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In this article, the iterative transformation method and homotopy perturbation transformation method are applied to calculate the
solution of time-fractional Cauchy-reaction diffusion equations. In this technique, Shehu transformation is combined of the
iteration and the homotopy perturbation techniques. Four examples are examined to show validation and the efficacy of the
present methods. The approximate solutions achieved by the suggested methods indicate that the approach is easy to apply to
the given problems. Moreover, the solution in series form has the desire rate of convergence and provides closed-form solutions.
It is noted that the procedure can be modified in other directions of fractional order problems. These solutions show that the
current technique is very straightforward and helpful to perform in applied sciences.

1. Introduction

In recent centuries, fractional partial differential equation
(FPDE) fundamental signification is well-known in different
engineering fields. Numerous physical phenomena can be
modelled using FPDEs in various engineering and science
fields such as physics, finance, aerospace, mechanics, biol-
ogy, signal processing, biochemistry, and polymers [1, 2].
It is challenging to create computational models for any nat-
ural phenomenon using a traditional differential operator
since it can describe those phenomena, primarily hereditary
properties. They have a memory effect and the integrated
capacity to describe and explain physical phenomena that
cannot be adequately explained using an integer-order
differential equation. The nonlocality of fractional operators
in partial differential equations is one purpose for their
importance in modeling different areas of chemical, biologi-
cal, psychological, thermoplasticity, physical, and mechani-
cal systems [3–5].

Reaction-diffusion (RD) equations define various nonlin-
ear schemes in chemistry, physics, biology, ecology, and
other field sciences. RD equations are commonly used in
ecology as a model for geographic impacts. They agree on
three significant forms of environmental concepts: a mini-
mum patch size required to maintain a population, the estab-
lishment of spatial trends in population distributions in
homogeneous ecosystems, and the propagation of wavefronts
associated with biological invasions. RD equations can be
studied using techniques from the concept of PDEs and
dynamical schemes [6–9].

The equation of reaction-diffusion write of the following
form:

∂μ
∂η

= Δμ + g μ,∇μ : φ, ηð Þ: ð1Þ

The term of Δμ is diffusion term and gðμ,∇μ : φ, ηÞ is the
reaction function. Moreover, the diffusion general term is
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AðμÞ, where A is a 2nd order nonlinear elliptic operators. In
this article, we consider the fractional-order one-dimen-
sional, reaction–diffusion equation

∂δμ φ, ηð Þ
∂ηδ

=D
∂2μ φ, ηð Þ

∂φ2 + r φ, ηð Þμ φ, ηð Þ, φ, ηð Þ ∈Ω ⊂ R2,

ð2Þ

If δ = 1, then, it becomes classical reaction-diffusion
equation, where μ is the concentration, r is the reaction
parameter, and D > 0 is the diffusion coefficient, with the
initial and boundaries conditions

μ φ, 0ð Þ = f φð Þ, φ ∈ R, ð3Þ

μ 0, ηð Þ = g0 ηð Þ: ∂μ∂φ 0, ηð Þ = g1 tð Þ, η ∈ R: ð4Þ

The model defined by equations (2) and (3) is called the
characteristic Cauchy model in the domain Ω = R × R+, and
the model given by equations (2) and (4) is called the non-
characteristic Cauchy equation in the domain Ω = R+ × R,
using different analytical and numerical methods to solve
reaction diffusion equation, such as Picard technique [10],
homotopy perturbation technique [3], differential transfor-
mation technique and variation iteration technique [11],
Adomian decomposition method [12], homotopy analysis
method [13], fractional iteration algorithm I [14], new
Sumudu transform iterative method [15], and finite-
difference discretization scheme [16].

Daftardar-Gejji and Jafari in 2006 [17] suggested DJM
solves linear and nonlinear differential equations. The DJM
is simple and easy to comprehend and use, and it provides
faster numerical solutions than the variational iterative
technique [18] and the Adomian decomposition technique
[19, 20]. The new iterative transformation method (NITM)
is a combination of Shehu transform and the new iterative
approach that provides the solution in the form of conver-
gent series in an easy way. Another technique is the
homotopy perturbation transform method (HPTM) to some
applicable fractional models arising in real-life problems. The
HPTM is applied directly to fractional models without any
linearization, discretization, or variable transforms. The
HPTM is an iterative technique that converges to solutions
in closed form or approximate solutions. The nonlinear
terms are decomposed successfully via He’s polynomials,
and the fractional derivatives are computed in the Caputo
sense. Applications of three fractional models are demon-
strated, and the analytical and numerical simulations of the
three fractional models are provided to bolster the efficiency,
simplicity, and high accuracy of the HPTM. Many
researchers use this method to solve different fractional-
order partial differential equations, such as fractional order
gas dynamic equation [21], convection-diffusion problems
[22], and Klein-Gordon equations [23].

This paper uses the Iterative transform method and
homotopy perturbation transform method to solve fractional
Cauchy-reaction diffusion equation equations using the frac-

tional operator of Caputo type. The fractional calculus funda-
mental definitions are defined in Section 2, writing the
general methodologies in Sections 3 and 4, many test models
show the effectiveness of suggested techniques in Sections 5
and 6. Finally, the conclusion is given in Section 7.

