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In this paper, we are concerned with Toeplitz operators whose symbols are complex Borel measures.When a complex Borel measure μ
on the unit circle is given, we give a formal definition of a Toeplitz operator Tμ with symbol μ, as an unbounded linear operator on the
Hardy space. We then study various properties of Tμ. Among them, there is a theorem that the domain of Tμ is represented by a
trichotomy. Also, it was shown that if the domain of Tμ contains at least one polynomial, then Tμ is densely defined. In addition,
we give evidence for the conjecture that Tμ with a singular measure μ reduces to a trivial linear operator.

1. Introduction

A classical Toeplitz operator is the compression of a multipli-
cation operator on the Lebesgue space L2ðTÞ of the unit circle
T to the Hardy space H2ðTÞ. The study of Toeplitz operators
seems to have originated from the paper of Toeplitz [1]. In
the paper [2], he used Toeplitz matrices to characterize non-
negative continuous functions on the unit circle in terms of
their Fourier coefficients. The remarkable paper of Brown
and Halmos [3] started the systematic study of spectral prop-
erties of Toeplitz operators. Since then, the theory of Toeplitz
operators has been studied in various ways. Recently, the the-
ory of Toeplitz operators has been studied in a variety of set-
tings and connections with other fields. One direction is to
deal with Toeplitz operators on reproducing kernel spaces
like Bergman spaces, Dirichlet spaces, or Fock spaces (cf.
[4–8]). Another direction is to study Toeplitz operators with
operator-valued symbols (cf. [9–11]). Also, truncated Toe-
plitz operators have attracted attention. A systematic
approach on truncated Toeplitz operators can be found in
the paper of Sarason in 2007 [12]. In that paper, he has used
“compatible” measures to describe bounded truncated Toe-
plitz operators. The boundedness of infinite Hankel matrices
is also related to the compatibility of measures: the infinite
Hankel matrix of the moment of a nonnegative Carleson
measure is bounded and vice versa [13]. (For related recent

studies, see [14].) These works inspired us to consider Toe-
plitz operators whose symbols are measures. The Toeplitz
operators whose symbols are measures have been studied in
the setting of Bergman spaces and other spaces (cf. [15],
chapter 7).

In this paper, we consider Toeplitz operators on the
Hardy space, whose symbols are measures. In this study,
unbounded Toeplitz operators arise naturally. When study-
ing unbounded Toeplitz operators, it was usually considered
that the symbols come from L2ðTÞ. In 2008, Sarason [16]
treated not only the case of L2ðTÞ-symbols but the case of
analytic functions on the open unit disk D. It is natural to
attempt to extend the symbols of Toeplitz operators to mea-
sures, because the initial reasearch for them was related to the
moment problem. As mentioned before, Toeplitz and Hankel
operators associated with measures can be seen in the papers
[13] and [12]. In this paper, we provide an explicit definition
of Toeplitz operators whose symbols are complex Borel mea-
sures and then consider their unbounded operator theory. As
the study on Toeplitz operators whose symbols are functions
shows the interplay between function theory and operator
theory, the study on Toeplitz operators whose symbols are
measures is also expected to show the interplay between mea-
sure theory and operator theory.

Our consideration for the symbol of a Toeplitz operator,
denoted by Tμ, is a complex Borel measure μ on the unit cir-
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cle. When we study an unbounded linear operator, we usu-
ally assume that its domain is dense, i.e., the operator is
densely defined. Hence, one may ask if Tμ is densely defined,

i.e., the domain is dense in H2. Toeplitz operators with
L2-symbols are always densely defined. Unlike when the
symbol is a function, it does not seem easy to answer the
question. Nonetheless, we will show that the domain of Tμ

is represented by a trichotomy (Theorem 8). In particular,
we can show that if the domain of Tμ contains at least one
polynomial, then Tμ is densely defined (Proposition 10).
We also give evidence for the conjecture that the cases of sin-
gular measures induce trivial linear operators (Theorem 15).

The organization of this paper is as follows. In Section 2,
we give notations, definitions, and preliminary facts, which
will be used in the sequel. In Section 3, we give a formal def-
inition of Toeplitz operators whose symbols are complex
Borel measures on T and then investigate their properties
in the viewpoint of unbounded linear operator theory.

2. Preliminaries

Let T be the unit circle in the complex plane. Let m be the
normalized Lebesgue measure on T , so that mðTÞ = 1. For 1
≤ p ≤∞, we write LpðTÞ = LpðT ,mÞ for the Lebesgue space
on T and HpðTÞ for the Hardy space on T . Note that HpðTÞ
is a closed subspace of LpðTÞ.

Let D be the open unit disk and let �D be the closed unit
disk in the complex plane. Let CAðDÞ denote the disk algebra,
i.e., the set of all continuous functions on �D which is analytic
on D.

For 1 ≤ p ≤∞, we writeHpðDÞ for the Hardy space on D.
Two spaces HpðDÞ and HpðTÞ are identified via nontangen-
tial limits and Poisson integral. Thus, we often write Hp to
denote the both of them. The norm in LpðTÞ (or HpðDÞ) will
be denoted by ∥·∥p and the inner product in L2ðTÞ (orH2ðDÞ)
will be denoted by h·, · i. We refer the reader to the texts [17–
19] and [20] for details of Hardy spaces.

The shift operator and its adjoint are one of the most
interesting operators on the Hardy space. For convenience,
we define them on HðDÞ, the class of all analytic functions
on D. For f ∈HðDÞ, define

Sf zð Þ = zf zð Þ z ∈Dð Þ,

S∗ f zð Þ = f zð Þ − f 0ð Þ
z

z ∈Dð Þ:
ð1Þ

The operators S and S∗ are often called the unilateral shift
and the backward shift, respectively. We refer the reader to
the text [21] which treats the shift operator in great detail.

One of the most remarkable theorems in analysis is
Beurling’s theorem (cf. [18, 20, 22]), which characterizes all
S-invariant subspaces of H2. (We use the term “subspace”
for a closed linear subspace.) For a nonzero subspace M of
H2, M is S-invariant if and only if

M = θH2 = θf : f ∈H2� �
, ð2Þ

for some inner function θ ∈H∞. A bounded analytic
function θ on D is called an inner function if its radial limit
θ∗ðeitÞ = limr→1−θðreitÞ has a unit modulus for almost all
eit ∈ T . If an inner function has no zero in D, we call it
a singular inner function.

