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In this paper, we are concerned with Toeplitz operators whose symbols are complex Borel measures. When a complex Borel measure y
on the unit circle is given, we give a formal definition of a Toeplitz operator T, with symbol 4, as an unbounded linear operator on the

Hardy space. We then study various properties of T',. Among them, there is a theorem that the domain of T, is represented by a
trichotomy. Also, it was shown that if the domain of TH contains at least one polynomial, then TM is densely defined. In addition,

we give evidence for the conjecture that T, with a singular measure y reduces to a trivial linear operator.

1. Introduction

A classical Toeplitz operator is the compression of a multipli-
cation operator on the Lebesgue space L*(T) of the unit circle
T to the Hardy space H?(T). The study of Toeplitz operators
seems to have originated from the paper of Toeplitz [1]. In
the paper [2], he used Toeplitz matrices to characterize non-
negative continuous functions on the unit circle in terms of
their Fourier coeflicients. The remarkable paper of Brown
and Halmos [3] started the systematic study of spectral prop-
erties of Toeplitz operators. Since then, the theory of Toeplitz
operators has been studied in various ways. Recently, the the-
ory of Toeplitz operators has been studied in a variety of set-
tings and connections with other fields. One direction is to
deal with Toeplitz operators on reproducing kernel spaces
like Bergman spaces, Dirichlet spaces, or Fock spaces (cf.
[4-8]). Another direction is to study Toeplitz operators with
operator-valued symbols (cf. [9-11]). Also, truncated Toe-
plitz operators have attracted attention. A systematic
approach on truncated Toeplitz operators can be found in
the paper of Sarason in 2007 [12]. In that paper, he has used
“compatible” measures to describe bounded truncated Toe-
plitz operators. The boundedness of infinite Hankel matrices
is also related to the compatibility of measures: the infinite
Hankel matrix of the moment of a nonnegative Carleson
measure is bounded and vice versa [13]. (For related recent

studies, see [14].) These works inspired us to consider Toe-
plitz operators whose symbols are measures. The Toeplitz
operators whose symbols are measures have been studied in
the setting of Bergman spaces and other spaces (cf. [15],
chapter 7).

In this paper, we consider Toeplitz operators on the
Hardy space, whose symbols are measures. In this study,
unbounded Toeplitz operators arise naturally. When study-
ing unbounded Toeplitz operators, it was usually considered
that the symbols come from L?(T). In 2008, Sarason [16]
treated not only the case of L?(T)-symbols but the case of
analytic functions on the open unit disk D. It is natural to
attempt to extend the symbols of Toeplitz operators to mea-
sures, because the initial reasearch for them was related to the
moment problem. As mentioned before, Toeplitz and Hankel
operators associated with measures can be seen in the papers
[13] and [12]. In this paper, we provide an explicit definition
of Toeplitz operators whose symbols are complex Borel mea-
sures and then consider their unbounded operator theory. As
the study on Toeplitz operators whose symbols are functions
shows the interplay between function theory and operator
theory, the study on Toeplitz operators whose symbols are
measures is also expected to show the interplay between mea-
sure theory and operator theory.

Our consideration for the symbol of a Toeplitz operator,
denoted by T, is a complex Borel measure y on the unit cir-
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cle. When we study an unbounded linear operator, we usu-
ally assume that its domain is dense, i.., the operator is
densely defined. Hence, one may ask if T, is densely defined,

ie, the domain is dense in H?. Toeplitz operators with
L*-symbols are always densely defined. Unlike when the
symbol is a function, it does not seem easy to answer the
question. Nonetheless, we will show that the domain of T,
is represented by a trichotomy (Theorem 8). In particular,
we can show that if the domain of T, contains at least one
polynomial, then T, is densely defined (Proposition 10).
We also give evidence for the conjecture that the cases of sin-
gular measures induce trivial linear operators (Theorem 15).

The organization of this paper is as follows. In Section 2,
we give notations, definitions, and preliminary facts, which
will be used in the sequel. In Section 3, we give a formal def-
inition of Toeplitz operators whose symbols are complex
Borel measures on T and then investigate their properties
in the viewpoint of unbounded linear operator theory.

2. Preliminaries

Let T be the unit circle in the complex plane. Let m be the
normalized Lebesgue measure on T, so that m(T) = 1. For 1
< p <00, we write LP(T) = LP(T, m) for the Lebesgue space
on T and H?(T) for the Hardy space on T. Note that H?(T)
is a closed subspace of L?(T).

Let D be the open unit disk and let D be the closed unit
disk in the complex plane. Let C, (D) denote the disk algebra,
i.e., the set of all continuous functions on D which is analytic
on D.

