Research Article

Exponential Stability of Swelling Porous Elastic with a Viscoelastic Damping and Distributed Delay Term

Abdelbaki Choucha, Salah Mahmoud Boulaaras, Djamel Ouchenane, Bahri Belkacem Cherif, and Mohamed Abdalla

1Laboratory of Operator Theory and PDEs: Foundations and Applications, Department of Mathematics, Faculty of Exact Sciences, University of El Oued, B.P. 789, El Oued 39000, Algeria
2Department of Mathematics, College of Sciences and Arts, Ar Rass, Qassim University, Saudi Arabia
3Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of Oran 1, Ahmed Benbella, Algeria
4Laboratory of Pure and Applied Mathematics, Amar Teledji Laghouat University, Algeria
5Preparatory Institute for Engineering Studies in Sfax, Tunisia
6Mathematics Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
7Mathematics Department, Faculty of Science, South Valley University, Qena 83523, Egypt

Correspondence should be addressed to Bahri Belkacem Cherif; bahi1968@yahoo.com

Received 3 February 2021; Revised 13 February 2021; Accepted 18 February 2021; Published 28 February 2021

Copyright © 2021 Abdelbaki Choucha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we consider a swelling porous elastic system with a viscoelastic damping and distributed delay terms in the second equation. The coupling gives new contributions to the theory associated with asymptotic behaviors of swelling porous elastic soils. The general decay result is established by the multiplier method.

1. Introduction and Preliminaries

In the late 19th century, Eringen [1] proposed a theory in which he presented a mixture of viscous liquids and elastic solids in addition to gas. And he also studied the equilibrium laws for all components of this mixture, and finally, you get the field equations for a heat conductive mixture (for more details, see [2]). In [3], the author has classified expansive (swelling) soils under the classification of porous media theory.

On the other hand, it contains clay minerals that attract and absorb water, which leads to an increase in pressure [4], and this is considered a harmful and dangerous problem in architecture and civil engineering in most countries of the world, especially in foundations, which leads to cracks in buildings and ripples in sidewalks and roads (see [5–8]). From there, studies began to eliminate or reduce the damage, as in ([9–13]), where the basic field equations of the linear theory of swelling porous elastic soils were presented by

\[\rho_u u_{tt} = P_{1x} + G_1 + H_1, \]
\[\rho_\phi \phi_{tt} = P_{2x} + G_2 + H_2, \]

where \(u, \phi \) are the displacement of the fluid and the elastic solid material. And \(\rho_u, \rho_\phi > 0 \) are the densities of each constituent. The functions \((P_{1x}, G_1, H_1) \) represent the partial tension, internal body forces, and eternal forces acting on the displacement, respectively. Similarly \((P_{2x}, G_2, H_2) \), it works on the elastic solid. In addition, the constitutive equations of partial tensions are given by

\[\begin{pmatrix} P_1 \\ P_1 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 \\ a_2 & a_3 \end{pmatrix} \begin{pmatrix} u_x \\ \phi_\phi \end{pmatrix}, \]

where \(a_1, a_3 > 0 \) and \(a_2 \neq 0 \) is a real number. \(A \) is a matrix positive definite in the sense that \(a_1 a_3 > a_2^2 \).
Quintanilla [10] investigated (1) by taking
\[
G_1 = G_2 = \xi(u_t - \phi_t),
H_1 = a_3 u_{xxt},
H_2 = 0,
\]
where \(\xi > 0 \); they obtained that the stability is exponential. Similarly, in [14], the authors considered (1) with different conditions
\[
G_1 = G_2 = 0,
H_1 = -\rho_u \gamma(x) u_t,
H_2 = 0,
\]
where \(\gamma(x) \) is an internal viscous damping function with a positive mean. They established the exponential stability result (see ([10–20])) for some other interesting results on the swelling porous system).

Time delays arise in many applications because most phenomena naturally depend not only on the present state but also on some past occurrences.

In recent years, the control of PDEs with time delay effects has become an active area of research (see, for example, [15, 20–27]). In many cases, it was shown that delay is a source of instability unless additional condition or control terms are used; the stability issue of systems with delay is of theoretical and practical great importance.

A complement to these works, and by introducing the terms of memory and distributed delay, forms a new problem different from previous studies. Under appropriate assumptions and by using the energy method, we prove the stability results.