LetMðTÞ be the set of all complex (finite) Borel measures
on T . Note that MðTÞ is a Banach space with the total varia-
tion norm ∥μ∥ = ∣ μ∣ðTÞ, where ∣μ ∣ is the total variation
measure of μ. We may regard the normalized Lebesgue mea-
sure m as a finite positive Borel measure. Hence, m ∈MðTÞ.
We write BT for the σ-algebra of all Borel sets in T . We
say μ is singular if μ⊥m.

Suppose that μ ∈MðTÞ. For any function f ∈ L1ðT ,∣μ ∣ Þ,
let f · μ denote the complex Borel measure on T defined by

f · μð Þ Eð Þ =
ð
E
f dμ E ∈BTð Þ: ð3Þ

Then, ∣f · μ ∣ = ∣f ∣ · ∣μ∣. Hence, ∥f · μ∥ = ∥f ∥L1ðT ,∣μ∣Þ. In
particular, for every f ∈ CðTÞ, the measure f · μ is defined
and ∥f · μ∥≤∥f ∥∞∥μ∥.

For μ ∈MðTÞ, the nth Fourier–Stieltjes coefficient of μ is
given by

bμ nð Þ =
ð
T

�ζ
n
dμ ζð Þ n ∈ℤð Þ: ð4Þ

For any μ ∈MðTÞ, the bilateral sequence bμ = fbμðnÞgn∈ℤ
is bounded and the mapping μ↦ bμ is a bounded linear
transformation from MðTÞ into ℓ∞ðℤÞ. Note that the map-
ping μ↦ bμ is one-to-one, and hence, a measure μ ∈MðTÞ
is completely determined by its Fourier–Stieltjes coefficients.
By the theorem of F. andM. Riesz, if μ ∈MðTÞ is analytic, i.e.,bμðnÞ = 0 for all n ≤ 0, then μ≪m and dμ/dm ∈H1ðTÞ; in
other words, μ = f ·m for some f ∈H1ðTÞ.

For the definition of Toeplitz operators whose symbols
are measures, we use the Cauchy transform as the “projec-
tion” of measures. For this reason, we use the notation Pμ
instead of Kμ for the Cauchy transform of μ. We refer the
reader to the text [23] for thorough treatments of the Cauchy
transform. For μ ∈MðTÞ, the analytic function Pμ on D,
given by

Pμð Þ zð Þ =
ð
T

1
1 − �ζz

dμ ζð Þ = 〠
∞

n=0
bμ nð Þzn z ∈Dð Þ, ð5Þ

is called the Cauchy transform of μ. Clearly, the mapping
P is a linear transformation from MðTÞ into HðDÞ. We
may regard f ∈ L1ðTÞ as the absolutely continuous mea-
sure f ·m ∈MðTÞ. Hence, we denote Pð f ·mÞ by Pf , i.e.,

Pfð Þ zð Þ =
ð
T

f ζð Þ
1 − �ζz

dm ζð Þ = 〠
∞

n=0
f̂ nð Þzn z ∈Dð Þ: ð6Þ

(Clearly, df ·mðnÞ = f̂ ðnÞ.) As we have identified H2ðDÞ
with H2ðTÞ, the mapping P may be regarded as the
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orthogonal projection of L2ðTÞ onto H2ðTÞ (the so-called
Riesz projection).

Let φ ∈ L2ðTÞ. The Toeplitz operator Tφ with symbol φ is

the linear operator on H2 with domain

D Tφ

� �
= f ∈H2 Dð Þ: P φfð Þ ∈H2 Dð Þ� �

, ð7Þ

given by

Tφ f = P φfð Þ f ∈D Tφ

� �� �
: ð8Þ

(Recall that every function inH2ðDÞmay be identified with
its nontangential limit function which belongs to H2ðTÞ.)
Clearly, CAðDÞ ⊆DðTφÞ. Hence, Tφ is densely defined. Also,
Tφ is closed. Observe that

φz
j, zi = φ, zi−j = bφ i − jð Þ, ð9Þ

for every i, j ∈ℕ ∪ f0g. Hence, the matrix representation of Tφ

with respect to the orthonormal basis f1, z, z2,⋯g is

bφ 0ð Þ bφ −1ð Þ bφ −2ð Þ ⋯

bφ 1ð Þ bφ 0ð Þ bφ −1ð Þ ⋯

bφ 2ð Þ bφ 1ð Þ bφ 0ð Þ ⋯

⋮ ⋮ ⋮ ⋱

2
666664

3
777775: ð10Þ

A matrix of this form is called a Toeplitz matrix; in other
words, an infinite matrix fαi,jgi,j≥0 is called a Toeplitz matrix if

αi,j = αi+1,j+1, ð11Þ

for every i, j ∈ℕ ∪ f0g.
For a bilateral sequence s = fsngn∈ℤ of complex numbers,

we denote by TðsÞ the infinite Toeplitz matrix corresponding
to s, i.e., TðsÞ is the infinite matrix whose ði, jÞ-entry is si−j.
Note that if φ ∈ L2ðTÞ, then the matrix representations of Tφ

is TðbφÞ. For n ∈ℕ ∪ f0g, we denote by TnðsÞ the ðn + 1Þ
× ðn + 1Þ Toeplitz matrix corresponding to s, i.e.,

Tn sð Þ =

s0 s−1 ⋯ s−n

s1 s0 ⋯ s−n+1

⋮ ⋮ ⋱ ⋮

sn sn−1 ⋯ s0

2
666664

3
777775: ð12Þ

3. The Main Results

Let μ be a complex Borel measure on T . For any function f
∈ CAðDÞ, f · μ is a complex Borel measure on T , and hence,
the Cauchy transform Pð f · μÞ is an analytic function on D.
Define

D Tμ

� �
= f ∈ CA Dð Þ: P f · μð Þ ∈H2 Dð Þ� �

: ð13Þ

It is easy to show that DðTμÞ is a linear manifold of

H2ðDÞ. Now define

Tμ f = P f · μð Þ f ∈D Tμ

� �� �
: ð14Þ

Then, Tμ is a linear operator on H2ðDÞ with domain
DðTμÞ.