2. Basic Definitions

2.1. Definition. The Riemann fractional integral is given as
[24, 25]

Iδ0h ηð Þ = 1
Γ δð Þ

ðη
0
η − sð Þδ−1h sð Þds: ð5Þ

2.2. Definition. The Caputo fractional derivative of f ðηÞ is
defined as [24, 25]

Dδ
η f ηð Þ = I j−δ f j, j − 1 < δ < j, j ∈ℕ, ð6Þ

dj

dη j
h ηð Þ, δ = j, j ∈ℕ: ð7Þ

2.3. Definition. The integral transform of Shehu transform in
Set A, the function is defined by [26–28]

A = μ ηð Þ: ∃f , ρ1, ρ2 > 0, μ ηð Þj j <Me
ηj j
ρi , if η ∈ 0,∞½ Þ: ð8Þ

The transformation of Shehu is defined as Sð:Þ for a
function μðηÞ is given as

S μ ηð Þf g =V s, vð Þ =
ð∞
0
e
−sη
v μ ηð Þdη, η > 0, s > 0: ð9Þ

The Shehu transform of a function μðηÞ is Vðs, vÞ: then,
μðηÞ is called the inverse of Vðs, vÞ which is given as

S−1 V s, vð Þf g = μ ηð Þ, for η ≥ 0, S−1 is the Shehu
inverse transformation:

ð10Þ

2.4. Definition. The nth derivative of Shehu transformation is
defined as [27–29]

S μ jð Þ ηð Þ
n o

= sj

vj
V s, vð Þ − 〠

j−1

k=0

s
v

� �j−k−1
μ kð Þ 0ð Þ: ð11Þ

2.5. Definition. The Shehu transform of fractional derivative
is given as [26–28].

S μ δð Þ ηð Þ
n o

= sδ

vδ
μ s, vð Þ − 〠

j−1

k=0

s
v

� �δ−k−1
μ kð Þ 0ð Þ, 0 < δ ≤ n:

ð12Þ
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3. The HPTM General Implementation

Consider the general fractional partial differential equation
solve to HPTM:

Dδ
ημ φ, ηð Þ +Mμ φ, ηð Þ +Nμ φ, ηð Þ
= h φ, ηð Þ, η > 0, 0 < δ ≤ 1, μ φ, 0ð Þ
= g φð Þ, μ ∈R:

ð13Þ

Applying Shehu transformation of equation (13), we get

S Dδ
ημ φ, ηð Þ +Mμ φ, ηð Þ +Nμ φ, ηð Þ

h i
= S h φ, ηð Þ½ �, η > 0, 0 < δ ≤ 1, μ φ, ηð Þ

= v
s
g φð Þ + vδ

sδ
S h φ, ηð Þ½ � − vδ

sδ
S Mμ φ, ηð Þ +Nμ φ, ηð Þ½ �:

ð14Þ

Now, using inverse Shehu transformation, we achieve as

μ φ, ηð Þ = F φ, ηð Þ − S−1
vδ

sδ
S Mμ φ, ηð Þ +Nμ φ, ηð Þf g

� �
, ð15Þ

where

F φ, ηð Þ = S−1
v
s
g φð Þ + vδ

sδ
S h φ, ηð Þ½ �

� �

= g μð Þ + S−1
vδ

sδ
S h φ, ηð Þ½ �

� �
:

ð16Þ

The parameter p show the producer of perturbation is
given as

μ φ, ηð Þ = 〠
∞

k=0
pkμk φ, ηð Þ, ð17Þ

where the perturbation p is parameter and p ∈ ½0, 1�.
The nonlinear components can be defined as

Nμ φ, ηð Þ = 〠
∞

k=0
pkHk μkð Þ, ð18Þ

where He’s polynomials Hn in terms of μ0, μ1, μ2,⋯, μn, and
can be calculated as

Hn μ0, μ1,⋯,μnð Þ = 1
δ n + 1ð ÞD

k
p N 〠

∞

k=0
pkμk

 !" #
p=0

, ð19Þ

where Dk
p = ∂k/∂k:

Substituting equations (18) and (19) in equation (15), we
obtain as

〠
∞

k=0
pkμk φ, ηð Þ

= F φ, ηð Þ − p

× S−1
vδ

sδ
S M〠

∞

k=0
pkμk φ, ηð Þ + 〠

∞

k=0
pkHk μkð Þ

( )( )" #
:

ð20Þ

The p coefficients comparison on both sides, we have

p0 : μ0 φ, ηð Þ = F φ, ηð Þ,

p1 : μ1 φ, ηð Þ = S−1
vδ

sδ
S Mμ0 φ, ηð Þ +H0 μð Þð Þ

� �
,

p2 : μ2 φ, ηð Þ = S−1
vδ

sδ
S Mμ1 φ, ηð Þ +H1 μð Þð Þ

� �
,

⋮

pk : μk φ, ηð Þ = S−1
vδ

sδ
S Mμk−1 φ, ηð Þ +Hk−1 μð Þð Þ

� �
, k > 0, k ∈N:

ð21Þ

The μkðφ, ηÞ components simply calculated to the
convergence series form. We can achieve p⟶ 1,

μ φ, ηð Þ = lim
M⟶∞

〠
M

k=1
μk φ, ηð Þ: ð22Þ

4. The NITM General Implementation

Consider the general fractional partial differential equation
solve to NITM:

Dδ
ημ φ, ηð Þ +Mμ φ, ηð Þ +Nμ φ, ηð Þ = h φ, ηð Þ, n ∈N , n − 1 < δ ≤ n,

ð23Þ

where linear and nonlinear functions represent by M
and N .