In this paper, we are interested in problem (1) with null internal body forces, but the eternal force acting only on the elastic solid is in the form of viscoelastic damping and distributed delay terms, that is,
\[
G_1 = G_2 = H_1 = 0,
H_2 = -\int_0^r g(t-s) \phi_{xx}(x,s) ds - \beta_1 \phi_t + \int_{\tau_1}^{r_2} |\beta_2(\sigma)| \phi_t(x,t-\sigma) d\sigma.
\]

Remark 1. Regarding the problems of swelling porous elastic, we believe that there are no studies of viscoelasticity (the memory) and the distributed delay conditions that act as a simultaneous dissipation mechanism, and hence, our coupling constitutes a new contribution.

Thus, we are interested in the following problem:

\[
\begin{aligned}
\rho_u u_{tt} - a_1 u_{xx} - a_2 \phi_{xx} &= 0, \\
\rho_\phi \phi_{tt} - a_3 \phi_{xx} - a_4 u_{xx} + \int_0^t g(t-s) \phi_{xx}(x,s) ds + \beta_1 \phi_t + \int_{\tau_1}^{r_2} |\beta_2(\sigma)| \phi_t(x,t-\sigma) d\sigma &= 0,
\end{aligned}
\]

where
\[
(x, \sigma, t) \in \mathcal{H} = (0, 1) \times (\tau_1, \tau_2) \times (0, \infty),
\]
under the initial and boundary conditions
\[
\begin{aligned}
u(x, 0) &= u_0(x), u_t(x, 0) = u_1(x), \\
\phi(x, 0) &= \phi_0(x), \phi_t(x, 0) = \phi_1(x), x \in (0, 1), \\
\phi_t(x, t-\tau) &= f_0(x, t), x \in (0, 1) \times (0, \tau_2), \\
u(0, t) &= u(1, t) = \phi(0, t) = \phi(1, t) = 0, t \geq 0.
\end{aligned}
\]

First, as in [27], taking the following new variable
\[
\mathcal{Y}(x, \rho, \sigma, t) = \phi_t(x, t-\sigma \rho),
\]
then we obtain
\[
\begin{aligned}
\sigma \mathcal{Y}_t(x, \rho, \sigma, t) + \mathcal{Y}_\rho(x, \rho, \sigma, t) &= 0, \\
\mathcal{Y}(x, 0, \sigma, t) &= \phi_t(x, t).
\end{aligned}
\]
Consequently, the problem is equivalent to

\[
\begin{aligned}
\rho_u u_{tt} - a_1 u_{xx} - a_2 \phi_{xx} &= 0, \\
\rho_\phi \phi_{tt} - a_3 \phi_{xx} - a_4 u_{xx} + \int_0^t g(t-s) \phi_{xx}(x,s) ds + \beta_1 \phi_t + \int_{\tau_1}^{r_2} |\beta_2(\sigma)| \mathcal{Y}(x, 1, \sigma, t) d\sigma &= 0, \\
\sigma \mathcal{Y}_t(x, \rho, \sigma, t) + \mathcal{Y}_\rho(x, \rho, \sigma, t) &= 0.
\end{aligned}
\]
\[
(x, \rho, \sigma, t) \in (0, 1) \times \mathcal{R},
\]

with the initial data
\[
\begin{align*}
\forall (x, 0) &= u_0(x), \quad u_t(x, 0) = u_1(x), \\
\phi(x, 0) &= \phi_0(x), \quad \phi_t(x, 0) = \phi_1(x), \quad x \in (0, 1), \\
\mathcal{Y}(x, \rho, \sigma, 0) &= f_0(x, \rho \sigma), \quad (x, \rho, \sigma) \in (0, 1) \times (0, 1) \times (0, \tau_2),
\end{align*}
\]

and the boundary conditions
\[
u(0, t) = u(1, t) = \phi(0, t) = \phi(1, t) = 0, \quad t \geq 0.
\]

Here, \(\rho_\alpha, \rho_\beta, a_3, \beta_1, \alpha_3\) are positive constants and \(a_3\) is a real number, with \(a_1, a_2, a_3\) satisfying \(a = a_3 - a_3^2/a_1 > 0\). The integrals represent the memory and the distributed delay terms with \(\tau_1, \tau_2 > 0\) are a time delay, \(\beta_2\) is an \(L^\infty\) function, and the kernel \(g\) is the relaxation function, under the following assumptions.

- \((H1)\) \(g \in C^1(\mathbb{R}_+, \mathbb{R}_+)\) is a nonincreasing function satisfying
 \[
g(0) > 0, \quad a - \int_0^\infty g(s)ds = l > 0,
\]
 where \(a = a_3 - a_3^2/a_1 > 0\).