For 1 < p < 00, we write H? (D) for the Hardy space on D.
Two spaces HP(D) and HP(T) are identified via nontangen-
tial limits and Poisson integral. Thus, we often write H? to
denote the both of them. The norm in LP(T) (or H?(D)) will
be denoted by |||, and the inner product in L*(T) (or H*(D))
will be denoted by (-, - ). We refer the reader to the texts [17-
19] and [20] for details of Hardy spaces.

The shift operator and its adjoint are one of the most
interesting operators on the Hardy space. For convenience,
we define them on H(D), the class of all analytic functions
on D. For f € H(D), define

8f(z) = 2f(2)(z € D),
$'f(2) =w(ze D). .

The operators S and S* are often called the unilateral shift
and the backward shift, respectively. We refer the reader to
the text [21] which treats the shift operator in great detail.

One of the most remarkable theorems in analysis is
Beurling’s theorem (cf. [18, 20, 22]), which characterizes all
S-invariant subspaces of H2. (We use the term “subspace”
for a closed linear subspace.) For a nonzero subspace M of
H?, M is S-invariant if and only if

M=6H={6f : f e H*}, (2)
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for some inner function 6€ H®. A bounded analytic
function 6 on D is called an inner function if its radial limit
0% (e") =lim,_,,_6(re") has a unit modulus for almost all
¢’ €T. If an inner function has no zero in D, we call it
a singular inner function.

Let M(T) be the set of all complex (finite) Borel measures
on T. Note that M(T) is a Banach space with the total varia-
tion norm ||p|l = | u|(T), where |u| is the total variation
measure of 4. We may regard the normalized Lebesgue mea-
sure m as a finite positive Borel measure. Hence, m € M(T).
We write %y for the o-algebra of all Borel sets in T. We
say p is singular if pLm.

Suppose that y € M(T). For any function f € L'(T,|u| ),
let f - y denote the complex Borel measure on T defined by

(f - #)(E) =jEfdy<Ee%T>- (3)

Then, |f-ul =I|fI-lul. Hence, |f-ull=Ifllp)y)- In
particular, for every f € C(T), the measure f -y is defined
and |f - <l ool

For u € M(T), the nth Fourier-Stieltjes coeflicient of y is
given by

(n) J ¢ du(0)(n < 2). (4)

For any y € M(T), the bilateral sequence pi = {zi(n)},.,
is bounded and the mapping y— { is a bounded linear
transformation from M(T) into £*°(Z). Note that the map-
ping p+— i is one-to-one, and hence, a measure y € M(T)
is completely determined by its Fourier-Stieltjes coefficients.
By the theorem of F. and M. Riesz, if y € M(T) is analytic, i.e.,
p(n)=0 for all n<0, then u < m and du/dm € H'(T); in
other words, = f - m for some f € H'(T).

For the definition of Toeplitz operators whose symbols
are measures, we use the Cauchy transform as the “projec-
tion” of measures. For this reason, we use the notation Py
instead of Ky for the Cauchy transform of y. We refer the
reader to the text [23] for thorough treatments of the Cauchy
transform. For pe M(T), the analytic function Py on D,
given by

P = | o dutd) - Y Am)(zeD), (5)

T 1_(2 n=0

is called the Cauchy transform of y. Clearly, the mapping
P is a linear transformation from M(T) into H(D). We
may regard f € L'(T) as the absolutely continuous mea-
sure f-m € M(T). Hence, we denote P(f - m) by Pf, ie.,

f©

T I—ZZ

(e = LEL an) - 2?<n>z"<ze D). (6)

— —~

(Clearly, f-m(n)=f(n).) As we have identified H*(D)
with H?(T), the mapping P may be regarded as the
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orthogonal projection of L*(T) onto H*(T) (the so-called
Riesz projection).

Let ¢ € L*(T). The Toeplitz operator T, with symbol ¢ is
the linear operator on H? with domain

9(T,) = {f € H*(D): P(¢f) € H*(D)}, (7)

given by
Tof =P(ef)(f € 2(T,)). (8)
(Recall that every function in H*(D) may be identified with

its nontangential limit function which belongs to H*(T).)
Clearly, C,(D) € 9(T,,). Hence, T, is densely defined. Also,

Tq, is closed. Observe that

e =927 = 3(i-j), 9)

for every i, j € N U {0}. Hence, the matrix representation of T,
with respect to the orthonormal basis {1, z, 2%, ---} is

P0) (1) 9(-2)
P 90) (- o)
) P01

¢(0)

A matrix of this form is called a Toeplitz matrix; in other
words, an infinite matrix {«; j}ij> , is called a Toeplitz matrix if

Qij = Xir1,js1> (11)
for every i,j e N U {0}.

