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This paper is concerned with the blow-up of certain solutions with positive initial energy to the following quasilinear wave equation:
Uy — M(Nu(t))Apyu+ g(u,) = f(u). This work generalizes the blow-up result of solutions with negative initial energy.

1. Introduction

Let O be an open bounded Lipschitz domain in R"(n > 1),
T>0,Q;=0Qx (0, T). We consider the following nonlinear
hyperbolic equation:

Uy = M (N (1) Byt g(1) = f(u), (x.1) €Qr,
u(x,t) =0, x€00,te(0,7T),
u(x,0) = uy(x), uy(x, 0) = uy (x), xeQ.

(1)

Here, 0Q2 is a Lipschitz continuous boundary. The initial
conditions meet the following:

uy € W),

2 @)
u; € L7(Q).

The Kirchhoff function 4 : R* — R* is continuous
and has the standard form:

a,b>0,y>1,a+b>0,y>1ifb>0.

(3)

M(t)=a+byr",

The elliptic nonhomogeneous p(x)-Laplacian operator is
defined by

By =Y - (|Vup2Va), (4)

where V- is the vectorial divergence and V is the gradient of u.
The functional

|Vu|P<x>

P ©)

Nu(t) = JQ

is the naturally associated p(x)-Dirichlet energy integral. The
term with a variable exponent

fu) = el )| ™, (6)

plays the role of a source, and the dissipative term with a
variable exponent

g(u,) =d(x, t)|”t|r(x)72ut7 (7)

is a strong damping term.
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The coeflicients ¢ and d are continuous in Q; and satisfy
0<c = inf ¢(x,t)<c(x,t)<c" = sup c¢(x,t) <o <00,
(x1)€Qy (x:1)€Qr
(8)

0<d = inf d(x,t)<d(x,t)<d" = sup d(x,t) < oo,
(x1)€Qr (x.1)€Qr
©)

where o is a constant defined in (38). We assume that the
Kirchhoff function ., defined by (3), satisfies the following
hypotheses:

(i) For 1<a<pB<min{n/p*,np /p*(n—p~)}, there
exist m, > m, > 0 such that
m T <M (T) <myTPY, TeRT (10)
(ii) For all T € R*, it holds that
J M(s)ds = M (t) > M(T)T. (11)
0

The exponents p(-), g(-), and r(:) are continuous and

satisfy

2<min {p7, 7} <{p(x), r(x)} <max {p*,r"} <q"

12
<q(x)<q'<pasp psplas<p'f<p,(x), "
where the constants a and 8 are given in (10) and
p~ =ess infp(x),
P’ =ess supp(x),
xeQ
q =ess ingq(x),
13
q" = ess supg(x), (13)
x€Q
r~ =ess ;Gng r(x),
" =ess supr(x).
x€Q
Also, we can define p, (x) by
) , ifpt<n,
p.(x) = ess sgg(n - r(x)) (14)
+00, if p* >n.
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We also assume that p(-), q(-), and r(-) satisfy the log-
Holder continuity condition

L

<————, foraex,yeQ, |x-y| <6,
log |x -y S

(15)

for L>0,0<6<1.

Problem (1) models several physical and biological sys-
tems such as viscoelastic fluids, filtration processes through
a porous medium, and fluids with viscosity dependent on
temperature. In the intention of problem (1), we can see that
it is linked to the following equation presented by Kirchhoft
and Hensel [1] in 1883:

*u P0+EL
Por ~\n EJO

The parameters L, h, E, p, and P, represent, respectively,
the length of the string, the area of the cross-section, Young’s
modulus of the material, the mass density, and the initial ten-
sion. This equation is an extension of the classic d’Alembert’s
wave equation by looking at the effects of changes in the
length of the string during the vibrations. As for this prob-
lem, it has been studied. More precisely, for g(u,) = u,, the
global existence and nonexistence results can be found in
[2, 3], and for g(u,) = |u,|’u,, p > 0, the main results of exis-
tence and nonexistence are in the paper [4]. In recent years,
hyperbolic problems with a constant exponent have been
studied by many authors; we refer to interesting works [5-
7]. However, only a little research has been done regarding
hyperbolic problems with nonlinearities of the variable expo-
nent type; some interesting works can be found in [8-13].