- \((H2)\) There exists a \(\theta \in (\mathbb{R}_+, \mathbb{R}_+)\) positive nonincreasing differentiable function, such that
 \[
g'(t) \leq -\theta(t)g(t), \quad t \geq 0.
\]

- \((H3)\) \(\beta_2 : [\tau_1, \tau_2] \rightarrow \mathbb{R}\) is a bounded function satisfying
 \[
 \int_{\tau_1}^{\tau_2} |\beta_2|ds < \beta_1.
 \]

\textbf{Remark 2.} The results that we obtained in this work are also correct with other conditions, including
\[
\begin{align*}
u_\alpha(0, t) &= u_\alpha(1, t) = \phi_\alpha(0, t) = \phi_\alpha(1, t) = 0, \quad t \geq 0, \\
u(0, t) &= u_\alpha(1, t) = \phi(0, t) = \phi_\alpha(1, t) = 0, \quad t \geq 0, \\
u_\alpha(0, t) &= u_\alpha(1, t) = \phi_\alpha(0, t) = \phi_\alpha(1, t) = 0, \quad t \geq 0.
\end{align*}
\]

Of course, there can be some difficulties with regard to the following boundary conditions:
\[
\begin{align*}
u_\alpha(0, t) &= u_\alpha(1, t) = \phi_\alpha(0, t) = \phi_\alpha(1, t) = 0, \quad t \geq 0, \\
u(0, t) &= u(1, t) = \phi_\alpha(0, t) = \phi_\alpha(1, t) = 0, \quad t \geq 0,
\end{align*}
\]

unless we assume
\[
\int_0^1 u_0(x)dx = 0, \quad \int_0^1 \phi_0(x)dx = 0,
\]
respectively.

In this paper, we consider \((u, \phi, \mathcal{Y})\) to be a solution of system (12)–(15) with the regularity needed to justify the calculations. In Section 2, we proved our decay result. And we symbolize that \(c\) is a positive constant.

\section{Main Result}

In this section, we prove our stability result for the energy of system (12)–(15).

We need the following lemmas.

\textbf{Lemma 3.} The energy functional \(E\), defined by
\[
E(t) = \frac{1}{2} \int_0^1 \left[\rho_u u_t^2 + a_1 u_t^2 + \rho_\phi \phi_t^2 \right] + \left(a_3 - \int_0^t g(s)ds \right) \phi_x^2 + 2a_2 u_t \phi_x \right] dx + \frac{1}{2} g \cdot \phi_x
\]
\[
+ \frac{1}{2} \int_0^1 \int_{\tau_1}^{\tau_2} \sigma(\beta_2(s)) \mathcal{Y}^2(x, \rho, \sigma, t) d\sigma d\rho dx,
\]

satisfies
\[
E'(t) \leq \frac{1}{2} g \cdot \phi_x - \frac{1}{2} g(t) \int_0^t \phi_x^2 dx
\]
\[
- \left(\beta_1 - \int_{\tau_1}^{\tau_2} |\beta_2(s)| ds \right) \int_0^t \phi_x^2 dx
\]
\[
\leq \frac{1}{2} g \cdot \phi_x - \eta_0 \int_0^t \phi_x^2 dx \leq 0,
\]
where \(\eta_0 = \beta_1 - \int_{\tau_1}^{\tau_2} |\beta_2(s)| ds > 0\) and
\[
(g \cdot \phi_x)(t) = \int_0^t \int_0^1 (g(t-s) \phi_x(t) - \phi_x(s))^2 ds dx.
\]

\textbf{Proof.} Multiplying (12) \(1, 2\) by \(u_\alpha\) and \(\phi_\alpha\), then integration by parts over \((0, 1)\), with (15), gives
\[
\frac{1}{2} \int_0^1 \left[\rho_u u_t^2 + a_1 u_t^2 + \rho_\phi \phi_t^2 + a_3 u_t \phi_x^2 + 2a_2 u_t \phi_x \phi_x \right] dx
\]
\[
+ \beta_1 \int_0^1 \phi_x^2 dx + \int_0^1 \int_{\tau_1}^{\tau_2} |\beta_2(s)| \mathcal{Y}(x, 1, \sigma, t) d\sigma d\rho dx
\]
\[
- \int_0^1 \phi_x \int_0^t g(t-s) \phi_x(s) ds dx = 0.
\]

The estimate of the last term in the LHS of (25) is as
follows:

\[-\int_{0}^{1} \phi_{x} \int_{0}^{t} g(t-s) \phi_{s}(s) ds dx \]
\[= \int_{0}^{1} \phi_{x} \int_{0}^{t} g(t-s) (\phi_{s}(t) - \phi_{s}(s)) ds dx \]
\[= \frac{1}{2} \int_{0}^{t} g(s) ds \int_{0}^{1} \phi_{s} \phi_{s} dx \]
\[= \frac{1}{2} \frac{d}{dt} g * \phi_{x} - \frac{1}{2} \frac{d}{dt} g(s) ds \int_{0}^{1} \phi_{s} dx \]
\[= \frac{1}{2} \frac{d}{dt} g * \phi_{x} + \frac{1}{2} g(t) \int_{0}^{1} \phi_{s} dx. \]