For a bilateral sequence s = {s,},,., of complex numbers,
we denote by T'(s) the infinite Toeplitz matrix corresponding
to s, i.e, T(s) is the infinite matrix whose (i, j)-entry is s;_;.
Note that if ¢ € L*(T), then the matrix representations of T,
is T(¢p). For n € NU{0}, we denote by T,(s) the (n+1)
x (n+ 1) Toeplitz matrix corresponding to s, i.e.,

So S S_
St % Son+l

T,(s) = (12)
Sn Sl So

3. The Main Results

Let p be a complex Borel measure on T. For any function f
€ C,(D), f - u is a complex Borel measure on T, and hence,
the Cauchy transform P(f - i) is an analytic function on D.
Define

D(T,)={f €Ca(D): P(f-u) € H*(D)}. (13)

It is easy to show that (T,) is a linear manifold of
H?*(D). Now define

T.f=P(f-u)(fe2(T,)) (14)

Then, T, is a linear operator on H?*(D) with domain
2(T,).

Definition 1. The operator T, is called the Toeplitz operator
with symbol .

We begin with the following:
Proposition 2. Suppose that yu < m and the Radon-Nikodym

derivative ¢ = du/dm belongs to L?(T). Then, 2(T,) =C,(D)
and

T f=T,f, (15)

for every f € C,(D).

Proof. Suppose that y = ¢ - m, where @ € L*(T). Let f be an
arbitrary function in C, (D). Then,

f©

T I—ZZ

dm(C) = P(¢f)(2),
(16)

= [ 19700

P o)) = |

for every z € D, and so, P(f - u) = P(¢f). Since ¢f € L*(T), it
follows that P(f - u) € H*(D). Hence, f € 2(T,) and

Tuf =P(f-u)=P(ef) = Tyf- (17)

This completes the proof.

Proposition 2 shows that the notion of T, is a kind of

generalization of the Toeplitz operators whose symbols are
L*-functions.

Remark 3.

(a) Toeplitz operators with L' -symbols: every function
@ €L (T) would be regarded as the absolutely
continuous measure ¢ -m € M(T). Hence, we may
use Definition 1 to define Toeplitz operators with
L'-symbols: if ¢ € L'(T) and u=¢-m, then

9(T,) = {f €CA(D): Plof) e *D)},  (18)

Tuf = P(¢f), (19)
for f € X(T,).



(b) Toeplitz operators with H' -symbols: let ¢ € H'(T)
and put y=¢-me M(T). For every f € C,(D), of
€ H'(T). Hence, P(¢pf)=¢f (if we view ¢ in the
right-hand side as a function in H'(D)). It follows that

P(T,) ={f € Ca(D): gofeHz(ID)}, (20)

T.f =¢f, (21)

for f€(T,). This shows that a Toeplitz operator with

H'-symbol behaves as a multiplication. Notice that the
action of T, is the same as that of T, defined in ([16],

Section 5). (In that paper, the domain of T, is given by
- 2(m). 2 . .

2(T,) ={f € H*(D): ¢f € H*(D)}.) Moreover, since ¢ is

of Smirnov class, ¢ = b/a for some a,b € H*(D) such that

a is an outer function, a(0) >0, and |a|* +|b]*=1 on T. In
this case, 2(T,,) = aH*(D) (cf. [16]). It follows that

9(T,) =2(T,) NC4(D)=aH*(D)NC,(D).  (22)

Since a is an outer function, it follows that aH?*(D) is
dense in H*(D).

Question: is aH*> N C, (D) dense in H*?

We give some concrete examples.

Example 4.

(a) Let ¢ be the analytic function on D such that
(p(z))>=(1-2)" and @(0)=1. Then, ¢ ¢ H'(D)
but ¢ ¢ H*(D). Put y = ¢ - m. By Remark 3, (b), we
have

9(T,) ={f € Cs(D): ¢f e H*(D)}. (23)

How large is the domain (T ,)? Suppose that g € C, (D)

and g(1) #0. Then, there exists a constant ¢ > 0 such that |g
| >c on a neighborhood of { = 1. It follows that g ¢ H*(D).
Hence, g ¢ 2(T,). This shows that

D(T,) <{f € C4(D): f(1)=0}. (24)

On the other hand, if >0 and if y, is the function in
C,(D) which satisfies (,(z))""" =1~z and y,(0) = 1, then,
for every g € C,4(D),
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lpy,gll; = L PO [y, (P9I dm(¢)

~ |1_C|2r 5 "
= | g 9OP dm)

<lgl2, - j 1= dm(Q)

2 e
= %J ’1_3”|2r71 dt
2 ),

2 Vs
< "gi'rwj 2t dt
-7

2
B ||9||007Tir
T 2r’

and hence, py,g € H*(D), ie, v,g € D(T,). It follows that

Uv.Ca(D) c2(T,). (26)

r>0
Since y, = 1 — z, we have
(1-2)-Cy(D)cD(T,). (27)

