ð Þ, n ∈ℕ≔ 1, 2,⋯f g:

(
ð3Þ

Throughout this paper, ℕ, ℤ−, and ℂ denote the sets of
positive integers, negative integers, and complex numbers,
respectively. Also,

ℕ0 ≔ℕ ∪ 0f g,
ℤ−

0 ≔ℤ− ∪ 0f g:
ð4Þ

Recently, various interesting hypergeometric functions in
several variables have been investigated by many authors
(see, e.g., [17–24]). In Section 2, we show how to find the lin-
early independent solutions of partial differential equations

satisfied by the function Xð4Þ
84 . Section 3 is aimed at presenting

some integral representations of Euler type for our quadruple
function.

2. Solving Systems of Partial
Differential Equations

Following the theory of multiple hypergeometric functions
[25], the system of partial differential equations for the qua-

druple hypergeometric function Xð4Þ
84 is given as follows:

where u = Xð4Þ
84 ðℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tÞ: Starting from (5) and by making use of some elementary

calculations, we define the system of second-order partial dif-
ferential equations:

j1 + x
∂
∂x

+ z
∂
∂z

� �
x
∂
∂x

+ 1
� �

x−1u − ℓ1 + 2x ∂
∂x

+ 2y ∂
∂y

+ 1
� �

ℓ1 + 2x ∂
∂x

+ 2y ∂
∂y

� �
u = 0,

j2 + y
∂
∂y

� �
y
∂
∂y

+ 1
� �

y−1u − ℓ1 + 2x ∂
∂x

+ 2y ∂
∂y

� �
ℓ2 + 2x ∂

∂x
+ y

∂
∂y

� �
u = 0,

j1 + x
∂
∂x

+ z
∂
∂z

� �
z
∂
∂z

+ 1
� �

z−1u − ℓ2 + y
∂
∂y

+ z
∂
∂z

� �
ℓ3 + z

∂
∂z

+ t
∂
∂t

� �
u = 0,

j3 + t
∂
∂t

� �
t
∂
∂t

+ 1
� �

t−1u − ℓ3 + z
∂
∂z

+ t
∂
∂t

� �
ℓ4 + t

∂
∂t

� �
u = 0,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð5Þ

x 1 − 4xð Þuxx − 4xyuxy + zuxz − y2uyy + j1 − 2 2ℓ1 + 3ð Þx½ �ux − 2 ℓ1 + 1ð Þyuy − ℓ1 ℓ1 + 1ð Þu = 0,
y 1 − yð Þuyy − 2xyuxy − 2xzuxz + yzuxz − 2ℓ2xux + j2 − ℓ1 + ℓ2 + 1ð Þy½ �uy − ℓ1zuz − ℓ1ℓ2u = 0,
z 1 − zð Þuzz − xuxz − yzuyz + ytuyt − ztuzt − ℓ3yuy + j1 − ℓ3 + ℓ2 + 1ð Þz½ �uz − ℓ2tut − ℓ2ℓ3u = 0,
t 1 − tð Þutt − ztuzt − ℓ4zuz + j3 − ℓ3 + ℓ4 + 1ð Þt½ �ut − ℓ3ℓ4u = 0:

8>>>>><
>>>>>:

ð6Þ
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It is noted that four equations of the system (6) are simul-

taneous. In fact, the hypergeometric function Xð4Þ
84 verifies the

system. To find the linearly independent solutions of system
(6), we will search the solutions in the form

u = xαyβzγtδw, ð7Þ

where w is an unknown function and α, β, γ, and δ are con-
stants, which are to be determined. So, substituting u = xαyβ

zγtδw into the system (6), we get

Systems (8) and (6) have the same structure and can
therefore be approached with similar techniques. System
(8) implies

α = 0,
β β + j2 − 1ð Þ = 0,
γ = 0,
δ δ + j3 − 1ð Þ = 0:

8>>>>><
>>>>>:

ð9Þ

Therefore, system (9) has the following solutions:

1 2 3 4
α≔ 0 0 0 0
β≔ 0 1 − j2 0 1 − j2

γ≔ 0 0 0 0
δ≔ 0 0 1 − j3 1 − j3

: ð10Þ

Finally, substituting two solutions of the system (10) into
(8), we find the following linearly independent solutions of
the system (6) at the origin:

u1 x, y, z, tð Þ = X 4ð Þ
84 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tð Þ,

u2 x, y, z, tð Þ = y1−j2X 4ð Þ
84 ℓ1 + 1 − j2, ℓ2 + 1 − j2, ℓ3, ℓ4 ; j1, 2ð

− j2, j3 ; x, y, z, tÞ,
u3 x, y, z, tð Þ = t1−j3X 4ð Þ

84 ℓ1, ℓ2, ℓ3 + 1 − j3, ℓ4 + 1ð
− j3 ; j1, j2, 2 − j3 ; x, y, z, tÞ,

u4 x, y, z, tð Þ = y1−j2 t1−j3X 4ð Þ
84 ℓ1 + 1 − j2, ℓ2 + 1 − j2, ℓ3ð

+ 1 − j3, ℓ4 + 1 − j3 ; j1,2 − j2, 2
− j3 ; x, y, z, tÞ:

ð11Þ

3. Integral Representations of Euler Type

Here, we give eight integral representations of Euler type for

Xð4Þ
84 whose kernel contains the Gaussian hypergeometric

function 2F1 (see [16]), Appell function F3 (see for details
[16, 25]), the Exton triple functions X16, X17, X19 [26], Laur-
icella’s function of three variables FN [16], and the quadruple

functions Xð4Þ
4 , Xð4Þ

24 (see [20, 21]):

X 4ð Þ
84 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tð Þ
= Γ j2ð ÞΓ j3ð Þ
Γ ℓ2ð ÞΓ ℓ4ð ÞΓ j2 − ℓ2ð ÞΓ j3 − ℓ4ð Þ
�
ð∞
0

ð∞
0

e−αð Þℓ2 1 − e−αð Þj2−ℓ2−1 e−β
� �ℓ4

× 1 − e−β
� �j3−ℓ4−1 1 − ye−αð Þ−ℓ1 1 − te−β

� �−ℓ3
× F3

 
ℓ1
2 , 1 + ℓ2 − j2,

ℓ1 + 1
2 , ℓ3 ; j1 ;

4x
1 − ye−αð Þ2 ,

−ze−α

1 − e−αð Þ 1 − te−β
� �

!
dαdβ R ℓ2ð Þð

> 0,R ℓ4ð Þ > 0,R j2 − ℓ2ð Þ > 0,R j3 − ℓ4ð Þ > 0Þ,

ð12Þ

X 4ð Þ
84 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tð Þ

= 2Mℓ2Γ j2ð Þ
Γ ℓ2ð ÞΓ j2 − ℓ2ð Þ

ð∞
0

cosh α sinh2α
� �ℓ2−1/2

1 +M sinh2α
� �j2−ℓ1

× 1 +M sinh2α
� �

−My sinh2α
� 	−ℓ1FN

�
 
ℓ4,

ℓ1
2 , 1 + ℓ2 − j2, ℓ3,

ℓ1 + 1
2 , ℓ3 ; j3, j1, j1 ;

� t, 4x 1 +M sinh2α
� �2

1 +M sinh2α
� �

−My sinh2α
� 	2 , −zM sinh2α

!

� dα R ℓ2ð Þ > 0,R j2 − ℓ2ð Þ > 0,M > 0ð Þ,
ð13Þ

x 1 − 4xð Þwxx − 4xywxy + zwxz − y2wyy + j1 + γ + 2α − 2 2 l1 + 2α + βð Þ + 3½ �xf gwx − 2 ℓ1 + 2α + β + 1ð Þywy + αx−1zwz − −α j1 + α + γ − 1ð Þx−1 + ℓ1 + 2α + βð Þ ℓ1 + 2α + β + 1ð Þ� 	
w = 0,

y 1 − yð Þwyy − 2xywxy − 2xzwxz − yzwyz − 2 ℓ2 + α + βð Þxwx + j2 + 2β − ℓ1 + 2α + βð Þ + ℓ2 + β + γð Þ + 1½ �yf gwy − ℓ1 + 2α + βð Þzwz − −β j2 + β − 1ð Þy−1 + ℓ1 + 2α + βð Þ ℓ2 + β + γð Þ� 	
w = 0,

z 1 − zð Þwzz + xwxz − yzwyz − ytwyt − ztwzt + γxz−1wx − ℓ3 + γ + δð Þywy + j1 + α + 2γ − ℓ2 + β + γð Þ + ℓ3 + γ + δð Þ + 1½ �zf gwz − ℓ2 + β + γð Þtwt − −γ j1 + α + γ − 1ð Þz−1 + ℓ2 + β + γð Þ ℓ3 + γ + δð Þ
 �
w = 0,

t 1 − tð Þwtt − ztwzt − ℓ4 + δð Þzwz + j3 + 2δ − ℓ3 + γ + δð Þ + ℓ4 + δð Þ + 1½ �tf gwt − −δ j3 + δ − 1ð Þt1 + ℓ3 + γ + δð Þ ℓ4 + δð Þ� 	
w = 0:

8>>>>>><
>>>>>>:

ð8Þ
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X 4ð Þ
84 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tð Þ

= 2 1 +Mð Þℓ1Γ j2ð Þ
Γ ℓ1ð ÞΓ j2 − ℓ1ð Þ

ðπ/2
0

sin2α
� �ℓ1−1/2 cos2α

� �j2−ℓ1−1/2
1 +M sin2α
� �j2−ℓ2

× 1 +M sin2α
� �

− 1 +Mð Þy sin2α� 	−ℓ2FN

�
 
ℓ4,

1 + ℓ1 − j2
2 , ℓ2, ℓ3,

ℓ1 − j2
2

+ 1, ℓ3 ; j3, j1, j1 ; t, 4x 1 +Mð Þ2 tan4α,

� z 1 +M sin2α
� �

1 +M sin2α
� �

− 1 +Mð Þy sin2α� 	
!

� dα R ℓ1ð Þ > 0,R j2 − ℓ1ð Þ > 0,M>−1ð Þ,

ð14Þ

X 4ð Þ
84 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tð Þ

= 2Mj3−ℓ3Γ j3ð Þ
Γ ℓ3ð ÞΓ j3 − ℓ3ð Þ

ðπ/2
0

sin2α
� �j3−ℓ3−1/2 cos2α

� �ℓ3−1/2
cos2α +M sin2α
� �j3−ℓ4

× cos2α +M sin2α
� �

− t cos2α
� 	−ℓ4X16

� ℓ1, ℓ2, 1 + ℓ3 − j3 ; j1, j2 ; x, y,−
z cot2α
M

� �
dα

� R ℓ3ð Þ > 0,R j3 − ℓ3ð Þ > 0,M>−1ð Þ,

ð15Þ

X 4ð Þ
84 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tð Þ
= Γ ℓ3 + ℓ4ð ÞΓ j2ð Þ
Γ ℓ1ð ÞΓ ℓ3ð ÞΓ ℓ4ð ÞΓ j2 − ℓ1ð Þ W1 − V1ð Þj2−ℓ2−1 W2 − V2ð Þℓ3+ℓ4−1

�
ðW1

V1

ðW2

V2

× α − V1ð Þℓ1−1 W1 − αð Þj2−ℓ1−1 β − V2ð Þℓ3−1

� W2 − βð Þℓ4−1 × W1 − V1ð Þ − α − V1ð Þy½ �−ℓ2X19

�
 
ℓ3 + ℓ4, ℓ2,

1 + ℓ1 − j2
2 , ℓ1 − j2

2 + 1 ; j3, j1 ;

� β − V2ð Þ W2 − βð Þt
W2 − V2ð Þ2 , β − V2ð Þz

W2 − V2ð Þ , 4
α − V1
W1 − α

� �2
x

!

� dαdβ R ℓ1ð Þ > 0,R ℓ3ð Þ > 0,R ℓ4ð Þ > 0,R j2 − ℓ1ð Þð
> 0, V1 <W1, V2 <W2Þ,

ð16Þ

X 4ð Þ
84 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tð Þ

= Γ ℓ3 + bð ÞΓ j1ð Þ
2ℓ3+b+j1−2Γ ℓ3ð ÞΓ að ÞΓ bð ÞΓ j1 − að Þ

ð1
−1

ð1
−1

1 + αð Þℓ3−1

� 1 − αð Þb−1 × 1 + βð Þa−1 1 − βð Þj1−a−1X17

�
ℓ1, ℓ2, ℓ3

+ b ; a, j2, j1 − a ; 1 + βð Þx
2 , y, 1 + αð Þ 1 − βð Þz

4

�
2

� F1 ℓ4, 1 − b ; j3,
1 + α

α − 1

� �
t

� �
dαdβ R ℓ3ð Þð

> 0,R að Þ > 0,R bð Þ > 0,R j1 − að Þ > 0Þ,
ð17Þ

X 4ð Þ
84 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tð Þ

= 4Γ ℓ1 + ℓ4ð ÞΓ ℓ2 + ℓ3ð Þ
Γ ℓ1ð ÞΓ ℓ2ð ÞΓ ℓ3ð ÞΓ ℓ4ð Þ

ðπ/2
0

ðπ/2
0

sin2α
� �ℓ1−1/2

� cos2α
� �ℓ4−1/2 sin2β

� �ℓ2−1/2 × cos2β
� �ℓ3−1/2X 4ð Þ

4

�
�
ℓ1, ℓ1, ℓ2, ℓ1, ℓ1, ℓ2, ℓ2, ℓ2 ; j1, j2, j1, j3 ;