(26)

Now, multiplying (12) by \(\mathcal{Y} \mid \beta_{2}(\sigma)\), and by integration over \((0, 1) \times (0, 1) \times (\tau_{1}, \tau_{2})\)

\[d \int_{0}^{t} \int_{0}^{r_{1}} \int_{0}^{r_{2}} \alpha |\beta_{2}(\sigma)| \mathcal{Y}^{2}(x, \rho, \sigma, t) d\rho d\sigma d\sigma dx \]
\[= - \int_{0}^{1} \int_{0}^{r_{1}} \int_{0}^{r_{2}} \alpha |\beta_{2}(\sigma)| \mathcal{Y}^{2}(x, \rho, \sigma, t) d\rho d\sigma d\sigma dx \]
\[= - \frac{1}{2} \int_{0}^{t} \int_{0}^{r_{1}} \int_{0}^{r_{2}} \alpha |\beta_{2}(\sigma)| \frac{d}{d\sigma} \mathcal{Y}^{2}(x, \rho, \sigma, t) d\rho d\sigma d\sigma dx \]
\[= \frac{1}{2} \int_{0}^{t} \int_{0}^{r_{1}} \int_{0}^{r_{2}} |\beta_{2}(\sigma)| (\mathcal{Y}^{2}(x, 0, \sigma, t) - \mathcal{Y}^{2}(x, 1, \sigma, t)) d\sigma d\sigma dx \]
\[= \frac{1}{2} \int_{0}^{r_{1}} |\beta_{2}(\sigma)| d\sigma \int_{0}^{t} \phi_{x}^{2} dx - \frac{1}{2} \int_{0}^{t} \int_{0}^{r_{1}} |\beta_{2}(\sigma)| \mathcal{Y}^{2}(x, 1, \sigma, t) d\sigma d\sigma dx. \]

(27)

Now, by substituting (26) into (25), and using Young’s inequality, we have

\[E'(t) \leq \frac{1}{2} g' * \phi_{x} - \frac{1}{2} g(t) \int_{0}^{1} \phi_{s}^{2} dx \]
\[= \left(\beta_{1} - \int_{0}^{r_{2}} \beta_{2}(\sigma) d\sigma \right) \int_{0}^{t} \phi_{s}^{2} d\sigma \]
\[\leq \frac{1}{2} g' * \phi_{x} - \left(\beta_{1} - \int_{0}^{r_{2}} \beta_{2}(\sigma) d\sigma \right) \int_{0}^{t} \phi_{s}^{2} dx, \]

(28)

then, by (18), there exists \(\eta_{0} > 0\) so that

\[E'(t) \leq \frac{1}{2} g' * \phi_{x} - \eta_{0} \int_{0}^{1} \phi_{s}^{2} dx, \]

(29)

then we obtain (22) and (23) (E is a nonincreasing function).

Lemma 4. The functional

\[D_{1}(t) = \rho_{0} \int_{0}^{t} \phi_{s} \phi_{s} ds + \frac{a^{2}}{a_{1}^{2}} \rho_{0} \int_{0}^{t} \phi_{u} \phi_{u} dx + \frac{\beta_{2}}{2} \int_{0}^{t} \phi_{s}^{2} dx \]

(30)

satisfies

\[D_{1}'(t) \leq -\frac{a_{0}}{\varepsilon} \int_{0}^{t} \phi_{s}^{2} dx + \varepsilon_{1} \int_{0}^{t} u_{s} u_{s} dx + c \left(1 + \frac{1}{\varepsilon_{1}} \right) \int_{0}^{t} \phi_{s}^{2} dx \]
\[+ cg \phi_{x} + c \int_{0}^{t} \int_{\tau_{2}}^{\tau_{1}} |\beta_{2}(\sigma)| \mathcal{Y}^{2}(x, 1, \sigma, t) d\sigma dx. \]

(31)