In particular, 2(T,) contains all polynomials vanishing at

(=1

(b) Let y=4; be the unit point mass concentrated at
{=1. Note that the measure y is discrete. Observe
that, for f € C,(D),

f(©

Tl—ZZ

au@) =" cep). )

1-z

P )= |

Since 1/(1 —z) = Y72, 2", the function 1/(1 — z) does not
belong to H*(D). It follows that P(f - u) € H*(D) if and only
if f(1) = 0. Therefore,

D(T,) ={f € C4(D): f(1)=0}. (29)
Also, we have
T,f=0, (30)

for all fe Q(T#). Hence, TM is trivial, i.e., Tpf =0 for all f
€ 2(T,). Consequently, T, is bounded (on Z(T,)). Notice
that 9(T,) does not contain the constant function 1. We
show later (see Remark 11) that 2(T,) is dense in H?*(D).

(c) The Cantor middle-third measure: let C denote the
Cantor ternary set and let ¢ be the Cantor function,
ie, forx=32 (a;/3/) € C,
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a2
e (31)

18

P(x) =

-
I
—

and @(x) =sup {@(y): y <x,y € C} for x ¢ C. Then, ¢ is con-
tinuous and monotonically increasing. Hence, there exists a
positive Borel measure ¢ on T such that

y({ezmg :0<0< t}) =@(t)(0<t<). (32)

The measure y (the so-called Cantor middle-third mea-
sure) is a typical example of a singular continuous measure.
We refer the reader to the papers [24] and [25] which treat
measures of the Cantor type. It is known that

w(n)=(-1)" ﬁ cos —5- (nez). (33)
Hence,
lun(n)? = H (1 — sin? 2;”) (nez). (34)

Since 0 < sin®(271/3/) <1 for each jand Y7, sin’(27n/

37) < 00, it follows that i (n) # 0. Note also that g (—n) = pi(n)
and fi(3n) = p(n) for every n € Z. We may here ask the follow-
ing questions:

(a) Whatis 9(T,)? Is 2(T,) dense in H*(D)?
(b) What is TM? Is TM trivial?

We next ask: when is the domain (T ) dense in H*(D) ?

It does not seem easy to answer this question in general.
The following lemma is used to derive some properties
of P(T,) which are helpful to determine the density of

2(T,) in H*(D). Recall that S is the shift operator on
H(D), ie, if fe H(D), then Sf(z)=zf(z) for z€D.

We then have the following:

Lemma 5. For every u € M(T) and f € C,(D),
P(Sf-u)=SP(f ) + P(Sf-p)(0).  (35)

Proof. For each z € D,

€ - j LF(Q) du(d)

T I—ZZ
{z

P(Sf - 1) (2) = P(Sf - 1) (0) = J O 4

The following proposition gives an important informa-
tion for the domain of T,.

Proposition 6. Let y € M(T) and let a be a complex number
such that |a | # 1. Then, the following statements hold:

(a) For f € Cy(D), f € D(T,) if and only if (S—a)f €D
(Ty)

(b) For f e H*(D), f € cly2(D(T,,)) if and only if (S - «)
fedy:(2(T,))

Proof. (a) Suppose that f € C,(D). Then, by Lemma 5,

P((S—a)f -u)=P(Sf -u) - P(af - )
=SP(f - ) + P(Sf - )(0) —aP(f -u) (37)
=(S=a)P(f - )+ P(Sf - u)(0).

Hence, P((S— a)f - u) € H*(D) if and only if (S — &)P(f -
y) € H*(D). Since P(f - ) € H(D) and |a | # 1, it follows that
P(f - u) € H*(D) ifand only if (S — &)P(f - u) € H*(D). There-
fore, f € P(T,) ifand only if (S — &) f € D(T ). This proves (a).

(b) Suppose that f € H*(D) and f € cly2(2(T,)). Then,
there exists a sequence {f;} in P(T,) such that [|f - f,l,
— 0. Since S — « is a bounded operator on H?(D), we have

(- a)f = (S=a)f lo=l(S-a) (f~f;)l,—0. (38)

By (a), each (S - a)f; belongs to 2(T,). It follows that
(S—a)f €clyp(D(T,)).

Conversely, suppose that f € H*(D) and (S — a)f € clyp (
2(T,)). Then, there exists a sequence {g;} in 2(T,) such
that

IS =a)f =gjll, — 0. (39)

We want to show that f € cl2(2(T),)). To see this we
consider two cases.