Definition 1. The operator Tμ is called the Toeplitz operator
with symbol μ.

We begin with the following:

Proposition 2. Suppose that μ≪m and the Radon–Nikodym
derivative φ = dμ/dm belongs to L2ðTÞ. Then,DðTμÞ = CAðDÞ
and

Tμ f = Tφ f , ð15Þ

for every f ∈ CAðDÞ.

Proof. Suppose that μ = φ ·m, where φ ∈ L2ðTÞ. Let f be an
arbitrary function in CAðDÞ. Then,

P f · μð Þ zð Þ =
ð
T

f ζð Þ
1 − �ζz

dμ ζð Þ =
ð
T

f ζð Þφ ζð Þ
1 − �ζz

dm ζð Þ = P φfð Þ zð Þ,

ð16Þ

for every z ∈D, and so, Pð f · μÞ = Pðφf Þ. Since φf ∈ L2ðTÞ, it
follows that Pð f · μÞ ∈H2ðDÞ. Hence, f ∈DðTμÞ and

Tμ f = P f · μð Þ = P φfð Þ = Tφ f : ð17Þ

This completes the proof.

Proposition 2 shows that the notion of Tμ is a kind of
generalization of the Toeplitz operators whose symbols are
L2-functions.

Remark 3.

(a) Toeplitz operators with L1 -symbols: every function
φ ∈ L1ðTÞ would be regarded as the absolutely
continuous measure φ ·m ∈MðTÞ. Hence, we may
use Definition 1 to define Toeplitz operators with
L1-symbols: if φ ∈ L1ðTÞ and μ = φ ·m, then

D Tμ

� �
= f ∈ CA Dð Þ: P φfð Þ ∈H2 Dð Þ� �

, ð18Þ

Tμ f = P φfð Þ, ð19Þ
for f ∈DðTμÞ.
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(b) Toeplitz operators with H1 -symbols: let φ ∈H1ðTÞ
and put μ = φ ·m ∈MðTÞ. For every f ∈ CAðDÞ, φf
∈H1ðTÞ. Hence, Pðφf Þ = φf (if we view φ in the
right-hand side as a function inH1ðDÞ). It follows that

D Tμ

� �
= f ∈ CA Dð Þ: φf ∈H2 Dð Þ� �

, ð20Þ

Tμ f = φf , ð21Þ

for f ∈DðTμÞ. This shows that a Toeplitz operator with

H1-symbol behaves as a multiplication. Notice that the
action of Tμ is the same as that of Tφ defined in ([16],
Section 5). (In that paper, the domain of Tφ is given by

DðTφÞ = f f ∈H2ðDÞ: φf ∈H2ðDÞg.) Moreover, since φ is
of Smirnov class, φ = b/a for some a, b ∈H∞ðDÞ such that
a is an outer function, að0Þ > 0, and jaj2 + jbj2 = 1 on T . In
this case, DðTφÞ = aH2ðDÞ (cf. [16]). It follows that

D Tμ

� �
=D Tφ

� �
∩ CA Dð Þ = aH2 Dð Þ ∩ CA Dð Þ: ð22Þ

Since a is an outer function, it follows that aH2ðDÞ is
dense in H2ðDÞ.

Question: is aH2 ∩ CAðDÞ dense in H2?
We give some concrete examples.

Example 4.

(a) Let φ be the analytic function on D such that
ðφðzÞÞ2 = ð1 − zÞ−1 and φð0Þ = 1. Then, φ ∈H1ðDÞ
but φ ∉H2ðDÞ. Put μ = φ ·m. By Remark 3, (b), we
have

D Tμ

� �
= f ∈ CA Dð Þ: φf ∈H2 Dð Þ� �

: ð23Þ

How large is the domainDðTμÞ? Suppose that g ∈ CAðDÞ
and gð1Þ ≠ 0. Then, there exists a constant c > 0 such that ∣g
∣ ≥c on a neighborhood of ζ = 1. It follows that φg ∉H2ðDÞ.
Hence, g ∉DðTμÞ. This shows that

D Tμ

� �
⊆ f ∈ CA Dð Þ: f 1ð Þ = 0f g: ð24Þ

On the other hand, if r > 0 and if ψr is the function in
CAðDÞ which satisfies ðψrðzÞÞ1/r = 1 − z and ψrð0Þ = 1, then,
for every g ∈ CAðDÞ,

∥φψrg∥
2
2 =
ð
T

φ ζð Þj j2 ψr ζð Þj j2 g ζð Þj j2 dm ζð Þ

=
ð
T

1 − ζj j2r
∣1 − ζ ∣

g ζð Þj j2 dm ζð Þ

≤ ∥g∥2∞ ·
ð
T

1 − ζj j2r−1 dm ζð Þ

= ∥g∥2∞
2π

ðπ
−π

1 − eit
�� ��2r−1 dt

≤
∥g∥2∞
2π

ðπ
−π

tj j2r−1 dt

= ∥g∥2∞
π

π2r

2r ,

ð25Þ

and hence, φψrg ∈H2ðDÞ, i.e., ψrg ∈DðTμÞ. It follows that
[
r>0

ψrCA Dð Þ ⊆D Tμ

� �
: ð26Þ

Since ψ1 = 1 − z, we have

1 − zð Þ · CA Dð Þ ⊆D Tμ

� �
: ð27Þ

In particular,DðTμÞ contains all polynomials vanishing at
ζ = 1.

(b) Let μ = δ1 be the unit point mass concentrated at
ζ = 1. Note that the measure μ is discrete. Observe
that, for f ∈ CAðDÞ,

P f · μð Þ zð Þ =
ð
T

f ζð Þ
1 − �ζz

dμ ζð Þ = f 1ð Þ
1 − z

z ∈Dð Þ: ð28Þ

Since 1/ð1 − zÞ =∑∞
n=0 z

n, the function 1/ð1 − zÞ does not
belong to H2ðDÞ. It follows that Pð f · μÞ ∈H2ðDÞ if and only
if f ð1Þ = 0. Therefore,

D Tμ

� �
= f ∈ CA Dð Þ: f 1ð Þ = 0f g: ð29Þ

Also, we have

Tμ f = 0, ð30Þ

for all f ∈DðTμÞ. Hence, Tμ is trivial, i.e., Tμ f = 0 for all f
∈DðTμÞ. Consequently, Tμ is bounded (on DðTμÞ). Notice
that DðTμÞ does not contain the constant function 1. We

show later (see Remark 11) that DðTμÞ is dense in H2ðDÞ.