Proof. Direct computation using integration by parts and Young’s inequality, for \(\varepsilon_{1} > 0\), yields

\[D_{1}'(t) = -a_{3} \int_{0}^{t} \phi_{s}^{2} dx + \rho_{0} \int_{0}^{t} \phi_{s}^{2} dx + \frac{a^{2}}{a_{1}^{2}} \int_{0}^{t} \phi_{s}^{2} dx \]
\[+ \frac{a^{2}}{a_{1}^{2}} \rho_{0} \int_{0}^{t} \phi_{s} \phi_{s} dx + \int_{0}^{t} \phi_{s} \int_{0}^{t} g(t-s) \phi_{s}(s) ds dx \]
\[\leq \left(a_{3} - \frac{a^{2}}{a_{1}^{2}} \right) \int_{0}^{t} \phi_{s}^{2} dx + \rho_{0} \int_{0}^{t} \phi_{s}^{2} dx \]
\[+ \frac{a^{2}}{a_{1}^{2}} \rho_{0} \int_{0}^{t} \phi_{s} \phi_{s} dx + \int_{0}^{t} \phi_{s} \int_{0}^{t} g(t-s) \phi_{s}(s) ds dx \]
\[+ \int_{0}^{t} \phi_{s} \int_{0}^{t} g(t-s) \phi_{s}(s) ds dx. \]

(32)

The estimate of the two last terms in the RHS of (32) is as follows:

\[\int_{0}^{t} \phi_{s} \int_{0}^{t} g(t-s) \phi_{s}(s) ds dx \]
\[= \int_{0}^{t} g(s) ds \int_{0}^{t} \phi_{s}^{2} dx - \int_{0}^{t} \phi_{s} \int_{0}^{t} g(t-s) (\phi_{s}(t) - \phi_{s}(s)) ds dx \]
\[\leq \left(\delta_{1} + \int_{0}^{t} g(s) ds \right) \int_{0}^{t} \phi_{s}^{2} dx + \frac{1}{4 \delta_{1}^{2}} \left(\int_{0}^{t} g(s) ds \right) g * \phi_{x}. \]

(33)

\[\int_{0}^{t} \phi_{s} \int_{0}^{t} g(t-s) \phi_{s}(s) ds dx \]
\[\leq \left(\delta_{2} + \int_{0}^{t} g(s) ds \right) \int_{0}^{t} \phi_{s}^{2} dx + \frac{1}{4 \delta_{2}^{2}} \left(\int_{0}^{t} g(s) ds \right) g * \phi_{x} \]
\[+ \frac{1}{4 \delta_{2}^{2}} \left(\int_{0}^{t} g(s) ds \right) g * \phi_{x} \]
\[+ \frac{1}{4 \delta_{2}^{2}} \left(\int_{0}^{t} g(s) ds \right) g * \phi_{x} \]

(34)

where we have used Cauchy-Schwartz, Young’s, and Poincaré’s inequalities, for \(\delta_{1}, \delta_{2} > 0\), and (18).
Lemma 5. Assume that (16) hold. Then, the functional

\[D_2(t) = a_2 \left(\int_0^1 \phi_1 u dx - \int_0^1 \phi u_i dx \right) \]

satisfies,

\[D_2(t) \leq \frac{a_2}{2 \rho} \int_0^1 u_i^2 dx + c \int_0^1 \phi_i^2 dx + c \int_0^1 \phi_1^2 dx
+ cg \phi + c \int_{\tau_1}^t \int_{\tau_1}^t |\phi_2(\sigma)| \|Y^2(x, 1, \sigma, t)\| d\sigma dx. \]

Proof. By differentiating \(D_2 \), then using (12), integration by parts, and (15), we find

\[D_2(t) \]

In what follows, we estimate the different terms in the RHS of (39); we use Young’s, Cauchy-Schwartz, and Poincaré’s inequalities. For \(\delta_3, \delta_4, \delta_5 > 0 \), we have

\[- \left(\frac{a_2 a_3 - a_1 a_2}{\rho} \right) \int_0^1 \phi u dx \leq \frac{a_2 a_3}{\rho} \int_0^1 u_i^2 dx + \frac{a_1 a_2}{\rho} \int_0^1 \phi u_i dx \]

Bearing in mind that \(a = a_3 - a_2^2/a_1 > 0 \) and using (16), we get

\[\int_0^t g(s) ds < \int_0^\infty g(s) ds < a, \]

let \(a_0 = (a_3 - a_2^2/a_1) - \int_0^\infty g(s) ds > 0 \), and letting \(\delta_1 = a_0/4, \delta_2 = a_0/4\mu_1 \), gives (31).

Lemma 6. The functional

\[D_3(t) = -\rho \int_0^1 u_i dx \]

satisfies,

\[D_3(t) \leq \rho \int_0^1 u_i^2 dx + 2a_1 \int_0^1 u_i^2 dx + \frac{a_2}{4} \int_0^1 \phi_i^2 dx. \]

Proof. Direct computations give

\[D_3(t) \leq \rho \int_0^1 u_i^2 dx + a_1 \int_0^1 u_i^2 dx + a_2 \int_0^1 u_i \phi_i dx. \]

Estimate (42) easily follows by using Young’s inequality and \(a_1, a_2 > a_2^2 \).