Recently, in [14], Piskin studied the following wave equa-
tion with variable exponent nonlinearities:

ou

Soli) 5 ate)=fw. 10

=M (IVul®) Au+ [u, P20, = |20 (17)

The author proved, by using the modified energy func-
tional method, the existence of solutions. We have also
looked at the asymptotic behavior of the Kirchhoff wave
equation problems. We can say that the investigation into
the determination of the type, as well as the rate of decay,
was the focus of attention of many researchers whose work
was represented in [15, 16]. Motivated by previous studies,
in this work, we consider problem (1), which is more inter-
esting and applicable in the real approach of sciences, so a
finite-time blow-up for certain solutions with positive and
also negative initial energy has been proved. More precisely,
our aim here is to find sufficient conditions on the variable
exponents p(-), (), and r(-) and the initial data for which
the blow-up occurs. This paper is organized as follows. After
the introduction in the first section, we will give some prelim-
inaries in Section 2. Then, in Section 3, we state the main
results which will be proved in Sections 4 and 5.
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2. Preliminaries

Regarding some definitions and basic properties of the gener-

alized Lebesgue-Sobolev spaces L/ (Q) and W™ (Q),

where  is an open subset of R", we refer to the book of

Musielak [17] and the papers [18, 19]. Let
C,(Q)={h:heC(Q),h(x)>1, forallxeQ}. (18)

For any h € C(Q), we write

h* = suph(x),

xeQ (19)
h™ =infh(x).

xeQ

Then, for any p(x) € C*(Q), we define the variable expo-
nent Lebesgue space as follows:

0 Q)= {u : Q — R measurable : QP(_)(MM)<+OO, for some p > 0},
(20)

where g, is the p(-) modular of u, and it is defined by

)= [ Ju . (21)
Q
It is equipped with the following so-called Luxemburg
norm on this space defined by the formula

p(x)
||u||P(_):inf {;4>0:JQ dxsl}. (22)

Varjable exponent Lebesgue spaces resemble classical
Lebesgue spaces in many aspects: they are Banach spaces,
the Holder inequality holds, they are reflexive if and only if
1 <p~ <p* <00, and their continuous functions are dense if
pt<oo.

u(x)

Lemma 1. Suppose that p(-) satisfies (15); then,
Lp(-
lull,, <ClIVall,  Vue Wy (@), (23)
where C > 0 is a constant that depends only on p~, p*, and Q.

Lemma 2. If p(+) € C(Q) and q : Q —> [1,00) are measurable
functions such that

GO R,

ess inf (p, (¥) —q(x)) > 0, withp, (x) = 3 4P (= P(X))
00, ifq =n,
(24)

then the embedding W(I)"D('>((2)°'L‘1<'> (Q) is continuous and
compact.

Lemma 3. Let 1<p <p*<+co. The spaces [P')(Q) and
W0(Q) are separable, uniformly convex, and reflexive
Banach spaces. The conjugate space of LU (Q) is LV'0)(Q),
where

— + =1, VxeQ. (25)

For u € LPV(Q) and v € L7 V) (Q), we have

1 1 I
< | =+ == |l 19,0 (26)
ro)

Lemma 4. If p>1 is a measurable function on Q and u €
PV(Q), then [ull,) <1 and p,.,(u) <1 are equivalent. For
u e LPV(Q), we have

JQ u(x)v(x) dx

Hqu(,) <1 impliespp(_)(u) < Hqu(,),

lull oy > L implies py) (1) 2 ] .-

Lemma 5. If p(x) € [1,00) is a measurable function on (2, then

min { .l } < py () < max {hully Jully, b,
(28)
for all ue LPY)(Q).

3. Main Results

Now, we state without proof the following existence result.
Proposition 6. Assume that (2) holds and the coefficients a, b,

¢, and d satisfy (3) and (9) and the exponents p, q, and r satisfy
(12). Then, problem (1) has a unique weak solution such that

wel® ((o, T), Wit (Q)),
u, € L°((0, T), L*(Q)), (29)

et (015 )

where p' () is the conjugate exponent of p(-).
Remark 7. The proof can be established by employing the

Galerkin method as in the work of Antontsev [8].
We first define the energy function. Let

B(0) = 5l + LN u() - ¥(1), (30)



where

.7%(/Vu(t)) =aNu(t) + by[HNu(t)],

c(x t (31)

In order to investigate the properties of &(t), the follow-
ing lemma is necessary.