(c) The Cantor middle-third measure: let C denote the
Cantor ternary set and let φ be the Cantor function,
i.e., for x =∑∞

j=1 ðaj/3 jÞ ∈ C,
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φ xð Þ = 〠
∞

j=1

aj/2
2j , ð31Þ

and φðxÞ = sup fφðyÞ: y < x, y ∈ Cg for x ∉ C. Then, φ is con-
tinuous and monotonically increasing. Hence, there exists a
positive Borel measure μ on T such that

μ e2πiθ : 0 ≤ θ < t
n o� �

= φ tð Þ 0 ≤ t ≤ 1ð Þ: ð32Þ

The measure μ (the so-called Cantor middle-third mea-
sure) is a typical example of a singular continuous measure.
We refer the reader to the papers [24] and [25] which treat
measures of the Cantor type. It is known that

bμ nð Þ = −1ð Þn
Y∞
j=1

cos 2πn
3j n ∈ℤð Þ: ð33Þ

Hence,

μ∧ nð Þj j2 =
Y∞
j=1

1 − sin2 2πn3j
	 


n ∈ℤð Þ: ð34Þ

Since 0 ≤ sin2ð2πn/3jÞ < 1 for each j and ∑∞
j=1 sin2ð2πn/

3jÞ <∞, it follows that bμðnÞ ≠ 0. Note also that bμð−nÞ = bμðnÞ
and bμð3nÞ = bμðnÞ for every n ∈ℤ.Wemay here ask the follow-
ing questions:

(a) What is DðTμÞ? Is DðTμÞ dense in H2ðDÞ?
(b) What is Tμ? Is Tμ trivial?

We next ask: when is the domainDðTμÞ dense inH2ðDÞ ?
It does not seem easy to answer this question in general.
The following lemma is used to derive some properties
of DðTμÞ which are helpful to determine the density of

DðTμÞ in H2ðDÞ. Recall that S is the shift operator on
HðDÞ, i.e., if f ∈HðDÞ, then Sf ðzÞ = zf ðzÞ for z ∈D.

We then have the following:

Lemma 5. For every μ ∈MðTÞ and f ∈ CAðDÞ,

P Sf · μð Þ = SP f · μð Þ + P Sf · μð Þ 0ð Þ: ð35Þ

Proof. For each z ∈D,

P Sf · μð Þ zð Þ − P Sf · μð Þ 0ð Þ =
ð
T

ζf ζð Þ
1 − �ζz

dμ ζð Þ −
ð
T

ζf ζð Þ dμ ζð Þ

=
ð
T

�ζz

1 − �ζz
ζf ζð Þ dμ ζð Þ

= z
ð
T

f ζð Þ
1 − �ζz

dμ ζð Þ

= zP f · μð Þ zð Þ
= SP f · μð Þ zð Þ:

ð36Þ

The following proposition gives an important informa-
tion for the domain of Tμ.

Proposition 6. Let μ ∈MðTÞ and let α be a complex number
such that ∣α ∣ ≠ 1. Then, the following statements hold:

(a) For f ∈ CAðDÞ, f ∈DðTμÞ if and only if ðS − αÞf ∈D
ðTμÞ

(b) For f ∈H2ðDÞ, f ∈ clH2ðDðTμÞÞ if and only if ðS − αÞ
f ∈ clH2ðDðTμÞÞ

Proof. (a) Suppose that f ∈ CAðDÞ. Then, by Lemma 5,

P S − αð Þf · μð Þ = P Sf · μð Þ − P αf · μð Þ
= SP f · μð Þ + P Sf · μð Þ 0ð Þ − αP f · μð Þ
= S − αð ÞP f · μð Þ + P Sf · μð Þ 0ð Þ:

ð37Þ

Hence, PððS − αÞf · μÞ ∈H2ðDÞ if and only if ðS − αÞPð f ·
μÞ ∈H2ðDÞ. Since Pð f · μÞ ∈HðDÞ and ∣α ∣ ≠ 1, it follows that
Pð f · μÞ ∈H2ðDÞ if and only if ðS − αÞPð f · μÞ ∈H2ðDÞ. There-
fore, f ∈DðTμÞ if and only if ðS − αÞf ∈DðTμÞ. This proves (a).

(b) Suppose that f ∈H2ðDÞ and f ∈ clH2ðDðTμÞÞ. Then,
there exists a sequence f f jg in DðTμÞ such that ∥f − f j∥2
⟶ 0. Since S − α is a bounded operator on H2ðDÞ, we have

∥ S − αð Þf − S − αð Þf j∥2 = ∥ S − αð Þ f − f j
� �

∥2 ⟶ 0: ð38Þ

By (a), each ðS − αÞf j belongs to DðTμÞ. It follows that
ðS − αÞf ∈ clH2ðDðTμÞÞ.

Conversely, suppose that f ∈H2ðDÞ and ðS − αÞf ∈ clH2ð
DðTμÞÞ. Then, there exists a sequence fgjg in DðTμÞ such
that

∥ S − αð Þf − gj∥2 ⟶ 0: ð39Þ

We want to show that f ∈ clH2ðDðTμÞÞ. To see this we
consider two cases.