With initial condition

μk φ, 0ð Þ = gk φð Þ, k = 0, 1, 2,⋯, n − 1, ð24Þ

Apply the Shehu transformation of equation (23), we
obtain as

S Dδ
ημ φ, ηð Þ

h i
+ S Nμ φ, ηð Þ +Mμ φ, ηð Þ½ � = E h φ, ηð Þ½ �: ð25Þ
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Using the differentiation property of Shehu transform is
given as

S μ φ, ηð Þ½ � = v
s
μ φ, 0ð Þ + vδ

sδ
S h φ, ηð Þ½ �

−
vδ

sδ
S Nμ φ, ηð Þ +Mμ φ, ηð Þ½ �,

ð26Þ

The Shehu inverse transform applies in equation (26), we
have

μ φ, ηð Þ = S−1
v
s
μ φ, 0ð Þ + vδ

sδ
S h φ, ηð Þ½ �

� �� �

− S−1
vδ

sδ
S Nμ φ, ηð Þ +Mμ φ, ηð Þ½ �

� �
:

ð27Þ

In the iterative method, we get

μ φ, ηð Þ = 〠
∞

m=0
μm φ, ηð Þ: ð28Þ

N 〠
∞

m=0
μm φ, ηð Þ

 !
= 〠

∞

m=0
N μm φ, ηð Þ½ �, ð29Þ

the nonlinear term N is expressed as

N 〠
∞

m=0
μm φ, ηð Þ

 !
= μ0 φ, ηð Þ +N 〠

m

k=0
μk φ, ηð Þ

 !

−M 〠
m

k=0
μk φ, ηð Þ

 !
:

ð30Þ

Substituting equations (28), (29), and (30) in equation
(27), we can obtain the solution

〠
∞

m=0
μm φ, ηð Þ

= S−1
vδ

sδ
〠
m

k=0
s2−φ+kuk φ, 0ð Þ + S h φ, ηð Þ½ �

 !" #

− S−1
vδ

sδ
E N 〠

m

k=0
μk φ, ηð Þ

 !
−M 〠

m

k=0
μk φ, ηð Þ

 !" #" #
:

ð31Þ

The iterative method can be defined as

μ0 φ, ηð Þ = S−1
vδ

sδ
〠
m

k=0
s2−φ+kuk φ, 0ð Þ + vδ

sδ
E g φ, ηð Þð Þ

 !" #
,

ð32Þ

μ1 φ, ηð Þ = −S−1
vδ

sδ
S N μ0 φ, ηð Þ½ � +M μ0 φ, ηð Þ½ �½

� �
, ð33Þ

μm+1 φ, ηð Þ = −S−1
vδ

sδ
S −N 〠

m

k=0
μk φ, ηð Þ

 !""

−M 〠
m

k=0
μk φ, ηð Þ

 !##
,m ≥ 1:

ð34Þ

Finally, equations (23) and (24) provide the m-terms
solution in series form is achieved as

μ φ, ηð Þ ≅ μ0 φ, ηð Þ + μ1 φ, ηð Þ + μ2 φ, ηð Þ + ::⋯ ,
+μm φ, ηð Þ,m = 1, 2,⋯:

ð35Þ

Similarly, the convergence proof of the NITM, see [17].

4.1. Example. Consider the fractional Cauchy-reaction
diffusion equation is given as:

Dδ
ημ φ, ηð Þ =D2

ημ φ, ηð Þ − μ φ, ηð Þ, 0 < δ ≤ 1, ð36Þ

with the initial and boundaries conditions

μ φ, 0ð Þ = e−φ + φ = g φð Þ, μ 0, ηð Þ = 1 = f0 ηð Þ,
∂μ 0, ηð Þ

∂η
= e−η − 1 = f1 ηð Þ, φ, η ∈ R:

ð37Þ

Applying Shehu transform in equation (36), we get

S μ φ, ηð Þ½ � = v
s
e−φ + φð Þ + sδS D2

ημ − μ
h i

: ð38Þ

Using inverse Shehu transform in the above equation,
we get

μ φ, ηð Þ = e−φ + φð Þ + S−1 sδS D2
ημ − μ

h i� �
: ð39Þ

First, we implement the NITM, we get the following

μ0 φ, ηð Þ = e−φ + φ, ð40Þ

μ1 φ, ηð Þ = S−1 sδS D2
ημ0 − μ0

n oh i
= φ

−ηδ
� 	
Γ δ + 1ð Þ , ð41Þ

μ2 φ, ηð Þ = S−1 sδS D2
ημ1 − μ1

n oh i
= φ

−ηδ
� 	2

Γ 2δ + 1ð Þ ,
ð42Þ

μ3 φ, ηð Þ = S−1 sδS D2
ημ2 − μ2

n oh i
= φ

−ηδ
� 	3

Γ 3δ + 1ð Þ ,

⋮
ð43Þ

μn φ, ηð Þ = S−1 sδS D2
ημn − μn

n oh i
= φ

−ηδ
� 	n

Γ nδ + 1ð Þ , n ≥ 0:

ð44Þ
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The series form solution is given as

μ φ, ηð Þ = μ0 φ, ηð Þ + μ1 φ, ηð Þ + μ2 φ, ηð Þ + μ3 φ, ηð Þ+⋯μn φ, ηð Þ:
ð45Þ

The approximate solutions is achieved as

μ φ, ηð Þ = e−φ + φ 1 − ηδ

Γ δ + 1ð Þ +
η2δ

Γ 2δ + 1ð Þ
�

−
η3δ

Γ 3δ + 1ð Þ+⋯+ −ηδ
� 	n

Γ nδ + 1ð Þ

)
:

ð46Þ

Now we implement the HPTM, we obtain as

〠
∞

n=0
pnμn φ, ηð Þ = e−φ + φð Þ + p S−1 sδS 〠

∞

n=0
pnHn μð Þ

 !( )" #
:

ð47Þ

Where the nonlinear function of the polynomial is shown
by HnðμÞ. For instance, the He’s polynomial component is
obtained through the recursive relation HnðμÞ =D2