� x sin4α, y sin2α sin2β, z sin
22β
4 , t cos2α cos2β

�
� dαdβ R ℓið Þ > 0 i = 1, 2, 3, 4ð Þð Þ,

ð18Þ

X 4ð Þ
84 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tð Þ

= 1 +Mð Þℓ1Γ ℓ1 + ℓ4ð Þ
Γ ℓ1ð ÞΓ ℓ4ð Þ

ð1
0

αℓ1−1 1 − αð Þℓ4−1
1 +Mαð Þℓ1+ℓ4

× X 4ð Þ
24

�
 
ℓ1, ℓ1, ℓ2, ℓ1, ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j1, j3 ;

� 1 +Mð Þ2α2x
1 +Mαð Þ2 , 1 +Mð Þαy

1 +Mαð Þ , z, 1 − αð Þt
1 +Mαð Þ

!

� dα R ℓ1ð Þ > 0,R ℓ4ð Þ > 0,M>−1ð Þ,

ð19Þ

where the Gaussian hypergeometric function 2F1, Appell
function F3, Lauricella triple hypergeometric function FN ,
Exton hypergeometric functions X16, X17, X19, and the qua-

druple functions Xð4Þ
4 , Xð4Þ

24 are defined, respectively, by

2F1 a, b ; c ; xð Þ = 〠
∞

n=0

að Þn bð Þn
cð Þn

xn

n!
∣x∣<1ð Þ, ð20Þ

F3 a, b, c, d ; e ; x, yð Þ

= 〠
∞

m,n=0

að Þm bð Þn cð Þm dð Þn
eð Þm+n

xm

m!

yn

n!
max ∣x∣,∣y ∣f g < 1ð Þ,

ð21Þ

FN ℓ1, ℓ2, ℓ3, b1, b2, b1 ; j1, j2, j2 ; x, y, zð Þ

= 〠
∞

m,n,p=0

ℓ1ð Þm ℓ2ð Þn ℓ3ð Þp b1ð Þm+p b2ð Þn
j1ð Þm j2ð Þn+p

xm

m!

yn

n!
zp

p

� r + s < 1∧v < 1, ∣x∣ ≤ r, ∣y∣ ≤ s, ∣z∣ ≤ vð Þ,

ð22Þ

X16 ℓ1, ℓ2, ℓ3 ; j1, j2 ; x, y, zð Þ

= 〠
∞

m,n,p=0

ℓ1ð Þ2m+n ℓ2ð Þn+p ℓ3ð Þp
j1ð Þm+p j2ð Þn

xm

m!

yn

n!
zp

p!

� s < 1∧v ≤ Tv sð Þ∧r < 1
4 1 − sð Þ2

� �

∪ s < 1∧Tv sð Þ < v < 1 − s∧r < v
1 − v

ℓ2
s

1 − v

� �� �
,

ð23Þ
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Tv sð Þ =
1 − s

1 − 1/2s

� �2
, 0 < s < 2

3 ,

1 − s
2s , 2

3 ≤ s < 1

8>>><
>>>:

∣x∣ ≤ r, ∣y∣ ≤ s, ∣z∣ ≤ vð Þ,

ð24Þ
X17 ℓ1, ℓ2, ℓ3 ; j1, j2, j3 ; x, y, zð Þ

= 〠
∞

m,n,p=0

ℓ1ð Þ2m+n ℓ2ð Þn+p ℓ3ð Þp
j1ð Þm j2ð Þn j3ð Þp

xm

m!

yn

n!
zp

p!

� r < 1
4∧v < 1∧s < 1 − 2

ffiffi
r

p� �
1 − vð Þ, ∣x∣ ≤ r, ∣y∣ ≤ s, ∣z∣ ≤ v

� �
,

ð25Þ
X19 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2 ; x, y, zð Þ

= 〠
∞

m,n,p=0

ℓ1ð Þ2m+n ℓ2ð Þn ℓ3ð Þp ℓ4ð Þp
j1ð Þm j2ð Þn+p

xm

m!

yn

n!
zp

p!