Case 1. (∣α ∣ <1). Assume first that gjðαÞ = 0 for all j. Then,

gj = S − αð Þf j, ð40Þ

where f j ∈ CAðDÞ. Since gj ∈DðTμÞ, it follows from (a) that
f j ∈DðTμÞ. Note that the approximate point spectrum of

the operator S on H2ðDÞ is σapðSÞ = T (cf. [26]). Since α does
not belong to T , the operator S − α is bounded below on H2

ðDÞ. It follows that there exists a constant c > 0 such that

∥ S − αð Þf − gj∥2 = ∥ S − αð Þ f − f j
� �

∥2 ≥ c · ∥f − f j∥2 ð41Þ

for all j. This implies that ∥f − f j∥2 → 0. Therefore, f ∈ clH2

ðDðTμÞÞ.
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In the case that gjðαÞ ≠ 0 for some j, we may assume that
g1ðαÞ ≠ 0. Note that gj ⟶ ðS − αÞf weakly. Hence, gjðzÞ
⟶ ððS − αÞf ÞðzÞ for each z ∈D. In particular, we have

gj αð Þ⟶ 0: ð42Þ

Now put

hj = gj −
gj αð Þ
g1 αð Þg1  j = 1, 2, 3,⋯ð Þ: ð43Þ

Then, hj ∈DðTμÞ and hjðαÞ = 0 for all j. Observe that

∥ S − αð Þf − hj∥2 ≤ ∥ S − αð Þf − gj∥2 + ∣
gj αð Þ
g1 αð Þ ∣ g1k k2: ð44Þ

It follows that

∥ S − αð Þf − hj∥2 → 0: ð45Þ

Hence, by the preceding paragraph, we conclude that
f ∈ clH2ðDðTμÞÞ.

Case 2. (∣α ∣ >1). The operator S − α on H2ðDÞ is invertible.
Hence,

∥f − S − αð Þ−1gj∥2 ⟶ 0: ð46Þ

Since ðS − αÞ−1 = −∑∞
n=0 S

n/αn+1 andDðTμÞ is S-invariant
by (a), each ðS − αÞ−1gj belongs to clH2ðDðTμÞÞ. It follows
that f ∈ clH2ðDðTμÞÞ, and the proof is complete.

Remark 7. If we take α = 0 in Proposition 6, then the linear
subspaces DðTμÞ and its closure clH2ðDðTμÞÞ are S-invari-
ant. Also, the equality in Lemma 5 can be rewritten as S∗P
ðSf · μÞ = Pð f · μÞ. Consequently, we have S∗TμSf = Tμ f for
every f ∈DðTμÞ.

As a consequence of Proposition 6, we derive the follow-
ing theorem which describes the domain DðTμÞ. Recall that
an inner function is said to be singular if it has no zero in
the unit disk.

Theorem 8. Let μ ∈MðTÞ. Then, one of the following holds:

(i) DðTμÞ = f0g
(ii) DðTμÞ is dense in H2ðDÞ
(iii) clH2ðDðTμÞÞ = θH2ðDÞ, where θ is a singular inner

function

Proof. By Proposition 6, clH2ðDðTμÞÞ is an S-invariant sub-
space of H2ðDÞ. It follows from Beurling’s theorem that

clH2 D Tμ

� �� �
= θH2 Dð Þ, ð47Þ

where θ is an inner function or θ = 0. If θ = 0, then the case (i)
occures. If θ is a nonzero constant function, case (ii) occurs.
Now, suppose that θ is nonconstant. We show that θ has
no zero in D. To see this, choose any nonzero function f in
DðTμÞ. Fix an arbitrary point α of D and let n be the multi-
plicity of the zero of f at α. Then,

f zð Þ = z − αð Þng zð Þ z ∈Dð Þ, ð48Þ

where g ∈ CAðDÞ and gðαÞ ≠ 0. Hence, by a repeated applica-
tion of Proposition 6(a), we have

g ∈D Tμ

� �
⊆ θH2 Dð Þ: ð49Þ

It follows that g = θh for some h ∈H2ðDÞ. Thus, θðαÞ
cannot be 0. Since α was arbitrary, we conclude that θ has
no zero in D. Therefore θ is a singular inner function.

Remark 9. Unfortunately, we cannot find a concrete example
for the third case. It would be possible that the third case
never occurs.

The following proposition is another consequence of
Proposition 6 which gives a sufficient condition for the
domain DðTμÞ to be dense in H2ðDÞ.

Proposition 10. If clH2ðDðTμÞÞ contains a polynomial, then

DðTμÞ is dense in H2ðDÞ.

Proof. Suppose that clH2ðDðTμÞÞ contains a polynomial.
Then, by Proposition 6, (b), there exists a polynomial p ∈ c
lH2ðDðTμÞÞ, all of whose zeros are in T , such that pð0Þ = 1.
Let ζ1,⋯, ζN ∈ T be the zeros of p, listed according to their
multiplicities. Then,

p zð Þ = 1 − �ζ1z
� �

⋯ 1 − �ζNz
� �

: ð50Þ

Choose a sequence fkng in ℕ such that kn+1 >Nkn (e.g.,
kn = ðN + 1Þn). For each n ∈ℕ, define

pn zð Þ = 1
n
〠
n

j=1
1 − �ζ1z
� �kj	 


⋯ 1 − �ζNz
� �kj	 


: ð51Þ

All of them are polynomials, divisible by p. Since
clH2ðDðTμÞÞ is S-invariant, the polynomials pn belong
to DðTμÞ. It follows by a direct computation that

∥1 − pn∥
2
2 ≤

n
n2

N

1

 !
N

1

 !
+⋯+

N

N

 !
N

N

 !" #
, ð52Þ

for every n ∈ℕ. This implies that pn ⟶ 1 in H2ðDÞ.
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Therefore, the constant function 1 belongs to clH2ðDðTμÞÞ.
Since clH2ðDðTμÞÞ is S-invariant, we conclude that clH2ðDð
TμÞÞ =H2ðDÞ; in other words, DðTμÞ is dense in H2ðDÞ.

Remark 11. Proposition 10 shows that the domains DðTμÞ,
presented in (a) and (b) of Example 4, are dense in H2ðDÞ,
because they contain the polynomial pðzÞ = 1 − z. The proof
of Proposition 10 shows that every polynomial, all of whose
zeros are in T , is an outer function.

In order to consider the matrix representation of a linear
operator onH2ðDÞ, it is necessary that its domain contains all
polynomials. Let us interpret the condition that DðTμÞ con-
tains all polynomials. Note that this is equivalent to the con-
dition that DðTμÞ contains any polynomial which does not
vanish on T , by Proposition 6, (a).