ημn − μn,
∀n ∈N . Now, on both sides, the coefficient of corresponding
power p is calculated, and the following solution is obtained
as follows:

p0 : μ0 φ, ηð Þ = e−φ + φ,

p1 : μ1 φ, ηð Þ = S−1 sδS H0 μð Þð Þ
n oh i

= φ
−ηδ
� 	
Γ δ + 1ð Þ ,

p2 : μ2 φ, ηð Þ = S−1 sδS H1 μð Þð Þ
n oh i

= φ
−ηδ
� 	2

Γ 2δ + 1ð Þ ,

p3 : μ3 φ, ηð Þ = S−1 sδS H2 μð Þð Þ
n oh i

= φ
−ηδ
� 	3

Γ 3δ + 1ð Þ ,

⋮

pn : μn φ, ηð Þ = S−1 sδS Hn−1 μð Þð Þ
n oh i

= φ
−ηδ
� 	n

Γ nδ + 1ð Þ :

ð48Þ

Then the series form result is defined as

μ φ, ηð Þ = 〠
∞

n=0
pnμn φ, ηð Þ: ð49Þ

The approximate solution, we can achieve as

μ φ, ηð Þ = e−φ + φ 1 − ηδ

Γ δ + 1ð Þ + η2δ

Γ 2δ + 1ð Þ
�

−
η3δ

Γ 3δ + 1ð Þ+:⋯ + −ηδ
� 	n

Γ nδ + 1ð Þ

)

= φ〠
∞

k=0

ηδ
� 	k

Γ kδ + 1ð Þ :

μ φ, ηð Þ = e−φ + φEδ ηδ
� �

:

ð50Þ

The actual solution is

μ φ, ηð Þ = e−φ + φe−η: ð51Þ

Figure 1 shows the exact and the analytical solution
figures at δ = 1 of Example 1. Figure 1 shows that both the
analytical and actual solutions are in close contact with each
other. Figure 2 shows that the first graph analytical solution
of fractional-order at δ = 0:8, and the second graph fractional
order δ = 0:6. In Figure 3, the first graph shows the approxi-
mate solution of fractional-order at δ = 0:4, and the second
graph shows the different fractional-order δ of Example 1.
In Figure 4, the 2D graphs show that the first actual and
approximate solution and second graph show the different
fractional-order δ of Example 1. The solution is very rapidly
convergent by using the homotopy perturbation method and
the iterative method by modifying the Shehu transformation.
It may be concluded that both methodologies are efficient
and very powerful to find the analytical result as well as
approximate results of various physical fractional problems.

4.2. Example. Consider the fractional Cauchy-reaction diffu-
sion equation is given as:

Dδ
ημ φ, ηð Þ =D2

ημ φ, ηð Þ − 1 + 4φ2� 	
μ φ, ηð Þ, 0 < δ ≤ 1, ð52Þ

with initial condition

μ φ, 0ð Þ = eφ
2 , ð53Þ

and the exact solution is given as

μ φ, ηð Þ = eφ
2+1: ð54Þ

First, we implement the NITM, we obtain as

μ0 φ, ηð Þ = eφ
2 , ð55Þ

μ1 φ, ηð Þ = S−1 sδS D2
ημ0 φ, ηð Þ − 1 + 4φ2� 	

μ0 φ, ηð Þ
n oh i

= eφ
2 ηδ

Γ δ + 1ð Þ ,

ð56Þ
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Figure 2: The first graph shows the analytical solution of fractional-order at δ = 0:8 and second graph fractional order 0:6 of Example 1.
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Figure 1: The first graph shows the exact and second analytical solution figures at δ = 1 of Example 1.

μ2 φ, ηð Þ = S−1 sδS D2
ημ1 φ, ηð Þ − 1 + 4φ2� 	

μ1 φ, ηð Þ
n oh i

= eφ
2 η2δ

Γ 2δ + 1ð Þ ,

ð57Þ

μ3 φ, ηð Þ = S−1 sδS D2
ημ2 φ, ηð Þ − 1 + 4φ2� 	

μ2 φ, ηð Þ
n oh i

= eφ
2 η3δ

Γ 3δ + 1ð Þ ,

⋮

ð58Þ

μn φ, ηð Þ = S−1 sδS D2
ημn φ, ηð Þ − 1 + 4φ2� 	

μn φ, ηð Þ
n oh i

= eφ
2 ηδ
� 	n

Γ nδ + 1ð Þ , n ≥ 0:

ð59Þ

The series form of iterative transform method is
defined as

μ φ, ηð Þ = μ0 φ, ηð Þ + μ1 φ, ηð Þ + μ2 φ, ηð Þ
+ μ3 φ, ηð Þ+⋯μn φ, ηð Þ: ð60Þ
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Figure 3: The first graph shows the analytical solution of fractional-order at δ = 0:4, and the second graph shows the different fractional-order
δ of Example 1.
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Figure 4: The first graph shows the exact and analytical solution, and the second graph shows the different fractional-order δ of Example 1.

The approximate solution is given as

μ φ, ηð Þ = eφ
2 1 + ηδ

Γ δ + 1ð Þ +
η2δ

Γ 2δ + 1ð Þ
�

+ η3δ

Γ 3δ + 1ð Þ+⋯+ ηnδ

Γ nδ + 1ð Þ
�
:

μ φ, ηð Þ = eφ
2
Eδ ηδ
� �

:

ð61Þ

Now, we implement HPTM, we get

〠
∞

n=0
pnμn φ, ηð Þ = eφ

2 + p S−1 sδS 〠
∞

n=0
pnHn μð Þ

" # !( )
: ð62Þ

On both sides p Comparisons coefficient, we have

p0 : μ0 φ, ηð Þ = eφ
2 ,
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p1 : μ1 φ, ηð Þ = S−1 sδS H0 μð Þ½ �
� �n o