� s + 2
ffiffi
r

p
< 1∧v < 1, ∣x∣ ≤ r, ∣y∣ ≤ s, ∣z∣ ≤ v

� �
,

ð26Þ

X 4ð Þ
4 ℓ1, ℓ1, ℓ2, ℓ1, ℓ1, ℓ2, ℓ2, ℓ2 ; j1, j2, j1, j3 ; x, y, z, tð Þ

= 〠
∞

m,n,p,q=0

ℓ1ð Þ2m+n+q ℓ2ð Þq+n+2p
j1ð Þm+p j2ð Þn j3ð Þq

xm

m!

yn

n!
zp

p!
tq

q!

� ∣x∣ < 1
4 , ∣y∣ < 1, ∣z∣ < 1

4 , ∣t∣ < 1
� �

,

ð27Þ

X 4ð Þ
24 ℓ1, ℓ1, ℓ2, ℓ1, ℓ1, ℓ2, ℓ3, ℓ3 ; j1, j2, j1, j3 ; x, y, z, tð Þ

= 〠
∞

m,n,p,q=0

ℓ1ð Þ2m+n+q ℓ2ð Þn+p ℓ3ð Þp+q
j1ð Þm+p j2ð Þn j3ð Þq

xm

m!

yn

n!
zp

p!
tq

q!

� ∣x∣ < 1
4 , ∣y∣ < 1, ∣z∣ < 1, ∣t∣ < 1

� �
:

ð28Þ

Proof. We begin by recalling the following integral represen-
tations of the beta function (see, for example, [27, 28]):

B a, bð Þ =

ð1
0
αα−1 1 − αð Þb−1dα R að Þ > 0,R bð Þ > 0ð Þ,

Γ a + bð Þ
Γ að ÞΓ bð Þ a, bℂ/Z−

0ð Þ,

8>>><
>>>:

ð29Þ

B a, bð Þ =
ð1
0
αa−1 1 − αð Þb−1dα

= W −Vð Þ1−a−b
ðW
V

α − Vð Þa−1 W − αð Þb−1dα

� R að Þ > 0,R bð Þ > 0, V <Wð Þ,

ð30Þ

B a, bð Þ = 2
ðπ/2
0

sin αð Þ2a−1 cos αð Þ2b−1dα

=
ð∞
0

e−αð Þa 1 − e−αð Þb−1dα R að Þ > 0,R bð Þ > 0ð Þ,

ð31Þ

B a, bð Þ = 21−a−b
ð1
−1

1 + αð Þa−1 1 − αð Þb−1dα

= 2Ma
ð∞
0

cosh α sinh αð Þ2a−1
1 +M sinh2α
� �a+b dα R að Þð

> 0,R bð Þ > 0,M > 0Þ:

ð32Þ

For convenience, let℧ denote the right-hand side of rela-
tion (12). Then, by substituting the expression of F3 from
definition (21) into the right-hand side of (12) and using
(31), we have

℧ = 〠
∞

m,n,p,q=0

ℓ1ð Þ2m ℓ1 + 2mð Þn 1 + ℓ2 − j2ð Þp ℓ3ð Þp ℓ3 + pð Þq −1ð Þp
j1ð Þm+p

× Γ j2ð Þ
Γ ℓ2ð ÞΓ j2 − ℓ2ð Þ

ð∞
0

e−αð Þℓ2+n+p 1 − e−αð Þj2−ℓ2−p−1dα

× Γ j3ð Þ
Γ ℓ4ð ÞΓ j3 − ℓ4ð Þ

ð∞
0

e−β
� �ℓ4+q 1 − e−β

� �j3−ℓ4−1
dβ

× xm

m!

yn

n!
zp

p!
tq

q!
= 〠

∞

m,n,p,q=0

1 + ℓ2 − j2ð ÞpΓ j2 − ℓ2 − pð Þ −1ð Þp
Γ j2 − ℓ2ð Þ

×
ℓ1ð Þ2m+n ℓ2ð Þn+p ℓ3ð Þp+q ℓ4ð Þq

j1ð Þm+p j2ð Þn j3ð Þq
xm

m!

yn

n!
zp

p!
tq

q!

= 〠
∞

m,n,p,q=0

ℓ1ð Þ2m+n ℓ2ð Þn+p ℓ3ð Þp+q ℓ4ð Þq
j1ð Þm+p j2ð Þn j3ð Þq

xm

m!

yn

n!
zp

p!
tq

q!

= X 4ð Þ
84 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tð Þ ;

ð33Þ

we are led to the desired result. A similar argument in the
proof of relation (12) will be able to establish the results
(13)–(19). So, details of the proof are omitted. ☐
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