Now, let us introduce the following functional used.

Lemma 7. The functional

\[D_4(t) = \int_0^1 \int_0^t \int_{\tau_1}^t \sigma e^{-\sigma \rho} |\beta_2(\sigma)| \|Y^2(x, \rho, \sigma, t)\| d\sigma dx \]

where
satisfies
\[
D'_4(t) \leq -\eta_1 \int_0^t \int_0^{\tau_2} \sigma |\beta_2(\sigma)| |\mathcal{Y}'(x, \rho, \sigma, t)| d\sigma dx \\
+ \beta_1 \int_0^t \phi_1^2 dx - \eta_1 \int_0^t \int_{\tau_1}^{\tau_2} |\beta_2(\sigma)| |\mathcal{Y}'(x, 1, \sigma, t)| d\sigma dx,
\]
where \(\eta_1 > 0 \).

Proof. By differentiating \(D_4 \), with respect to \(t \) and using the last equation in (12), we have
\[
D'_4(t) = -2 \int_0^t \int_0^{\tau_2} e^{-\sigma \rho} |\beta_2(\sigma)| |\mathcal{Y}'(x, \rho, \sigma, t)| d\sigma dx \\
- \int_0^t \int_0^{\tau_1} e^{-\sigma \rho} |\beta_2(\sigma)| |\mathcal{Y}'(x, \rho, \sigma, t)| d\sigma dx \\
- \int_0^t \int_{\tau_1}^{\tau_2} |\beta_2(\sigma)| \left[e^{-\sigma \rho} |\mathcal{Y}'(x, 1, \sigma, t)| - |\mathcal{Y}'(x, 0, \sigma, t)| \right] d\sigma dx.
\]

By using \(\mathcal{Y}(x, 0, \sigma, t) = \phi_1(x, t) \), and \(e^{-\sigma \rho} \leq e^{-\sigma \rho^*} \leq 1 \), for all \(0 < \rho < 1 \), we find
\[
D'_4(t) = -\eta_1 \int_0^t \int_0^{\tau_2} \sigma |\beta_2(\sigma)| |\mathcal{Y}'(x, \rho, \sigma, t)| d\sigma dx \\
- \int_0^t \int_0^{\tau_1} e^{-\sigma \rho} |\beta_2(\sigma)| |\mathcal{Y}'(x, \rho, \sigma, t)| d\sigma dx \\
+ \left(\int_{\tau_1}^{\tau_2} |\beta_2(\sigma)| d\sigma \right) \int_0^t \phi_1^2 dx.
\]

Because \(-e^{-\sigma} \) is an increasing function, we have \(-e^{-\sigma} \leq -e^{-\sigma^*} \) for all \(\sigma \in [\tau_1, \tau_2] \).

Finally, setting \(\eta_1 = e^{-\tau_1} \) and recalling (18) give (45). We are now ready to prove the main result.

Theorem 8. Assume (16)–(18) hold.

Then, \(\forall t_0 > 0 \), there exist \(\lambda_1, \lambda_2 > 0 \) such that the energy functional given by (22) satisfies
\[
E(t) \leq \lambda_1 e^{-\lambda_2 t_0} \int_0^t \mathcal{Y}(u) du, \quad \forall t \geq t_0.
\]

Proof. We define the functional of Lyapunov
\[
\mathcal{L}(t) = NE(t) + N_1 D_1(t) + N_2 D_2(t) + D_3(t) + N_4 D_4(t),
\]
where \(N, N_1, N_2, N_4 > 0 \) to be selected later.

By differentiating (49) and using (22), (31), (38), (42), and (45), we have
\[
\mathcal{L}'(t) \leq \left[\frac{a_0 N_1}{2} - c N_2 - \frac{a_3}{4} \right] \int_0^t \phi_1^2 dx \\
- \left[\rho_1 - N_1 \epsilon_1 \right] \int_0^t u_2^2 dx - \left[\frac{a_2^2 N_2}{2 \rho_\phi} - 2 a_1 \right] \int_0^t u_3^2 dx \\
+ c \left[N_1 + N_2 \right] g \circ \phi_x + \frac{N_2}{2} g' \circ \phi_x \\
- \left[\eta_0 N - c N_1 \left(1 + \frac{1}{\epsilon_1} \right) - N_2 e - \beta_1 N_4 \right] \int_0^t \phi_1^2 dx \\
- \left[N_4 \eta_1 - c N_1 - c N_2 \right] \int_0^t \int_{\tau_1}^{\tau_2} |\beta_2(\sigma)| |\mathcal{Y}'(x, \rho, \sigma, t)| d\sigma dx \\
\cdot (x, 1, \sigma, t) d\sigma dx - N_2 \eta_1 \int_0^t \int_{\tau_1}^{\tau_2} \sigma |\beta_2(\sigma)| |\mathcal{Y}'(x, 0, \sigma, t)| d\sigma dx.
\]