Lemma 12. Let μ ∈MðTÞ. Then, the following are equivalent:

(i) DðTμÞ contains all polynomials, or equivalently,
DðTμÞ contains the constant function 1

(ii) μ≪m and dμ/dm ∈H2ðTÞ + �H1
0ðTÞ

Proof. ðiÞ⇒ ðiiÞ: suppose that the constant function 1 belongs
toDðTμÞ. Then, Pμ = Pð1 · μÞ ∈H2ðDÞ. Letψ denote the non-
tangential limit function of Pμ. Since Pμ =∑∞

n=0 bμðnÞzn, it fol-
lows that bψðnÞ = bμðnÞ for all n ∈ℕ ∪ f0g. Put ν = μ − ψ ·m.
Then, ν ∈MðTÞ and

bν nð Þ = bμ nð Þ − bψ nð Þ = 0, ð53Þ

for all n ∈ℕ ∪ f0g. It follows from the F. and M. Riesz theo-

rem that ν≪m and ν = χ ·m for some χ ∈ �H1
0ðTÞ. Thus, we

have μ = ν + ψ ·m = ðχ + ψÞ ·m. This proves (ii).
ðiiÞ⇒ ðiÞ: suppose that (ii) holds so that μ = ðψ + χÞ ·m

for some ψ ∈H2ðTÞ and χ ∈ �H1
0ðTÞ. Then, bμðnÞ = bψðnÞ for

all n ∈ℕ ∪ f0g. Hence, we have

〠
∞

n=0
μ∧ nð Þj j2 <∞: ð54Þ

Since Pμ =∑∞
n=0 bμðnÞzn, it follows that Pð1 · μÞ = Pμ ∈

H2ðDÞ. Clearly, the constant function 1 belongs to CAðDÞ.
Therefore, 1 ∈DðTμÞ. Now, Proposition 6, (a), implies that
DðTμÞ contains all polynomials.

Corollary 13. Let μ ∈MðTÞ be a real measure. Then, DðTμÞ
= CAðDÞ if and only if μ≪m and dμ/dm ∈ L2ðTÞ.

Proof. Suppose that DðTμÞ = CAðDÞ. Then, μ≪m and

μ = ðψ + χÞ ·m for some ψ ∈H2ðTÞ and χ ∈ �H1
0ðTÞ by

Lemma 12. Since μ is a real measure, we have

bμ −nð Þ =
ð
T

�z−n dμ =
�ð

T

�zn dμ

¯

=
�bμ nð Þ
¯

, ð55Þ

for every n ∈ℤ. Thus, bχð−nÞ = �bψðnÞ¯
for every n ∈ℕ.

Since ψ ∈H2ðTÞ, we have

〠
−1

n=−∞
χ∧ nð Þj j2 = 〠

∞

n=1
ψ∧ nð Þj j2 <∞: ð56Þ

It follows that χ ∈ �H2
0ðTÞ. Therefore, dμ/dm = ψ + χ

∈ L2ðTÞ.
The converse is a part of Proposition 2.

On the other hand, we would like to conjecture the
following:

Conjecture 14. Every Toeplitz operator with a singular sym-
bol is trivial.

We give evidence for Conjecture 14 by using the known
fact about the Cauchy transform. Let E be a closed subset of
T and let

F Eð Þ = g ∈H2 Dð Þ: g = Pμ for some μ ∈M Eð Þ� �
: ð57Þ

Then, it is known that FðEÞ = f0g if and only if mðEÞ = 0
(cf. [23], Theorem 5.5.2).

We then have the following:

Theorem 15. If μ ∈MðTÞ is singular andmðsup pμÞ = 0, then
Tμ is trivial.

Proof. Let E = sup pμ. By assumption, mðEÞ = 0. Thus,
FðEÞ = f0g. Suppose that f ∈DðTμÞ, i.e., f ∈ CAðDÞ and

Pð f · μÞ ∈H2ðDÞ. Note that sup pð f · μÞ ⊆ sup pμ = E. Hence,
f · μ ∈MðEÞ. So the function Pð f · μÞ ∈H2ðDÞ belongs to
FðEÞ = f0g. It follows that Pð f · μÞ = 0. We have shown
that Pð f · μÞ ∈H2ðDÞ implies Pð f · μÞ = 0. In other words,

f ∈D Tμ

� �
Tμ f = 0: ð58Þ

Therefore Tμ is trivial (on its domain).

Remark 16. Conjecture 14 seems to be known when μ is a
positive singular measure. Indeed, if μ is a positive singular
measure, then its Poisson integral is the real part of ð1 + θÞ/
ð1 − θÞ for some inner function θ (cf. [23], Remark 9.1.4).
Now, if f ∈ CAðDÞ and Pð f · μÞ ∈H2ðDÞ, then the function
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g = ð1 − θÞPð f · μÞ belongs to H2ðDÞ!θH2ðDÞ (cf. [27],
Chapter III), and hence, θ�g ∈ zH2ðDÞ. Since 1 − θ is the outer
H2-function, it follows that

�P f · μð Þ = �g
1θ =

�g

1 − �θ
= −

θ�g
1 − θ

, ð59Þ

which implies that �Pð f · μÞ ∈ zH2ðDÞ. Therefore, Pð f · μÞ = 0.

The Cantor-middle-third measure μ in Example 4, (c), is
a singular continuous measure, and its support is the Cantor
set (in T ) whose Lebesgue measure is 0. Hence, Theorem 15
implies that Tμ is trivial.

We have seen that the Toeplitz operator Tμ in Example 4,
(b), is a densely defined trivial linear operator. This result can
be extended to the case that μ has a finite support. In this
case, the fact that Tμ is trivial may follow from Theorem
15. However, we give a direct proof and also show that Tμ

is densely defined.

Proposition 17. Let μ ∈MðTÞ be a discrete measure whose
support is a finite set. Then, the Toeplitz operator Tμ is a
densely defined trivial linear operator with domain

D Tμ

� �
= f ∈ CA Dð Þ: f ζð Þ = 0 for every ζ ∈ sup pμf g: ð60Þ

Proof. Suppose that sup pμ consists of N distinct points ζ1,
⋯, ζN of T . Then,

μ = c1δζ1+⋯+cNδζN , ð61Þ

where c1,⋯, cN are nonzero complex numbers and δζ is the
unit point mass concentrated at ζ.