Case 1. (Jor| <1). Assume first that g;(a) = 0 for all j. Then,

g;= (S~ ‘x)fj’ (40)

where f; € C,(D). Since g; € 2(T,), it follows from (a) that
f;€2(T,). Note that the approximate point spectrum of
the operator § on H*(D) is 0, (S) = T (cf. [26]). Since & does

not belong to T, the operator S — « is bounded below on H 2
(D). It follows that there exists a constant ¢ > 0 such that

I(S=a)f =gl =N(S—a) (f~F;)bze-1f =l (41)

for all j. This implies that ||f - f;ll, — 0. Therefore, f € cl
(2(T,))-



In the case that gj(oc) # 0 for some j, we may assume that
g,(a) #0. Note that g, — (S—a)f weakly. Hence, g;(z)
— ((S—a)f)(z) for each z € D. In particular, we have

gj(@) — 0. (42)
Now put
hj:gj_ z:((‘;;gl (i=123,-). (43)

Then, h; € 2(T,) and h;(«) = 0 for all j. Observe that

g;(«)
I(S—a)f ~hl, <I(S—a)f — gl + Imlllgll\z. (44)

It follows that
II(S—oc)f—thI2 — 0. (45)

Hence, by the preceding paragraph, we conclude that
fecdyp (D(T,)).

Case 2. (l| >1). The operator S—a on H?(D) is invertible.
Hence,

If = (S-a)"g,ll, —o. (46)

Since (S—a) ' = -, §"/a"! and 9(T,) is S-invariant
by (a), each (S—« 71gj belongs to cly2(2(T,)). 1t follows
that f € cl2(2(T,)), and the proof is complete.

Remark 7. If we take a =0 in Proposition 6, then the linear
subspaces Z(T,) and its closure cl2(2(T,)) are S-invari-

ant. Also, the equality in Lemma 5 can be rewritten as S$*P
(Sf - ) =P(f - ). Consequently, we have S*T,Sf =T ,f for
every f € P(T,).

As a consequence of Proposition 6, we derive the follow-
ing theorem which describes the domain 9(T,). Recall that

an inner function is said to be singular if it has no zero in
the unit disk.

Theorem 8. Let p € M(T). Then, one of the following holds:
(i) 2(T,) ={0}
(ii) D(T,) is dense in H*(D)

(iii) cly(D(T,)) = OH?(D), where 6 is a singular inner
function
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Proof. By Proposition 6, clyz(2(T,
space of H?(D). It follows from Beurling’s theorem that

)) is an S-invariant sub-

cip (2(T,)) = 6H* (D), (47)

where 6 is an inner function or 8 = 0. If 6 = 0, then the case (i)
occures. If 8 is a nonzero constant function, case (ii) occurs.
Now, suppose that 8 is nonconstant. We show that 6 has
no zero in D. To see this, choose any nonzero function f in
2(T,). Fix an arbitrary point a of D and let n be the multi-

plicity of the zero of f at a. Then,
/(@)= (z-a)g()(z€D), (48)

where g € C,(D) and g(«) # 0. Hence, by a repeated applica-
tion of Proposition 6(a), we have

ge2(T,) <OH*(D). (49)

It follows that g=06h for some h € H*(D). Thus, 6(«)
cannot be 0. Since o was arbitrary, we conclude that 6 has
no zero in D. Therefore 0 is a singular inner function.

Remark 9. Unfortunately, we cannot find a concrete example
for the third case. It would be possible that the third case
never occurs.

The following proposition is another consequence of
Proposition 6 which gives a sufficient condition for the
domain P(T,) to be dense in H*(D).

Proposition 10. If cly2(2(T,)) contains a polynomial, then
D(T,) is dense in H*(D).

Proof. Suppose that cl;2(2(T,)) contains a polynomial.
Then, by Proposition 6, (b), there exists a polynomial p € ¢
li2(2(T,)), all of whose zeros are in T, such that p(0) = 1.

Let ¢}, ---,{y € T be the zeros of p, listed according to their
multiplicities. Then,

p@)=(1-8z) - (1-8x2). (50)

Choose a sequence {k,} in N such that k,,,, > Nk, (e.g.,
k,=(N+1)"). For each n € N, define

2 <1— ((_ﬂ)kj) <1 - ((;vZ)kj) (51)

J

Pe)=

All of them are polynomials, divisible by p. Since
cyp(2(T,)) is S-invariant, the polynomials p, belong
to P(T,). It follows by a direct computation that

s ()G

for every neN. This implies that p,— 1 in H*(D).
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Therefore, the constant function 1 belongs to cl(2(T,)).
Since cl;2(2(T,)) is S-invariant, we conclude that cl2 (2(
T,)) = H*(D); in other words, 2(T,) is dense in H*(D).