Lemma 8. Suppose that u is a solution of problem (1) that sat-
isfies (29); then, we have

- _ Ct(x’ t) X — x, )|, | dx
8,(1) EL et jﬁa,0|A dx. (32)

Proof. By using the energy function (30) and problem (1), we
directly deduce (32).

We also introduce the following lemma.
Lemma 9. Suppose that the conditions of Lemmas 1-5 hold.

Then, there exists a constant C > 1, which is a generic constant
that depends on Q only, such that

s/ ap”
&yt (1) < C(IVull?) + gy (), (33)
forany u e Wé’P(') (Q) and ap™ <s<aq.
Proof. If g, (u) > 1, then
slq”
Q3 (1) < iy () < C(IValf) + gy (). (34)

If @y (#) < 1, then we deduce by Lemma 4 that [[ul|,,
< 1. Then, Lemmas 2 and 5 imply

S - + Yyap /g
Q5 () < Q3" () < max {ull] hull, }

) (35)
= 1l < CIVul).

Let B be the best constant of the Sobolev embedding

WPt rat). (36)
We set
1/ap*
B, =max { 1,B, (Jﬁ) , (37)

o = min {1) <%> min {I“}‘(‘f/ap*)’ F}_(quXer) } }’
By a(p*)
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-« ap®/(q —ap®)
1~=<ﬂg%;_> , ()
_ ml(p+)7u - _ 5t
& = {7q“ (g -p )} I. (40)

Now, the main results of the blow-up for certain solu-
tions with positive/negative initial energy are given by the fol-
lowing theorems.

Theorem 10. Let the assumptions of Proposition 6 be satisfied,
and assume that

<o, ¢(x,t)2620, V(x1)€Qyp,
: (41)
0<&(0)<&, TI,< HVuOH“P <B7.
Then, the solutions of (1) blow up in finite time:
1-1
T"<s——F+—, ALu>0. (42)

[/U\f:/:/\/(l—l) (0)

Theorem 11. Let the assumptions of Proposition 6 be satisfied,
and assume that

&(0) <o0. (43)
Then, the solution of (1) blows up in finite time (42).
4. Proof of Theorem 10
To prove Theorem 10, we need the following lemmas.
Lemma 12. Let the assumptions of Theorem 10 hold; then,

there exists o > 0 such that for any c¢* < o, there exist a con-
stant I, > I'; such that

|Vu(-, )H“P >T, Vt>0. (44)

Proof. By using the hypothesis (10) and the function (30), we
obtain

c

()2 (1) - ¥ (1) 2 %p;:(.)(w) - a4

> 2L min {|[Vulgh), | Vul 0}

a(p*)
ct 3 ¥
_ qf max {||MHZ()> ”MHZ()}
> L min {|Vul, a0}
a(p*) )
o g '
- = max { <B1\|V”Hp ) ) ’ <Bl||vu”P(l)) }
‘1
min {177, 1}
OC(P+) {
. N - . *lapt
_C ax {(B‘fp F)q ap* ) (B‘f" 1")‘1 P }
q_
=y(I), VIeR,
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where I' = \|Vu||:f ; Let the function

$:[0,1] —R, (46)
be defined by
$(I') = a(r;l)a r-< (B‘;‘P*r) e (47)

Notice that ¢(I') = y(I'), for 0< I“SB;’W. It is easy to
check that the function ¢ is increasing for 0 <I' <I'; and
decreasing for I} <I' < co. On the other hand, by (38), we
deduce that, for any ¢ <o, since &(0) < &, =¢(I',), there
exists a positive constant I', € (I';,00) such that ¢(I',) = &(0).
Then, we have ¢(Iy) =y(Iy) < &(0) = ¢(I',). This implies
that I’y > T',.

Now, we suppose on the contrary that ||Vu(t,) ||;q(7 ; <T,
for some t,>0. Then, there exists ¢, >0 such that I'| <

IVu(t,) ||Zf; Using the monotonicity of ¢(I"), we have

&) 2 ¢(IIVu(t)lf) ) > 9(1) = 8(0),  (48)

which contradicts &(t) < &(0), for all t € (0, T).