We first show that

D Tμ

� �
= f ∈ CA Dð Þ: f ζ1ð Þ =⋯ = f ζNð Þ = 0f g: ð62Þ

For any f ∈ CAðDÞ,

P f · μð Þ zð Þ = 〠
N

j=1
cjP f · δζ j
� �

zð Þ = 〠
N

j=1

cj f ζj
� �

1 − �ζjz
z ∈Dð Þ:

ð63Þ

It follows that

f ∈ CA Dð Þ: f ζ1ð Þ =⋯ = f ζNð Þ = 0f g ⊆D Tμ

� �
: ð64Þ

Conversely, let f ∈DðTμÞ. Then, Pð f · μÞ ∈H2ðDÞ. For
each j, put

Fj ζð Þ = cj f ζj
� �

1 − �ζjζ
ζ ∈ Tð Þ: ð65Þ

Then, F =∑N
j=1 Fj is the nontangential limit function of

Pð f · μÞ. Thus, F ∈H2ðTÞ. Choose disjoint open arcs I j ⊆ T

with ζj ∈ I j. Fix an index j0 and let χ denote the characteristic
function of I j0 . Then, χ · F ∈ L2ðTÞ. Also, χ · Fj ∈ L∞ðTÞ for
each j ≠ j0. Hence,

χ · Fj0
= χ · F − 〠

j≠j0

χ · Fj

� �
∈ L2 Tð Þ: ð66Þ

Since ð1 − χÞ · Fj0
∈ L∞ðTÞ, it follows that

Fj0
= χ · Fj0

+ 1 − χð Þ · Fj0
∈ L2 Tð Þ: ð67Þ

This implies that f ðζj0Þ = 0, because otherwise, Fj0
∉ L2ð

TÞ. Since j0 was arbitrary, we have f ðζjÞ = 0 for each j. It fol-
lows that

D Tμ

� �
⊆ f ∈ CA Dð Þ: f ζ1ð Þ =⋯ = f ζNð Þ = 0f g: ð68Þ

This proves (62). In particular, DðTμÞ contains the poly-
nomial pðzÞ = ðz − ζ1Þ⋯ ðz − ζNÞ. Hence, by Proposition 10,
DðTμÞ is dense in H2ðDÞ.

Equations (62) and (63) imply that Tμ f = 0 for all f ∈D
ðTμÞ, i.e., Tμ is trivial. This completes the proof.

Example 18. Let μ ∈MðTÞ be a discrete measure whose sup-
port has only finitely many limit points, for example,

μ = 〠
∞

n=1

1
2n δζn , ð69Þ

where ζn = eπi/2
n
. By an argument similar to the proof of

Proposition 17, we may show that

D Tμ

� �
= f ∈ CA Dð Þ: f ζð Þ = 0 for every ζ ∈ sup pμf g, ð70Þ

and Tμ f = 0 for all f ∈DðTμÞ. Hence, Tμ is trivial. Note that
every polynomial has only finitely many zeros. It follows that
DðTμÞ cannot contain any polynomial. Nevertheless, DðTμÞ
contains a nonzero function by Fatou’s theorem for CAðDÞ,
which says that, for any given closed set K ⊆ T with mð
KÞ = 0, there exists a function in CAðDÞ which vanishes
precisely on K (cf. [19]). Hence by Theorem 8, DðTμÞ
is dense in H2ðDÞ or clH2ðDðTμÞÞ = θH2ðDÞ for some singu-
lar inner function θ. But it does not seem easy to determine
whether DðTμÞ is dense in H2ðDÞ or not.

To each Toeplitz operator Tμ, there corresponds an infi-
nite Toeplitz matrix TðbμÞ. In general, however, it is a bit
awkward to call TðbμÞ as the matrix representation of Tμ,
because the domain DðTμÞ may not contain the monomials
zn. Nevertheless, often, information about Tμ gives informa-
tion about TðbμÞ. The following is one of such example.
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Corollary 19. Let μ ∈MðTÞ be a discrete measure whose sup-
port consists of N points of T . Then,

det Tn bμð Þ = 0, ð71Þ

for all n ≥N.

Proof. Suppose that μ is the discrete measure given by (61).
Then, the domain DðTμÞ is given by (62). Choose any poly-
nomial p in DðTμÞ whose degree is N (e.g., pðzÞ = ðz − ζ1Þ
⋯ ðz − ζNÞ). Write p =∑N

k=0 akz
k. Since Tμz

k =∑∞
n=0 bμðn −

kÞzn, it follows that

0 = Tμp = 〠
N

k=0
akTμz

k = 〠
N

k=0
ak 〠

∞

n=0
bμ n − kð Þzn

= 〠
∞

n=0
〠
N

k=0
akbμ n − kð Þ

 !
zn:

ð72Þ

Hence, we have

〠
N

k=0
akbμ n − kð Þ = 0, ð73Þ

for all n ≥ 0. Now, let n ≥N and put

x = a0 ⋯ aN 0 ⋯ 0½ �T ∈ℂn+1: ð74Þ

Then, by (73), TnðbμÞx = 0, i.e., x ∈ ker TnðbμÞ. Since x ≠ 0,
the square matrix TnðbμÞ is not invertible, or equivalently,
det TnðbμÞ = 0.

Lastly, we may ask: what is the adjoint of Tμ ? To answer
this question, we need the following:

Lemma 20. Let μ ∈MðTÞ. Then,

Tμ f , g
� �

=
ð
T

f �g dμ, ð75Þ

for every f ∈DðTμÞ and g ∈ CAðDÞ.

Proof. Suppose that f ∈DðTμÞ and g ∈ CAðDÞ. Then, Tμ f ∈
H2ðDÞ. Write Tμ f =∑∞

n=0 anz
n and g =∑∞

n=0 bnz
n. Then,

Tμ f , g
� �

= 〠
∞

n=0
an �bn: ð76Þ

Observe that, for each z ∈D,

Tμ f
� �

zð Þ =
ð
T

f ζð Þ
1 − �ζz

dμ ζð Þ =
ð
T

f ζð Þ〠
∞

n=0

�ζ
n
zn dμ ζð Þ

= 〠
∞

n=0

ð
T

f ζð Þ�ζn dμ ζð Þ

 �

zn:

ð77Þ

Hence, we have

an =
ð
T

f ζð Þ�ζn dμ ζð Þ: ð78Þ

Observe that, for each 0 < r < 1,

gr = 〠
∞

n=0
bnr

nzn ∈ CA Dð Þ: ð79Þ

It follows that

Tμ f , gr

� �
= 〠

∞

n=0
an �bnr

n = 〠
∞

n=0

ð
T

f ζð Þ�ζn �bnrn dμ ζð Þ

=
ð
T

f ζð Þ �〠∞
n=0 bnr

nζn dμ ζð Þ =
ð
T

f �gr dμ:

ð80Þ

If we let r⟶ 1, then ∥g − gr∥∞ ⟶ 0, and hence, hTμ f ,
gri⟶ hTμ f , gi and

Ð
T
f �gr dμ→ Ð

T
f �g dμ. This proves (75).