Remark 11. Proposition 10 shows that the domains 2(T ),
presented in (a) and (b) of Example 4, are dense in H*(D),
because they contain the polynomial p(z) = 1 - z. The proof
of Proposition 10 shows that every polynomial, all of whose
zeros are in T, is an outer function.

In order to consider the matrix representation of a linear
operator on H*(D), it is necessary that its domain contains all
polynomials. Let us interpret the condition that (T ) con-
tains all polynomials. Note that this is equivalent to the con-
dition that 9(T,) contains any polynomial which does not
vanish on T, by Proposition 6, (a).

Lemma 12. Let y € M(T). Then, the following are equivalent:

(i) D(T,,) contains all polynomials, or equivalently,

D(T,) contains the constant function 1

(ii) < mand duldm € H*(T) + H)(T)

Proof. (i) = (ii): suppose that the constant function 1 belongs
to P(T,). Then, Pu= P(1 - u) € H*(D). Let y denote the non-
tangential limit function of Py. Since Py = Y2 ti(n)z", it fol-
lows that (n) = gi(n) forallne NU{0}. Put v=p—y-m.
Then, v € M(T) and

v(n)=H(n) =y (n) =0, (53)

for all n e N U {0}. It follows from the F. and M. Riesz theo-

rem that v < m and v = x - m for some y € Hy(T). Thus, we
have y=v+y-m=(y +y) - m. This proves (ii).

(ii) = (i): suppose that (ii) holds so that y=(y + x) - m
for some y € H*(T) and y € Hy(T). Then, zi(n) = y(n) for
all n e N U {0}. Hence, we have

Mg

() < co. (54)

=
Il
(=]

Since Pu=Y72, ti(n)z", it follows that P(1-u)=Pue
H?*(D). Clearly, the constant function 1 belongs to C,(D).
Therefore, 1 € .QZ(TM). Now, Proposition 6, (a), implies that

2(T,) contains all polynomials.

Corollary 13. Let y € M(T) be a real measure. Then, (T )
=C,(D) if and only if y < m and duldm € L*(T).

Proof. Suppose that P(T,)=C,(D). Then, y<m and

p=(y+yx) -m for some yeH*(T) and yeHy(T) by

Lemma 12. Since p is a real measure, we have

pem=| Zrau=| Zau=pe.  59)

for every neZ. Thus, x(-n)=y(n) for every neNN.
Since y € H*(T), we have
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yAmP <o, (56)

Y IxAm)f =

n=—00

=
Il
—_

It follows that ye€ Hg(T). Therefore, du/dm=y +y
e L*(T).
The converse is a part of Proposition 2.

On the other hand, we would like to conjecture the
following:

Conjecture 14. Every Toeplitz operator with a singular sym-
bol is trivial.

We give evidence for Conjecture 14 by using the known
fact about the Cauchy transform. Let E be a closed subset of
T and let

F(E):{gEHZ([D):g:PptforsomeyeM(E)}. (57)

Then, it is known that F(E) = {0} if and only if m(E) =0
(cf. [23], Theorem 5.5.2).
We then have the following:

Theorem 15. If y € M(T) is singular and m(sup pu) = 0, then
T, is trivial.

Proof. Let E=sup py. By assumption, m(E)=0. Thus,
F(E) ={0}. Suppose that f€(T,), ie, f€C,y(D) and
P(f - u) € H*(D). Note thatsup p(f - u) € sup py = E. Hence,
f-peM(E). So the function P(f-u) € H*(D) belongs to
F(E)={0}. It follows that P(f-u)=0. We have shown
that P(f - u) € H*(D) implies P(f - 4) =0. In other words,

fea(T,)T,f=0. (58)

Therefore TH is trivial (on its domain).

Remark 16. Conjecture 14 seems to be known when y is a
positive singular measure. Indeed, if y is a positive singular
measure, then its Poisson integral is the real part of (1 +0)/
(1-0) for some inner function 0 (cf. [23], Remark 9.1.4).
Now, if f € C,(D) and P(f - u) € H*(D), then the function



g=(1-0)P(f-u) belongs to H?*(D)OH*(D) (cf. [27],
Chapter I1T), and hence, 0g € zH?*(D). Since 1 — 8 is the outer
H?-function, it follows that

_9_ 9 _
P(f- )——6———‘@’ (59)

which implies that P(f - 4) € zH?(D). Therefore, P(f - u) =

The Cantor-middle-third measure y in Example 4, (c), is
a singular continuous measure, and its support is the Cantor
set (in T) whose Lebesgue measure is 0. Hence, Theorem 15
implies that T, is trivial.