Lemma 13. Let the assumptions of Theorem 10 hold. Then, in
light of Lemma 12, we have

Py (#) 2K, &> 0. (49)

Proof. By using (30), we get

+

¢ ! o 1 2
qu()(”) 2¥(t)2-&(0) + a(p)" Py (Vi) + 5 el

2 %PE(.)(V”) - 1//(F2)

ct + q lap* + q*lap*
> % max {(B‘fp Fz) , (Bi“’ rz) }
q_

=K.
(50)

Let
Z(t)=8& - 8(t). (51)

Lemma 14. Let the assumptions of Theorem 10 be satisfied;
then, we have

0<(0)< () < qi Py (10)- (52)

Proof. Using (30), (32), and (51), we obtain

1 ~
0<H(0) X (1) 8, = 3 [l ) + L (Nu(t))] +¥(1).
(53)
Then, the use of (10) gives
1o, ult)
8- |3l - )| <8 - [ aeyar
m — +
<& - — min < ||Vu|L, || Vul[F
<& oy i {IValT IVl |
m —/pt
<& -—_min{rt",r
1 (X(P+)a mln{ 2 2}
m ) -1t
s%l—a—:)amm {Fﬁ)/p,l“l}
m
Oy
(54)

Now, recalling &, in (38), we have

1 _ m (p+)17(x
& - EHut”%Z(Q) —AM(Nu(t))| <- e T Iy <0.

On the other hand, we use (9) to get

+

H(0) <y () -y () (56)

»&I‘r\

Combining (55) with (56) gives (52).
Corollary 15. Under the assumptions of Lemma 9, we have
()l < COVal?) + )
(i) p21) < COT (O] + 1l + pyiy ()
(iii) Jully- < COT )]+ llugl|Z2 0 + llullf-)
forany u e Wé’P('> (Q) and ap™ <s<aq .

Lemma 16. Assume that (12) and (15) hold. Then, the solu-
tion of (1) satisfies

Qg (1) = Cllul|1, (57)
for some C > 0.
Proof. Let

Q" ={x € OQf|lul>1},
O ={xeQf|ul<1}.



We have

Qq(->(”)=J Iulq(x)dﬁj |ul ™) dx
o+ O

i (59)
> J |u|1™dx + ¢, <J |u|q(x)dx> .
o+ o
This implies
q/q -
& (0g)"" +ou@ s (60)
Now, given (52), (60) leads to
q (q71g")-17" .
Qy () = |1 +6 <g> ullg- (61)

Thus, (57) follows.

Lemma 17. Suppose that (12) holds, and u is a solution of (1).
Then,

0@ <C(Ql W+a ). (62)

Q+
rolq rflq”
(J )1 dx) + (J |u| dx) 1
[ o

IN
O
7 NI/

_ . - -
<c(llully +ully) = c(plf @)+ eyl ).
(63)
We set
F(t) = T M) + efuy w2 g (64)
for & small, which will be specified later, and for

- e
0<cA<min {2 " 421 (65)

qa(rr-1)" 2q

Now, we are in a position to prove Theorem 10.
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Proof. We differentiate (64) and use the equation in (1) to get

F(t)= (L= NZOF () + 100+ 1020
> (1-V)Z )%, (t)
([l — AN ())Qp(, (V) + € Q0 (1))
— ed*|g(u,), U2 gy = (1= DT M) (1)
+e (nutuiz(m - #eﬁ.)w ' c'e,,@(u))
— ed"|g(u), ]2 ) 2 (1= VEHOT,(1)

m . _
te <||”t||12_2(9) - ﬁQp(J(V”) +c Qq(-)(”))

—ed'|g(uy), ”|L2(Q)'
(66)

Adding and subtracting the term ¢(1-#)q #(t), for
0<#n<1, from the right-hand side of (56), by using (49)
and (10), we get

Fi(t)=2(1- l)?fﬁj\(t)%’t(t) +e(1-n)q Z(t) - £d+‘g(ut), u|L2(Q)
+e <|ut||iz(0) - #Q;(‘) (Vu) + c'Qq(.)(u)>
ol (<8, 5 i+ A u(0) g0

2 (L=NF MO (1) +e(1=m)q F (1) - ed'|g(w), u] 20

m, -
+e <|”t||22(o) - Wz,lpp@(vu) +c Qq(»)(“))

7 &t ¢ 1
et (-2 - Doy + 51l

m;
n

+e(1-n)q <7) QZ(.)(VM)) :

o

Then, for # small enough, we have

Fi(t)2 (L= NT O (t) — ed"|g(uy), u] 2

+ e (F(0) + |1 )+ sy (V) + 0y () ),

(68)
where
i ~ o, U=mg (=) my
8—m1n{1—17q,1+ 3 R “(P+)a
. (69)
o my e - (1-1n)&,c }
(p)F! x
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Recall Young’s inequality

s xh 5hyh
+

XY < >
h L

(70)

where X,Y>0,8, >0,1;,1, e R*, such that (1/I;)+ (1/1,)
=1. Applying (70) to estimate the term |g(u,), u[;>q)
we get