Assume that μ ∈MðTÞ and DðTμÞ is dense in H2ðDÞ.
Then, the adjoint T∗

μ of Tμ can be defined; the domain of
T∗
μ is

D T∗
μ

� �
= g ∈H2 Dð Þ: ∃h ∈H2 Dð Þs:t: Tμ f , g

� �
= f , hh i∀f ∈D Tμ

� �� �
,

ð81Þ

and, for each g ∈DðT∗
μÞ, T∗

μg is the (unique) element of

H2ðDÞ such that

Tμ f , g
� �

= f , T∗
μg

D E
, ð82Þ

for every f ∈DðTμÞ.
If φ ∈ L∞ðTÞ, then T∗

φ = T �φ. Hence, it is reasonable to

expect that the adjoint of Tμ is the Toeplitz operator induced
by the “complex conjugation” of μ. For μ ∈MðTÞ, define

�μ Eð Þ = �μ Eð Þ E ∈BTð Þ: ð83Þ

Then, �μ ∈MðTÞ. Of course, μ ∈MðTÞ is a real measure if
and only if �μ = μ. Note that

b�μ nð Þ =
�bμ −nð Þ
¯

, ð84Þ

for every n ∈ℤ.
We now have the following:

Proposition 21. Let μ ∈MðTÞ. Assume thatDðTμÞ is dense in
H2ðDÞ. Then,

T �μ ⊆ T∗
μ , ð85Þ

that is DðT �μÞ ⊆DðT∗
μÞ and T �μ = T∗

μ on DðT �μÞ.
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Proof. Let g ∈DðT �μÞ. By Lemma 20, it follows that

Tμ f , g
� �

=
ð
T

f �g dμ =
�ð

T

g�f d�μ

¯

= f , T �μg
D E

, ð86Þ

for every f ∈DðTμÞ. It follows that g ∈DðT∗
μÞ and T∗

μg =
T �μg. Therefore, we conclude that

D T �μ
� �

⊆D T∗
μ

� �
, ð87Þ

and T∗
μg = T �μg for every g ∈DðT �μÞ. This completes the

proof.

If μ ∈MðTÞ, and T is the restriction of the Toeplitz oper-
ator Tμ to clH2ðDðTμÞÞ, then T is a densely defined linear

operator. In this case, T∗ is a linear operator from H2ðDÞ
onto clH2ðDðTμÞÞ. By the same argument as the proof of
Proposition 21, we have DðT �μÞ ⊆DðT∗Þ and T∗g = T �μg
for g ∈DðT �μÞ.

We also have the following:

Proposition 22. Let μ ∈MðTÞ be positive. Then, the following
hold:

(a) Tμ is positive, i.e., μ f , f ≥ 0 for all f ∈DðTμÞ
(b) ker Tμ = f f ∈ CAðDÞ: f ðζÞ = 0 for every ζ ∈ supp μg

Proof. (a) Suppose that μ ≥ 0. Then, by Lemma 20, we have

Tμ f , f
� �

=
ð
T

fj j2 dμ ≥ 0, ð88Þ

for every f ∈DðTμÞ.
(b) Suppose that μ ∈MðTÞ is positive. If f ∈ ker Tμ, thenÐ

T
j f j2 dμ = hTμ f , f i = 0. Hence, f = 0μ-a.e. on T . We show

that f = 0 on supp μ. Assume to the contrary that f ðζ0Þ ≠ 0
for some ζ0 ∈ sup pμ. Since f ∈ CAðDÞ, there exist a constant
ε > 0 and an open arc I ⊆ T with center ζ0 such that ∣f ðζÞ ∣ ≥ε
for all ζ ∈ I. Since ζ0 ∈ supp μ, we have μðIÞ > 0. It follows
that

ð
T

fj j2 dμ ≥
ð
I
fj j2 dμ ≥ ε · μ Ið Þ > 0, ð89Þ

which is a contradiction. Hence, f ðζÞ = 0 for all ζ ∈ supp μ.
Therefore,

ker Tμ ⊆ f ∈ CA Dð Þ: f = 0 on supp μf g: ð90Þ

The reverse inclusion is trivial.

The operator Tμ may be positive even though μ is com-
plex. For example, for any complex number α, the measure
α · δ1 is trivial, and hence, it is positive.

We conclude with a remark on the boundedness of Tμ. It

is well known (cf. [3]) that for φ ∈ L2ðTÞ, Tφ is bounded if
and only if φ ∈ L∞ðTÞ, in which case, ∥Tφ∥ = ∥φ∥∞. If μ ≥ 0
and Tμ is bounded, then

ð
T

fj j2 dμ ≤ c · ∥f ∥22  f ∈D Tμ

� �� �
: ð91Þ

Let us call a positive measure μ ∈MðTÞ a compatible
measure if μ satisfies (91) for all f ∈ CAðDÞ. The word “com-
patible” comes from the paper [12]. One can show that the
following statements are equivalent:

(i) μ is a compatible measure

(ii) μ≪m and dμ/dm ∈ L∞ðTÞ
(iii) DðTμÞ contains all polynomials and Tμ is bounded

If these conditions are satisfied and if φ = dμ/dm, then
DðTμÞ = CAðDÞ and

Tμ f = Tφ f , ð92Þ

for every f ∈ CAðDÞ. In (iii), we cannot reduce the condition
that DðTμÞ contains all polynomials to the condition that

DðTμÞ is dense inH2ðDÞ: there is a measure μ ∈MðTÞ which
is not compatible such that Tμ is densely defined and
bounded (see Example 4, (b)).
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