By setting
\[
\epsilon_1 = \frac{\rho_1}{2N_1},
\]
we obtain
\[
\mathcal{L}'(t) \leq \left[\frac{a_0 N_1}{2} - c N_2 - \frac{a_3}{4} \right] \int_0^t \phi_1^2 dx \\
- \left[\frac{a_2^2 N_2}{2 \rho_\phi} - 2 a_1 \right] \int_0^t u_3^2 dx + \left[\frac{N_2}{2} g' \circ \phi_x - \left(\eta_0 N - c N_1 - N_2 e - \beta_1 N_4 \right) \right] \int_0^t \phi_1^2 dx \\
- \left[N_4 \eta_1 - c N_1 - c N_2 \right] \int_0^t \int_{\tau_1}^{\tau_2} |\beta_2(\sigma)| |\mathcal{Y}'(x, \rho, \sigma, t)| d\sigma dx \\
\cdot (x, 1, \sigma, t) d\sigma dx - N_2 \eta_1 \int_0^t \int_{\tau_1}^{\tau_2} \sigma |\beta_2(\sigma)| |\mathcal{Y}'(x, 0, \sigma, t)| d\sigma dx.
\]

At this stage, we choose our different constants.

First, choosing \(N_2 \) large enough such that
\[
\alpha_1 = \frac{a_2^2 N_2}{2 \rho_\phi} - 2 a_1 > 0,
\]
then we pick \(N_1 \) large enough such that
\[
\alpha_2 = \frac{a_0 N_1}{2} - c N_2 - \frac{a_3}{4} > 0,
\]
then we select N_4 large enough such that
\[
\alpha_3 = N_4 \eta_1 - cN_1 - cN_2 > 0.
\]
(55)

Thus, we arrive at
\[
\mathcal{L}'(t) \leq -a_2 \int_0^1 \phi_{x}^2 dx - \frac{\rho_0}{2} \int_0^1 u_t^2 dx - a_1 \int_0^1 u_x^2 dx
\]
\[
\leq \left[\eta_0 N - c \right] \int_0^1 \phi_t^2 dx + \alpha_3 g' \circ \phi_x + \alpha_3 g \circ \phi_x
\]
\[
- \int_0^1 \left(\int_0^t \beta_2(\sigma) \| \mathcal{Y}^2(x, \rho, \sigma, t) \| d\sigma d\rho dx,
\right.
\]
which can be rewritten as
\[
|\mathcal{Q}(t)| \leq \left[\eta_0 N - c \right] \int_0^1 \phi_t^2 dx + \alpha_3 g' \circ \phi_x + \alpha_3 g \circ \phi_x
\]
\[
+ \left[N_4 \eta_1 - cN_1 - cN_2 \right] \int_0^1 \phi_{x}^2 dx + a_1 \int_0^1 u_x^2 dx
\]
\[
+ \left[\int_0^1 \left(\int_0^t \beta_2(\sigma) \| \mathcal{Y}^2(x, \rho, \sigma, t) \| d\sigma d\rho dx,
\right.
\]
(56)

where $a_2 = \eta_1 N_4$, $a_3 = N_2$, $a_4 = c[N_1 + N_2]$.

On the other hand, if we let
\[
\mathcal{Q}(t) = N_1 D_1(t) + N_2 D_2(t) + D_3(t) + N_4 D_4(t),
\]
then
\[
|\mathcal{Q}(t)| \leq N_1 \rho_0 \int_0^1 |\phi_0| dx + N_1 \frac{\alpha_4}{a_1} \rho_0 \int_0^1 |\phi_0| dx
\]
\[
+ N_2 \frac{\alpha_2}{a_1} \rho_0 \int_0^1 |\phi_0| dx + \rho_0 \int_0^1 \left(\int_0^t \sigma e^{-\sigma} \| \mathcal{Y}^2(x, \rho, \sigma, t) \| d\sigma d\rho dx,
\right.
\]
(57)