T ld s L[ 8O @de s T s g
| S p : |,
Q Q Q

+

(71)
where
5Ir(x)/( ( 5%7){( ) (72)
where & is a large constant to be specified later.
Now, by using (32) and (49), we get
w0 s w1 e _
Qr(‘)(ut) < d - q+d+ Qq()(u) = a - q+d+ < dt :
(73)

Combining (73) and (71) yields

J |ut|r(x)—l|u|dx < éJ El—r(x)|u|r(x)%l(r(x)*1)(t)d
0 ™ Jao (74)

R (0]

Substituting (74) in (68), we obtain

.
S(r

7.0z |- -
-w%%xwwwm +%OW@+%MW)

—&

(75)

To estimate the last term in (75), we use (62) and (52)
to get

rt— r1q ) +A(rt - g VA =
%A( UU)Q,(.)(”) < C(Q;(‘)/q A 1)(14) +QE1('>/‘J )+ 1)(14))

(76)
Then, we use (65) and Lemma 9, for
s=r'+Ag (r"=1)<aq,

q ( )< aq 77)
s=r +Aq (r"-1)<aq,

to deduce from (76) that
TN (b0, ) < C(IVulf) + oy (). (78)
By exploiting Lemmas 5 and 12, we get

Q) (V1e) 2 Cl|Varl[of) (79)

Combining (75), (78

(r'=1)E] g d
e | T (1) + (5— = )

[0+l )+ IV8E + gy ()]

), and (79) leads to

F(t) {(1—@—

(80)
Now, we pick & large enough and € so small such that
glfr_ d+
-

_ (- (81)
B GE

F(0) =" (0) + efug, |2 > O-

6,=0- C>o,

Then, by using (57), (80) takes the form
Fo(1) 2 8,6 | T (1) + | ) + 1Vl + Il |- (82)

Therefore, we get

F(1)

\%

F(0)>0, forallt>0. (83)
On the other hand, the application of the Holder
inequality yields

1/(1-1)

1-A
-A)
I3y = Cllally el

(84)
and from (70), we get

ClImR O + Julig ], (89)

w2y | < +
for (1/9,) +
we get 6, =2(1 -
the form

(1/6,) = 1. Setting 0,/(1 - A) = (2/(1 -2X)) < q,
A) by virtue of (65). Therefore, (85) takes

[l wlpey| <[l +lwlifg] (86)

where s=2/(1-2A). By recalling Corollary 15, we get

1-A .
w2y | < C(I O+ Nl ) + Il ). (87)



Now, (87) and the following Minkowski’s inequality
(X+Y) <271 (X' +YY), (88)
will give

1/(1-A
9«‘1/(1*’”(1&): [%1—A(t)+s|u, ut|LZ<Q)} -4

< ZA/(I—/\) (7/(1‘) + 81/(1—)0 ‘ |u, ”t|L2(Q)

7)

< C(I(8)] + Nl + 1)
<C(Z )+ o + 10l + ] )-
(89)
By combining (82) and (89), we obtain
F () 2 uF (1) (1), (90)

where y is a positive constant. A simple integration of (90)
over (0,t) yields

1

gl/(l—/\) £ > ,
®) FNAN (0) — (uAt/(1- 1))

(91)

which implies that the solution blows up in finite time T,
such that

. 1-A

This completes the proof of Theorem 10.

5. Proof of Theorem 11
We set

H(t)=-8(t). (93)

To prove our main result, we first establish the following
lemma.

Lemma 18. Let u be the solution of (1). Then, there exists a
constant C > 0 such that

[IVu(t,x)||,,=C, Vt=0. (94)

5y

Proof. Suppose that, by contradiction, there exists a sequence
t, such that

IVu(t, x)||,, — 0, ask— oo. (95)

llp)
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Then, by using Lemmas 2 and 5, we get

lim & (1) 20, (96)

which contradicts the fact that &(t) <0, V¢ > 0.

Using (93) and (94) and applying the same procedures
used to prove Theorem 10 will give the proof of Theorem 11.
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