= eφ
2 ηδ

Γ δ + 1ð Þ ,

p2 : μ2 φ, ηð Þ = S−1 sδS H1 μð Þ½ �
� �n o

= eφ
2 η2δ

Γ 2δ + 1ð Þ ,

p3 : μ3 φ, ηð Þ = S−1 sδS H2 μð Þ½ �
� �n o

= eφ
2 η3δ

Γ 3δ + 1ð Þ ,

⋮

pn : μn φ, ηð Þ = S−1 sδS Hn−1 μð Þ½ �
� �n o

= eφ
2 ηnδ

Γ nδ + 1ð Þ : ð63Þ

The series form solution is express as

μ φ, ηð Þ = 〠
∞

n=0
pnμn φ, ηð Þ:

μ φ, ηð Þ = eφ
2 1 + ηδ

Γ δ + 1ð Þ + η2δ

Γ 2δ + 1ð Þ
�

+ η3δ

Γ 3δ + 1ð Þ+⋯+ ηnδ

Γ nδ + 1ð Þ
�
,

μ φ, ηð Þ = eφ
2
Eδ ηδ
� �

:

ð64Þ

Now, δ = 1, then the exact result of equation (52) is
μðφ, ηÞ = eφ

2+η.
Figure 5 shows the exact and the analytical solution

figures at δ = 1 of Example 2. Figure 5 shows that both the
analytical and actual solutions are in close contact with each
other. Figure 6 shows the first graph analytical solution of
fractional-order at δ = 0:8 and the second graph fractional
order δ = 0:6. In Figure 7, the first graph shows the approxi-

mate solution of fractional-order at δ = 0:4, and the second
graph shows the different fractional-order δ of Example 2.
In Figure 8, the 2D graphs show that the first actual and
approximate solution and second graph show the different
fractional-order δ of Example 2. The solution is very rapidly
convergent by using the homotopy perturbation method and
the iterative method by modifying the Shehu transformation.
It may be concluded that both methodologies are efficient
and very powerful to find the analytical solution as well as
approximate results of various physical fractional problems.

4.3. Example. Consider fractional-order Cauchy-reaction
diffusion equation:

Dδ
ημ φ, ηð Þ =D2

ημ φ, ηð Þ + 2ημ φ, ηð Þ, 0 < δ ≤ 1, ð65Þ

with initial condition

μ φ, 0ð Þ = eφ, ð66Þ

the actual solution is

μ φ, ηð Þ = eφ+η+η
2
: ð67Þ

Apply the Shehu transform, we obtain as

μ φ, ηð Þ = eφ + S−1 sδS D2
ημ φ, ηð Þ + 2ημ φ, ηð Þ

� �h i
: ð68Þ

First, we implement the NITM

μ0 φ, ηð Þ = eφ, ð69Þ
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Figure 5: The first graph shows the exact and second analytical solution figures at δ = 1 of Example 2.
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Figure 6: The first graph shows the analytical solution of fractional-order at δ = 0:8 and second graph fractional order 0:6 of Example 2.
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Figure 7: The first graph shows the analytical solution of fractional-order at δ = 0:4, and the second graph shows the different fractional-order
δ of Example 2.

μ1 φ, ηð Þ = S−1 sδS D2
ημ0 φ, ηð Þ + 2ημ0 φ, ηð Þ

n oh i
= eφ

ηδ

Γ δ + 1ð Þ +
2ηδ+1

Γ δ + 2ð Þ

 �

,
ð70Þ

μ2 φ, ηð Þ = S−1 sδS D2
ημ1 φ, ηð Þ + 2ημ1 φ, ηð Þ

n oh i
= eφ

η2δ

Γ 2δ + 1ð Þ + 2 δ + 2ð Þη2δ+1
Γ 2δ + 2ð Þ + 4 δ + 2ð Þη2δ+2

Γ 2δ + 3ð Þ

 �

,

ð71Þ

μ3 φ, ηð Þ = S−1 sδS D2
ημ2 φ, ηð Þ + 2ημ2 φ, ηð Þ

n oh i
,

= eφ
η3δ

Γ 3δ + 1ð Þ +
6 δ + 1ð Þη3δ+1
Γ 3δ + 2ð Þ




+ 4 δ + 2ð Þ δ + 3ð Þη3δ+2
Γ 3δ + 3ð Þ + 8 δ + 2ð Þ 2δ + 3ð Þη3δ+3

Γ 3δ + 4ð Þ
�
:

⋮
ð72Þ
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The series form of proposed technique can be defined as

μ φ, ηð Þ = μ0 φ, ηð Þ + μ1 φ, ηð Þ + μ2 φ, ηð Þ + μ3 φ, ηð Þ+⋯μn φ, ηð Þ:
ð73Þ

The approximate solution is given as

μ φ, ηð Þ = eφ + eφ
ηδ

Γ δ + 1ð Þ + 2ηδ+1
Γ δ + 2ð Þ


 �

+ eφ
η2δ

Γ 2δ + 1ð Þ + 2 δ + 2ð Þη2δ+1
Γ 2δ + 2ð Þ + 4 δ + 2ð Þη2δ+2

Γ 2δ + 3ð Þ

 �

+ eφ
η3δ

Γ 3δ + 1ð Þ + 6 δ + 1ð Þη3δ+1
Γ 3δ + 2ð Þ + 4 δ + 2ð Þ δ + 3ð Þη3δ+2

Γ 3δ + 3ð Þ



+ 8 δ + 2ð Þ 2δ + 3ð Þη3δ+3
Γ 3δ + 4ð Þ

�
+⋯:

ð74Þ

Now, we apply HPTM, we get

〠
∞

n=0
pnμn φ, ηð Þ = eφ + p S−1 sδS 〠

∞

n=0
pnHn μð Þ

 !( )" #
:0 ð75Þ

The coefficients of p Comparison on both sides, we
achieve as

p0 : μ0 φ, ηð Þ = eφ,

p1 : μ1 φ, ηð Þ = S−1 sδS H0 μð Þð Þ
n oh i

= eφ
ηδ

Γ δ + 1ð Þ + 2ηδ+1
Γ δ + 2ð Þ


 �
,

p2 : μ2 φ, ηð Þ
= S−1 sδS H1 μð Þð Þ

n oh i
= eφ

η2δ

Γ 2δ + 1ð Þ + 2 δ + 2ð Þη2δ+1
Γ 2δ + 2ð Þ + 4 δ + 2ð Þη2δ+2

Γ 2δ + 3ð Þ

 �

,

p3 : μ3 φ, ηð Þ
= S−1 sδS H2 μð Þð Þ

n oh i
= eφ

η3δ

Γ 3δ + 1ð Þ + 6 δ + 1ð Þη3δ+1
Γ 3δ + 2ð Þ + 4 δ + 2ð Þ δ + 3ð Þη3δ+2

Γ 3δ + 3ð Þ



+ 8 δ + 2ð Þ 2δ + 3ð Þη3δ+3
Γ 3δ + 4ð Þ

�
:

ð76Þ

Finally, we obtain the analytical result μðφ, ηÞ to the trun-
cate series.

μ φ, ηð Þ = lim
N⟶∞

〠
N

n=1
μn φ, ηð Þ:

μ φ, ηð Þ = eφ + eφ
ηδ

Γ δ + 1ð Þ + 2ηδ+1
Γ δ + 2ð Þ


 �

+ eφ
η2δ

Γ 2δ + 1ð Þ + 2 δ + 2ð Þη2δ+1
Γ 2δ + 2ð Þ + 4 δ + 2ð Þη2δ+2

Γ 2δ + 3ð Þ

 �

+ eφ
η3δ

Γ 3δ + 1ð Þ + 6 δ + 1ð Þη3δ+1
Γ 3δ + 2ð Þ




+ 4 δ + 2ð Þ δ + 3ð Þη3δ+2
Γ 3δ + 3ð Þ + 8 δ + 2ð Þ 2δ + 3ð Þη3δ+3

Γ 3δ + 4ð Þ Þ+⋯:

ð77Þ
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Figure 8: The first graph shows the exact and analytical solution, and the second graph shows the different fractional-order δ of Example 2.
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Now, for δ = 1, the actual result of the above series is

μ φ, ηð Þ = eφ+η+η
2
: ð78Þ

Figure 9 shows the exact and the analytical solution fig-
ures at δ = 1 of Example 3. Figure 9 shows that both the ana-
lytical and actual solutions are in close contact with each
other. Figure 10 shows that the first graph analytical solution
of fractional-order at δ = 0:8 and second graph fractional
order δ = 0:6. In Figure 11, the first graph shows the approx-
imate solution of fractional-order at δ = 0:4, and the second
graph shows the different fractional-order δ of Example 3.
The solution is very rapidly convergent by using the Homo-
topy perturbation method and the iterative method by mod-

ifying the Shehu transformation. It may be concluded that
both methodologies are efficient and very powerful to find
the analytical result as well as approximate results of various
physical fractional problems.

4.4. Example. Consider the fractional Cauchy-reaction diffu-
sion equation is given as:

Dδ
ημ φ, ηð Þ =D2

ημ φ, ηð Þ − 4φ2 − 2η + 2
� 	

μ φ, ηð Þ, 0 < δ ≤ 1,
ð79Þ

with initial condition

μ φ, 0ð Þ = eφ
2 , ð80Þ
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Figure 9: The first graph shows the exact and second analytical solution figures at δ = 1 of Example 3.
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Figure 10: The first graph shows the analytical solution of fractional-order at δ = 0:8 and second graph fractional order 0:6 of Example 3.
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Figure 11: The first graph shows the analytical solution of fractional-order at δ = 0:4, and the second graph shows the different fractional-
order δ of Example 3.

the exact result is

μ φ, ηð Þ = eφ
2+η2 : ð81Þ

First, we apply the NITM

μ0 φ, ηð Þ = eφ
2 , ð82Þ

μ1 φ, ηð Þ = S−1 sδS D2
ημ0 φ, ηð Þ − 4φ2 − 2η + 2

� 	
μ0 φ, ηð Þ

n oh i
= 2eφ2 ηδ+1

Γ δ + 2ð Þ ,

ð83Þ

μ2 φ, ηð Þ = S−1 sδS D2
ημ1 φ, ηð Þ − 4φ2 − 2η + 2

� 	
μ1 φ, ηð Þ

n oh i
= 22eφ2 δ + 2ð Þη2 δ+1ð Þ

Γ 2δ + 3ð Þ ,

ð84Þ

μ3 φ, ηð Þ = S−1 sδS D2
ημ2 φ, ηð Þ − 4φ2 − 2η + 2

� 	
μ2 φ, ηð Þ

n oh i
= 23eφ2 δ + 2ð Þ 2δ + 3ð Þη3 δ+1ð Þ

Γ 3δ + 4ð Þ :

⋮
ð85Þ

The series form result is defined as

μ φ, ηð Þ = μ0 φ, ηð Þ + μ1 φ, ηð Þ + μ2 φ, ηð Þ + μ3 φ, ηð Þ+⋯μn φ, ηð Þ:
ð86Þ

The approximate solution is

μ φ, ηð Þ = eφ
2 + 2eφ2 ηδ+1

Γ δ + 2ð Þ + 22eφ2 δ + 2ð Þη2 δ+1ð Þ

Γ 2δ + 3ð Þ

+ 23eφ2 δ + 2ð Þ 2δ + 3ð Þη3 δ+1ð Þ

Γ 3δ + 4ð Þ

+ 24eφ2 δ + 2ð Þ 2δ + 3ð Þ 3δ + 4ð Þη4 δ+1ð Þ

Γ 4δ + 5ð Þ +⋯:

ð87Þ

Now, implement the HPTM, we obtain as

〠
∞

n=0
pnμn φ, ηð Þ = eφ

2 + p S−1 sδS 〠
∞

n=0
pnHn μð Þ

 !( )" #
: ð88Þ

The comparison of coefficient of p on both sides, we get

p0 : μ0 φ, ηð Þ = eφ
2 ,

p1 : μ1 φ, ηð Þ = S−1 sδS H0 μð Þð Þ
n oh i

= 2eφ2 ηδ+1

Γ δ + 2ð Þ ,

p2 : μ2 φ, ηð Þ = S−1 sδS H1 μð Þð Þ
n oh i

= 22eφ2 δ + 2ð Þη2 δ+1ð Þ

Γ 2δ + 3ð Þ ,

p3 : μ3 φ, ηð Þ = S−1 sδS H2 μð Þð Þ
n oh i

= 23eφ2 δ + 2ð Þ 2δ + 3ð Þη3 δ+1ð Þ

Γ 3δ + 4ð Þ ,
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Figure 13: The first graph shows the analytical solution of fractional-order at δ = 0:8 and second graph fractional order 0:6 of Example 4.
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Figure 12: The first graph shows the exact and second analytical solution figures at δ = 1 of Example 4.

p4 : μ4 φ, ηð Þ = S−1 sδS H3 μð Þð Þ
n oh i

= 24eφ2 δ + 2ð Þ 2δ + 3ð Þ 3δ + 4ð Þη4 δ+1ð Þ

Γ 4δ + 5ð Þ :
ð89Þ

Finally, we obtain the approximate result μðφ, ηÞ by
truncate series

μ φ, ηð Þ = lim
N⟶∞

〠
N

n=1
μn φ, ηð Þ:

μ φ, ηð Þ = eφ
2 + 2eφ2 ηδ+1

Γ δ + 2ð Þ + 22eφ2 δ + 2ð Þη2 δ+1ð Þ

Γ 2δ + 3ð Þ

+ 23eφ2 δ + 2ð Þ 2δ + 3ð Þη3 δ+1ð Þ

Γ 3δ + 4ð Þ

+ 24eφ2 δ + 2ð Þ 2δ + 3ð Þ 3δ + 4ð Þη4 δ+1ð Þ

Γ 4δ + 5ð Þ +⋯:

ð90Þ

The special case for δ = 1, the close form above equation
is expressed as

μ φ, ηð Þ = eφ
2+η2 : ð91Þ
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Figure 12 shows the exact and the analytical solution
figures at δ = 1 of Example 4. Figure 12 shows that both the
analytical and actual solutions are in close contact with each
other. Figure 13 shows the first graph analytical solution of
fractional-order at δ = 0:8 and second graph fractional order
δ = 0:6. In Figure 14, the first graph shows the approximate
solution of fractional-order at δ = 0:4, and the second graph
shows the different fractional-order δ of Example 4. The
solution is very rapidly convergent by apply the homotopy
perturbation method and the iterative method by modifying
the Shehu transformation. It may be concluded that both
methodologies are efficient and very powerful in finding the
analytical result as well as approximate results of various
physical fractional problems.

5. Conclusion

This paper develops an effective and new coupling method of
the homotopy perturbation method, the iterative method, and
Shehu transform approach for the time-fractional Cauchy-
reaction diffusion equations. With the help of the Shehu trans-
form, the calculation of this method is very straightforward
and simple. A very close contact of the achieved solutions with
the exact solution of the problem is analyzed. It is also investi-
gated that the rate of convergence of the proposed techniques
is accurate the solution of fractional-order partial differential
equations. Thus, we further this technique can be applied to
solve other schemes of linear and nonlinear fractional-order
partial differential equations.

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this article.

Authors’ Contributions

All authors contributed equally and significantly in writing
this article. All authors read and approved the final
manuscript.

Acknowledgments

One of the co-authors (A. M. Zidan) extends their apprecia-
tion to the Deanship of Scientific Research at King Khalid
University, Abha 61413, Saudi Arabia, for funding this work
through research groups program under grant number
R.G.P.1/30/42.

References

[1] R. Hilfer, Ed., Applications of fractional calculus in physics,
World Scientific, 2000.

[2] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and
Applications of Fractional Differential Equations. Vol. 204,
Elsevier, 2006.

[3] S. Kumar, “A new fractional modeling arising in engineering
sciences and its analytical approximate solution,” Alexandria
Engineering Journal, vol. 52, no. 4, pp. 813–819, 2013.

[4] A. Yildirim, “Application of He's homotopy perturbation
method for solving the Cauchy reaction-diffusion problem,”
Computers & Mathematics with Applications, vol. 57, no. 4,
pp. 612–618, 2009.

0

𝜑

0.4
0.3

0.2
0.1

1

0.2
0.4

0.6

0.8
0.5

0

𝜂

2

2.5

3

3.5

1.5

0

𝜑

0.4
0.3

0.2
0.1

1

0.2
0.4

0.6

0.8
0.5

0

𝜂

2

2.5

3

3.5

1.5

1
0.8

0.6
0.4

Figure 14: The first graph shows the analytical solution of fractional-order at δ = 0:4, and the second graph shows the different fractional-
order δ of Example 4.

14 Journal of Function Spaces



[5] S. Ali, S. Bushnaq, K. Shah, and M. Arif, “Numerical treatment
of fractional order Cauchy reaction diffusion equations,”
Chaos, Solitons & Fractals, vol. 103, pp. 578–587, 2017.