Exploiting Young’s, Cauchy-Schwartz, and Poincaré inequalities, we obtain
\[
|\mathcal{Q}(t)| \leq c \int_0^1 (u_t^2 + \phi_t^2 + \phi_x^2 + u_x^2) dx + c g \circ \phi_x
\]
\[
+ c \int_0^1 \left(\int_0^t \beta_2(\sigma) \| \mathcal{Y}^2(x, \rho, \sigma, t) \| d\sigma d\rho dx,
\right.
\]
(58)

On the other hand, from (22), we can write
\[
a_1 u_x^2 + 2a_2 \phi_x u_x + a_4 \phi_x^2 = \frac{1}{2} \left[a_1 \left(u_x^2 + \frac{a_2}{a_4} \phi_x^2 \right)^2 + a_4 \left(\frac{a_2}{a_4} u_x^2 + \phi_x^2 \right)^2 \right]
\]
where
\[
a_i = a_3 - \int_0^t g(s) ds.
\]
(60)

Since $a_1 a_3 > a_2^2$ and (16), we deduce that
\[
a_1 u_x^2 + 2a_2 \phi_x u_x + a_4 \phi_x^2 > \frac{1}{2} \left[\left(a_1 - \frac{a_2^2}{a_4} \right) u_x^2 + \left(a_4 - \frac{a_2^2}{a_4} \right) \phi_x^2 \right].
\]
(62)

Consequently, we find
\[
|\mathcal{Q}(t)| = |\mathcal{L}'(t) - NE(t)| \leq c E(t),
\]
(63)

that is,
\[
(N - c) E(t) \leq \mathcal{L}'(t) \leq (N + c) E(t).
\]
(64)

At this point, we choose N large enough such that
\[
N - c > 0, \quad N \eta_0 - c > 0,
\]
(65)

and exploiting (22), estimates (56) and (64), respectively, leads to
\[
c_2 E(t) \leq \mathcal{L}'(t) \leq c_3 E(t), \quad \forall t \geq 0,
\]
(66)

\[
\mathcal{L}'(t) \leq -k_1 E(t) + k_2 g \circ \phi_x, \forall t \geq t_0,
\]
(67)

for some $k_1, k_2, c_2, c_1 > 0$.

By multiplying (67) by $\theta(t)$, we get
\[
\theta(t) \mathcal{L}'(t) \leq -k_1 \theta(t) E(t) + k_2 \theta(t) g \circ \phi_x, \forall t \geq t_0.
\]
(68)

Now, by using (17), we have the following estimate:
\[
\theta(t) g \circ \phi_x = \theta(t) \int_0^t \int_0^s g(t-s)(\phi_x(s) - \phi_x(t))^2 ds dx
\]
\[
\leq \int_0^t \int_0^t \theta(t-s) g(t-s)(\phi_x(s) - \phi_x(t))^2 ds dx
\]
\[
\leq -\int_0^t \int_0^t g(t-s)(\phi_x(s) - \phi_x(t))^2 ds dx
\]
\[
= -g \circ \phi_x \leq -2 E'(t).
\]

Thus, (68) becomes
\[
\theta(t) \mathcal{L}'(t) \leq -k_1 \theta(t) E(t) - 2k_2 E'(t), \quad \forall t \geq t_0,
\]
(70)

which can be rewritten as
\[
(\theta(t) \mathcal{L}(t) + 2k_2 E(t))' \leq -k_1 \theta(t) E(t), \quad \forall t \geq t_0,
\]
(71)

By using $\theta'(t) \leq 0, \forall t \geq 0$, we have
\[
(\theta(t) \mathcal{L}(t) + 2k_2 E(t))' \leq -k_1 \theta(t) E(t), \quad \forall t \geq t_0.
\]
(72)

By exploiting (66), we notice that
\[
\mathcal{X}(t) = \theta(t) \mathcal{L}(t) + 2k_2 E(t) \sim E(t).
\]
(73)
Consequently, for $\kappa > 0$, we get

$$\mathcal{H}'(t) \leq -\kappa \mathcal{H}(t) \mathcal{G}(t), \quad \forall t \geq t_0. \tag{74}$$

Integrating (74) over (t_0, t) gives

$$\mathcal{H}(t) \leq \mathcal{H}(t_0) e^{-\kappa \int_{t_0}^t \mathcal{G}(s)ds}, \quad \forall t \geq t_0. \tag{75}$$

Consequently, (48) is established by virtue of (66) and (75).

Remark 9. The estimate (48) also remains valid for $t \in [0, t_0]$, thanks to the boundedness and continuity of E and G.

Data Availability

No data were used to support the study.

Conflicts of Interest

This work does not have any conflicts of interest.

Acknowledgments

The fifth author extends their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under Grant No. (G.R.P-2/42).

References