We have seen that the Toeplitz operator T, in Example 4,

(b), is a densely defined trivial linear operator. This result can
be extended to the case that p has a finite support. In this
case, the fact that T, is trivial may follow from Theorem

15. However, we give a direct proof and also show that T,
is densely defined.

Proposition 17. Let y € M(T) be a discrete measure whose
support is a finite set. Then, the Toeplitz operator T, is a

densely defined trivial linear operator with domain
@(T#) ={f € C,(D): f({) =0forevery{ € sup pu}. (60)

Proof. Suppose that sup py consists of N distinct points {,
-+, {y of T. Then,

ﬂ:C16C1+"'+CN6CN, (61)
where ¢, -+,

unit point mass concentrated at {.
We first show that

D(T,) ={f € Ca(D): f(§)) =

For any f € C, (D),

i C]P(f 5()

j=

¢y are nonzero complex numbers and &; is the

=f(Cn) =0} (62)

Mz
o
=
|~
~
m
2

—
.
1l
—
—
—.
N

It follows that

{feCu@): f(§) =+ =f(Cx) =0}t cD(T,).  (64)

Conversely, let f € Z(T,). Then, P(f-u) € H?*(D). For
each j, put
F ()= <§2 CeT). (65)

Then, F = Zjl\il Fjis the nontangential limit function of
P(f - ). Thus, F € H*(T). Choose disjoint open arcs I, €T
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with {; € I,. Fix an index j, and let y denote the characteristic
function of I; . Then, x - F € L*(T). Also, y - F; e L*(T) for
each j # j,. Hence,

X-Fj=x-F=) (x-F)elXT). (66)
7o

Since (1—-y)-F i € L®(T), it follows that
Fi =x-F +(1-y)-F, eL*(T). (67)
This implies that f({; ) =

T). Since j, was arbitrary, we have f({;) =
lows that

0, because otherwise, F; ¢ L*(
0 for each j. It fol-

D(T,) <{f €Ca(D): f(G1) =+ =f(Ey) =0} (68)
This proves (62). In particular, 2(T,) contains the poly-
nomial p(z) = (z—{;) --- (z— {y). Hence, by Proposition 10,
2(T,) is dense in H*(D).
Equations (62) and (63) imply that TJ =0forall feD
(T,), ie., T, is trivial. This completes the proof.

Example 18. Let y € M(T) be a discrete measure whose sup-
port has only finitely many limit points, for example,

1
%, (69)

K
NGE

I
—

n

where {, =¢™?". By an argument similar to the proof of

Proposition 17, we may show that

2(T,)

and T,,f =0 for all f € H(T,). Hence, T, is trivial. Note that

every polynomial has only finitely many zeros. It follows that
2(T,,) cannot contain any polynomial. Nevertheless, 2(T,)

={f € C,(D): f(¢)=0forevery{ €sup pu}, (70)

contains a nonzero function by Fatou’s theorem for C,(D),
which says that, for any given closed set K< T with m(
K) =0, there exists a function in C,(D) which vanishes
precisely on K (cf. [19]). Hence by Theorem 8, QZ(TH)
is dense in H*(D) or cly2 (2(T,))
lar inner function 6. But it does not seem easy to determine
whether P(T,) is dense in H*(D) or not.

=6OH?*(D) for some singu-

To each Toeplitz operator T, there corresponds an infi-

nite Toeplitz matrix T(p). In general, however, it is a bit
awkward to call T(z) as the matrix representation of T,

because the domain (T ) may not contain the monomials
z". Nevertheless, often, information about T, gives informa-
tion about T(4). The following is one of such example.
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Corollary 19. Let yu € M(T) be a discrete measure whose sup-
port consists of N points of T. Then,

det T, (i) =0, (71)
foralln>N.

Proof. Suppose that y is the discrete measure given by (61).
Then, the domain (T ,) is given by (62). Choose any poly-

nomial p in P(T,) whose degree is N (e.g., p(z) = (z - ()
- (z={y)). Write p= Y} a,zF. Since Tﬂzk =y h(n-
k)z", it follows that

N N 00
0=T,p= Z akTMzk = Z a Z U(n—k)z"
k=0 k=0 n=0
w /N (72)
= Z Z ap(n-k) |z"
n=0 k=0
Hence, we have
N
Y ai(n-k)=0, (73)
k=0
for all n>0. Now, let > N and put
x=[a, - ay0 - 0T eC™. (74)

Then, by (73), T, (¢)x =0, i.e.,x e ker T, (p). Since x # 0,
the square matrix T,(4) is not invertible, or equivalently,
det T,({)=0

Lastly, we may ask: what is the adjoint of T, ? To answer
this question, we need the following:

Lemma 20. Let y € M(T). Then,
(1.f.9)=| fodu 75)
for every f € D(T,) and g € C,(D).

Proof. Suppose that f € P(T,) and g € C,(D). Then, T f €
H*(D). Write T, f = Y7y a,2" and g = 3% b,2". Then,

8

(T f.9)= ) aub,. (76)

=
Il
(=]

Observe that, for each z € D,

(TJ)(z)j (2 au(C) J Zczdy

(77)

9
Hence, we have
0= | SO du(@) (78)
T
Observe that, for each 0 < r < 1,
Z b,r"z" € C,(D). (79)
It follows that
(19,0 = Y b= 3 | SO, dutd)
n=0 n=0 JT (80)

- Lf(()Zn:O

If we let r — 1, then [|g - g, |, — 0, and hence, (T f,
g,) — (T.f>g)and [ fg,du— [ fgdu. This proves (75).

b du0)= | fo,du

Assume that y € M(T) and P(T,) is dense in H?(D).
Then, the adjoint T; of T# can be defined; the domain of
T, is
9(1;) = {g € H(D): 3he B (D)s.t(T,f,g) = (f )Vf € D(T,)},

(81)

and, for each g€ P(T}), T,g is the (unique) element of
H?*(D) such that

(T.f.9)= <f, T,’jg>, (82)

for every f € D(T,).

If 9 € L°(T), then T = T¢. Hence, it is reasonable to
expect that the adjoint of T, is the Toeplitz operator induced
by the “complex conjugation” of y. For y € M(T), define

A(E) = u(E)(E € By). (83)

Then, gt € M(T). Of course, p € M(T) is a real measure if
and only if i = y. Note that

f(n) = p(-n), (84)

for every n € Z.
We now have the following:

Proposition 21. Let y € M(T). Assume that D(T
H?(D). Then,

) is dense in

TyeTy, (85)

that is Q(T‘a) <(T;) and Ty=T, on 9(Tﬂ).
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Proof. Let g € QZ(T‘Q). By Lemma 20, it follows that

(Tf.9)=| sadu=| of du=(.Tys). (0

for every f € 2(T,). It follows that g€ (T}) and T,g=
Tyug. Therefore, we conclude that

9(@1) c 9(T;), (87)

and T,g=Tpg for every ge¢ QZ(T‘a). This completes the
proof.

If p € M(T), and T is the restriction of the Toeplitz oper-
ator T, to cl;2(D(T,)), then T is a densely defined linear

operator. In this case, T* is a linear operator from H?(D)
onto cl;2(2(T,)). By the same argument as the proof of

Proposition 21, we have 9(Ty) € 2(T") and T*g=Tyg
for ge Q(Tﬂ).
We also have the following:

Proposition 22. Let u € M(T) be positive. Then, the following
hold:

(a) T, is positive, i.e, ,f,f>0 forall fe(T,)
(b) ker T, ={f € C4(D): f({) = 0forevery { € supp u}

Proof. (a) Suppose that £ > 0. Then, by Lemma 20, we have

(Tofof) J fPdu =0, (88)

for every f € 2(T ).
(b) Suppose that y € M(T) is positive. If f € ker T, then
I \fI* du= (T,f,f)=0. Hence, f =0y-ae. on T. We show

that f =0 on supp p. Assume to the contrary that f({,) #0
for some {,, € sup pu. Since f € C,(D), there exist a constant
€>0and an open arc I € T with center {, such that |f({) | >¢
for all ¢ €. Since {, € supp y, we have p(I) > 0. It follows
that

j \flzdﬁzj fPduze >0, (89)
T 1

which is a contradiction. Hence, f({) =0 for all { € supp p.
Therefore,

ker T, < {f € C4(D): f=0o0n supp u}. (90)

The reverse inclusion is trivial.

Journal of Function Spaces

The operator T, may be positive even though y is com-
plex. For example, for any complex number «, the measure
« - 8, is trivial, and hence, it is positive.

We conclude with a remark on the boundedness of T,. It
is well known (cf. [3]) that for ¢ € L*(T), T, is bounded if
and only if ¢ € L*(T), in which case, || Tl =Nl If p=0
and T, is bounded, then

L|f\2dm-ufu§ (fe2(r)). OV

Let us call a positive measure y € M(T) a compatible
measure if y satisfies (91) for all f € C, (D). The word “com-
patible” comes from the paper [12]. One can show that the
following statements are equivalent:

(i) p is a compatible measure
(ii) u < mand du/dm e L°(T)

(iii) 2(T,) contains all polynomials and T/, is bounded

If these conditions are satisfied and if ¢ = du/dm, then
2(T,) =C4(D) and

T.f=T,f, (92)

for every f € C,(D). In (iii), we cannot reduce the condition
that 9(T,) contains all polynomials to the condition that

D(T,) is dense in H*(D): there is a measure y € M(T) which
is not compatible such that T, is densely defined and
bounded (see Example 4, (b)).
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