[6] N. F. Britton, Reaction-Diffusion Equations and Their Applica-
tions to Biology, Academic Press, 1986.

[7] R. S. Cantrell and C. Cosner, Spatial ecology via reaction-
diffusion equations, John Wiley & Sons, 2004.

[8] P. Grindrod, The Theory and Applications of Reaction-
Diffusion Equations: Patterns and Waves, Clarendon Press,
1996.

[9] J. Smoller, Shock Waves and Reaction—Diffusion Equations.
Vol. 258, Springer Science & Business Media, 2012.

[10] S. S. Behzadi, “Solving Cauchy reaction-diffusion equation by
using Picard method,” SpringerPlus, vol. 2, no. 1, pp. 1–6, 2013.

[11] M. I. A. Othman and A. M. S. Mahdy, “Differential transfor-
mation method and variation iteration method for cauchy
reaction-diffusion problems,” Journal of Mathematics and
Computer Science, vol. 1, no. 2, pp. 61–75, 2010.

[12] H. Rouhparvar, S. Abbasbandy, and T. Allahviranloo, “Exis-
tence and uniqueness of solution of an uncertain characteristic
cauchy reaction-diffusion equation by Adomian decomposi-
tion method,”Mathematical and Computational Applications,
vol. 15, no. 3, pp. 404–419, 2010.

[13] S. Das, R. Kumar, and P. K. Gupta, “The homotopy analysis
method for fractional Cauchy reaction-diffusion problems,”
International Journal of Chemical Reactor Engineering, vol. 9,
no. 1, 2011.

[14] H. Ahmad, T. A. Khan, I. Ahmad, P. S. Stanimirovic, and
Y.-M. Chu, “A new analyzing technique for nonlinear time
fractional Cauchy reaction- diffusion model equations,”
Results in Physics, vol. 19, article 103462, 2020.

[15] K. Wang and S. Liu, “A new Sumudu transform iterative
method for time-fractional Cauchy reaction–diffusion equa-
tion,” SpringerPlus, vol. 5, no. 1, pp. 1–20, 2016.

[16] O. A. Arqub, R. Edwan,M. Al-Smadi, and S. Momani, “Solving
space-fractional Cauchy problem by modified finite-difference
discretization scheme,” Alexandria Engineering Journal,
vol. 59, no. 4, pp. 2409–2417, 2020.

[17] V. Daftardar-Gejji and H. Jafari, “An iterative method for solv-
ing nonlinear functional equations,” Journal of Mathematical
Analysis and Applications, vol. 316, no. 2, pp. 753–763, 2006.

[18] M. Safari, D. D. Ganji, and M. Moslemi, “Application of He's
variational iteration method and Adomian's decomposition
method to the fractional KdV-Burgers-Kuramoto equation,”
Computers & Mathematics with Applications, vol. 58,
no. 11-12, pp. 2091–2097, 2009.

[19] G. Adomian, “A review of the decomposition method in
applied mathematics,” Journal of Mathematical Analysis and
Applications, vol. 135, no. 2, pp. 501–544, 1988.

[20] A.-M. Wazwaz, “A reliable modification of Adomian decom-
position method,” Applied Mathematics and Computation,
vol. 102, no. 1, pp. 77–86, 1999.

[21] S. Maitama and W. Zhao, “Homotopy perturbation Shehu
transform method for solving fractional models arising in
applied sciences,” Journal of AppliedMathematics and Compu-
tational Mechanics, vol. 20, no. 1, pp. 71–82, 2021.

[22] S. Gupta, D. Kumar, and J. Singh, “Analytical solutions of
convection-diffusion problems by combining Laplace trans-
form method and homotopy perturbation method,” Alexan-
dria Engineering Journal, vol. 54, no. 3, pp. 645–651, 2015.

[23] J. Singh, D. Kumar, and S. Rathore, “Application of homotopy
perturbation transform method for solving linear and nonlin-
ear Klein-Gordon equations,” Journal of Information and
Computing Science, vol. 7, no. 2, pp. 131–139, 2012.

[24] J. A. T. Machado, D. Baleanu, W. Chen, and J. Sabatier, “New
trends in fractional dynamics,” Journal of Vibration and
Control, vol. 20, no. 7, pp. 963–963, 2014.

[25] D. Baleanu, Z. B. Güvenç, and J. A. Tenreiro Machado, Eds.,
New Trends in Nanotechnology and Fractional Calculus Appli-
cations, Springer, New York, NY, USA, 2010.

[26] S. Maitama and W. Zhao, “New integral transform: Shehu
transform a generalization of Sumudu and Laplace transform
for solving differential equations,” 2019, http://arxiv.org/abs/
1904.11370.

[27] A. Bokhari, “Application of Shehu transform to Atangana-
Baleanu derivatives,” Journal of Mathematics and Computer
Science, vol. 20, no. 2, pp. 101–107, 2019.

[28] R. Belgacem, D. Baleanu, and A. Bokhari, “Shehu transform
and applications to Caputo-fractional differential equations,”
International Journal of Analysis and Applications, vol. 17,
no. 6, pp. 917–927, 2019.

15Journal of Function Spaces

http://arxiv.org/abs/1904.11370
http://arxiv.org/abs/1904.11370

	A Modified Techniques of Fractional-Order Cauchy-Reaction Diffusion Equation via Shehu Transform
	1. Introduction
	2. Basic Definitions
	2.1. Definition
	2.2. Definition
	2.3. Definition
	2.4. Definition
	2.5. Definition

	3. The HPTM General Implementation
	4. The NITM General Implementation
	4.1. Example
	4.2. Example
	4.3. Example
	4.4. Example

	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments

