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In 2003, Mercer presented an interesting variation of Jensen’s inequality called Jensen-Mercer inequality for convex function. In
the present paper, by employing harmonically convex function, we introduce analogous versions of Hermite-Hadamard
inequalities of the Jensen-Mercer type via fractional integrals. As a result, we introduce several related fractional inequalities
connected with the right and left differences of obtained new inequalities for differentiable harmonically convex mappings. As
an application viewpoint, new estimates regarding hypergeometric functions and special means of real numbers are exemplified
to determine the pertinence and validity of the suggested scheme. Our results presented here provide extensions of others
given in the literature. The results proved in this paper may stimulate further research in this fascinating area.

1. Introduction Definition 1. A function ¢ : I C R — R is called a convex
function on (¢ € K(I)), if

The definition of convexity has been improved, generalized,
and expanded in several directions in recent years. In the lit-
erature, Jensen’s inequality (J-I) and the Hermite-Hada-

mard’s (H-H) inequality are highly familiar results. Several

$(C0+(1-0)0) <{p(6) + (1-0)$(©), (1)

new classes of convex functions along with their respective
new variants of (J-I) and (H-H) inequalities are established.
One of the well-known and most significant inequalities in
mathematical analysis is (J-I) and its related variants. These
inequalities are useful in Physics since they provide upper
and lower limits for natural phenomena defined by integrals,
such as mechanical work. The definition of a classical convex
function is as follows:

holds provided that all 6,® € I and { € [0, 1].

Jensen’s inequality is the key to success in extracting
applications in information theory. It is effective in finding
estimates for several quantitative measures in information
theory about continuous random variables, see [1-3]. The
(J-I) can be stated as a generalization of convex functions
as follows:
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Theorem 2 (see [4]). If ¢ € K(I), then

¢ (Z“’j“j) XCHE (2)
j=1 j=1

m
for all a;€l and w; € [0,1], (j=1,2,---,m) with ];wj =1

The (H-H) inequality is another well-known inequality
in the theory of convex analysis. Several notable results sur-
rounding (H-H) inequality and its significance are compiled
by Dragomir et al. in [5].

Theorem 3. If ¢ € K(I) on the interval I = [0, O] with 6 < ©,
then

¢(6+2®> < ﬁj(agb(x)dxs $0)+40) 5

In 2003, Mercer presents a variant of (J-I) which has a
great impact on the theory of inequalities known as Jen-
sen—-Mercer (J-M) inequality.

Theorem 4 (see [6]). If ¢ € K(I) on the interval 1=10, @),
then

¢ (9 - i“’f“f) <¢(6)+¢(®) - i“’j‘/’ CHRNC)
j=1 j=1

for all aj€ [6,0] and w; € [0,1], (j=1,2,---,m) with Ele
=1.

In 2013 [7], Kian and Moslehian introduced new variant
(H-H) type inequalities utilizing Mercer concept via convex
functions. Recently in 2019, Moradi and Furuichi in [8]
worked on some improvements and generalization of (J-
M) type inequalities. Then in 2020 [9], Adil et al. gave appli-
cations of (J-M) inequality in information theory. He com-
puted new estimates for Csiszar and related divergences.
Also, he gave new bounds for Zipf-Mandelbrot Entropy via
(J-M) inequality.

Harmonic convex sets are introduced by investigating
harmonic means. In 2003, the first harmonic convex set
was introduced by Shi and Zhang [10]. The harmonic mean
has been important in different fields of pure and applied
sciences. Anderson et al. [11] and Iscan [12] introduced a
significant class of convex functions known as harmonic
convex.
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Definition 5 (see [12]). A function ¢ : IC R\ {0} — R is
said to be harmonically convex on (¢ € Hy (1)), if

0e
¢(W) <0pO)+(1-096),  (5)

for all 6,0 €I and { € [0, 1] holds.

The harmonic mean is useful in electrical circuit theory
and different fields of research. It is well known that the total
resistance of a set of parallel resistors can be calculated by
adding the reciprocals of each individual resistance value
and then taking the reciprocal of the total resistance. For
example, if £, and ¢, are the resistance of two parallel resis-
tors, the total resistance is

which is the half of the harmonic mean [13]. The harmonic
mean is also important in the development of parallel algo-
rithms for solving nonlinear problems [14]. The harmonic
mean of the effective masses, as well as the three crystallo-
graphic directions, is often used to describe a semiconduc-
tor’s “conductivity effective mass” [15]; see also [16].
Dragomir is the first to introduce (J-I) for ¢ € H(I) as:

Theorem 6 (see [17]). If ¢ € Hi(I) on the interval I < (0,00),
then

¢ m1 Si“’j‘P(“j)’ (7)

Y w./a; =1
2. wjla;
j=1

m
foralla; el and w; €0,1], (j=1,2,---, m) with J;wj =1

In [12], Iscan proved the (H-H) inequality for ¢ € H (1)
as:

Theorem 7 (see [12]). Let I < (0,00) be an interval. If ¢ €
Hy(I) and ¢<€L[0, ®] and for all 6, OcI with 0 < © then

E R J 00 1o K90

Very recently, Baloch et al. [18] present a variant of (J-I)
which has a great impact on the theory of inequalities known
as (J-M) inequality for ¢ € Hy(I):
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Theorem 8 (see [18]). Let I =
¢ € Hi(I), then inequality

[6,0] c

o ! <$(0) + $(©) - Y w0 (a;).
(1/0) + (1/©) - Zw i/a; =
j=1

™Mz

for all a;€6,0] and w; €0, 1], (j=1,2,---,m) with

I
—

j

wj=1.

For some recent results connected with (J-M) inequality
for ¢ € Hy(I), see [18, 19].

Let us recall some important functions and inequality.

(i) Beta function

L)L)

/3(61’52) = 1—-(51 +Ez)

_ J (1= dg €, €y > 0.
0
(10)

(ii) Hypergeometric function: [20]

Fy(xysz3k)=

ny_( O (=K dg,z> y > 0, [k < 1.

(11)

/3(yz )

Lemma 9 (see [21, 22]). For 0<a <1 and 0<x <y, we have

X =y < (y—x)" (12)

One of the concepts that have played a significant role in
the growth of inequality theory in recent years is fractional
analysis. Fractional integrals are the most commonly used
concept in calculus analysis to obtain new generalizations,
extensions, and versions of classical integral inequalities.
Since fractional calculus was presented toward the end of
the nineteenth century, the subject has become a quickly
developing area and has discovered numerous applications
in different research fields. Fractional calculus is now con-
cerned with fractional-order integral and derivative opera-
tors in real and complex analysis and their applications.
Fractional calculus is used in several fields of engineering
and science worldwide, including fluid dynamics, electro-
chemistry, electromagnetics, viscoelasticity, biological popu-
lation models, optics, and signal processing. It has been used
to model physical and engineering processes that are best
represented by fractional differential equations.

Now, we give the definition of Riemann-Liouville (RL)
integrals which we will use in this paper.

(0,00) be an interval. If

Definition 10. Let ¢ € L[0, ®]. The left and right sided (RL)
fractional integrals of order a > 0 with 0 > 0 are stated as:

J59(r) = L“)L( ) () dy 7> 6,
e (13)

Jo-¢(r) = FLJ (u—1)""p(u)du,r< O,

=

respectively, with I'(a

Jo$(r) = $(7).

In recent times, the topic of investigating fractional (H-
H) inequalities by employing the Mercer concept along with
its applications is worth study, as evident from several pub-
lications in this direction (see [23-26]). This study is done
by utilizing convex functions. But in this paper, we first time
introduce and analyze this concept for harmonic convex
functions. In this paper, by using (J-M) inequality, we derive
Hermite-Hadamard-Mercer’s (H-H-M) inequalities for ¢
€ Hy(I) via (RL) fractional integral, and we established sev-
eral new fractional inequalities pertaining (H-H-M) type
inequalities for differentiable harmonically convex map-
pings. Some applications to special means of positive real
numbers will also be provided in Section 4. We hope that
the new idea and techniques formulated in the present paper
are more invigorating than the accessible ones.

)= [oe u* du and J.¢(r)=

2. (H-H-M) Inequalities for ¢ € H,(I) via (RL)
Fractional Integrals

By using (J-M) inequality, we give the following (H-H-M)
inequalities for ¢ € H(I).

Theorem 11. Let ¢ : I = [0, 0] € (0,00) — R be a function
such that ¢ € L[0,0] with 0<0<®. If ¢ € Hi(I) on the
interval I = [0, ®), then

! T(a+1)
¢((1/9)+(1/@)—((x+y)/2xy)) <¢(0) +¢(©) - >

(2) Dewen(5) +ewen(5)}

<9(0) + 9(6) - ¢(2—y)

o (14)
¢((1/9) + (1/0) 1— ((x +y)/2xy))
< F(oc2+ 1) (/Vx__}’x> {]aw oy (82 h)( é)_;)
+weyee)-(uy)y- (92 1) (5 + é - i)} (15)

—~

<2 M(ue) - <ux)> ' “’<(u9> R (W))]

<50+ 910~ 190

forallx, ye[0,0), a>0, and h(r)=1/r, r € [1/O, 1/6)].



Proof. By employing (J-M) inequality for ¢ € H(I), we have

1

P(x1) + (1)
((xy +y1)12x1y,) '

JECIICRS
(16)

¢<(1/9) ¥ (1/0) -

for all x,, y, € [0, ®]. By changing of the variables x; = xy/(

x+(1-0)y), y,=xy/(Cy+(1-{)a) for all x, ye[0,06],
and { € [0, 1] in (16), we obtain

1
¢((1/9) +(1/0) = ((x +y)/2xy)>
<$(0) +$(O) - o(xyl ({x+ (1-0)y)) er $(xy/(Ly + (1 -0)a)) |
(17)

Conducting product on both sides of (17) by (*™' and
then integrating the obtained inequality w.r.t { over [0, 1],
we have

1 1
“5((1 o) + (1/@)—<<x+y>/2xy>>

< 200 +90) - 5[ ool ) (o)
-0y 005 ()
G o (o 5) o)

-0+ 00 - (2 s 0em (5) +scoom ()

(18)
That is
¢<(1/9) +(1/0) - ((x+y)/2xy))
<4(0) + p(@) - "%°1)
x (y" ) {]l/y (¢ h)( ) % (e h)(/)},whereh(r):;
(19)

Thus, the first inequality of (14) is proved. Now, we
prove the second inequality in (14), since ¢ € Hy(I); then,
for { € [0, 1], it yields

“’(%) ) “’((cm (R <</y>>

<3 [ (grion) o))
(20

Conducting product on both sides of (20) by (*' and
then integrating the obtained inequality w.r.t { over [0, 1],
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we obtain
o) =3 e (i) ety @
_ @Qxy > {]c;/y (6o h)( ) i (¢ h)()}
(21)
and then
o) en) o)
(22)

Adding ¢(0) + ¢(®) to both sides of (22), we find the
second inequality of (14).

Next for the proof of the inequality (15), take ¢ € Hy(I);
we have for any x, y € [0, O]

2xy \ 1
“’(m) - *”(uz«c/x) (=0 + (=0 + <ay>>>

3 (@) *(aomr )

B 2

(23)

Replacing x and y by 1/(1/0) +
0) + (1/0) -

(1/@) - (1/x) and 1/(1/
(1/y), respectively, in (23), we get

- ((x+y)/2xy))

<

< M(l/e) ¥ (116) - <<16/x> (@ —¢>/y>>>
1

< (@ =Om)+ (c/y»ﬂ

(1/x>) ' “’((1/6) TR (w))} '
(24)

1 1
=3 ¢((1/6) +(1/0) -

Conducting product on both sides of (24) by (*™' and
then integrating the obtained inequality w.r.t { over [0, 1],
we have

1 1
‘¢(<1/6> <1/@)—(<x+y>/zxy>)
1

<31 (e e - @R =0y )

*L‘VWI“’(W@) R (e Ry >>)d‘7
S%{Qb((l/e) (1/@) - 1/x)+¢<1/9 (1/6) - l/y))}
(25)
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It is obvious that
I 1
2 UO‘: ¢((1/0) +(1/0) - ((U/x) +
! a—1 1
o oo qaom @)

r af cd+(O-(y) 7 /1 1 1 el

¥<fy> | (Gr53)-) o(0)e
X/ [ e)+ue)-(ux) y u
~(1/0)+(1/@)— (l/y)( (1 N 1 1>>¢x71¢(1)d
u—|-— — - = — u

J(B)+(1/0)- (l/x) 06 6 x u
( ) « 1 1 1
5 \y_x J{woy+ o)~y (9 ° 1) 27 o I

1 1
+ {0y )-(1yyy (@ h)( e ;) }

(@ —cw)))d‘

(26)
Using (J-M) inequality for ¢ € Hi(I), we conclude that

1
¢((1/9) +(1/0) - ((x +y)/2xy))

I'a+1 xy o N 1 1
< (2 )(y—x> {](<1/9) +(1/©)-(1/x)) (¢ h)( e) ;)

1 1
+J{wey- o)1) ($° h)(é @_})}

s£{¢((1/9 l/x) (1/6 1/®) (1/)’)”

<4(6) +9(©) - o ;““y
(27)
So, the inequality (15) is proved.(J |

Remark 12. Under the assumptions of Theorem 11 with «
=1, one has

1 ! xy
“5((1/9) T (1U0) — ((x +y)/2xy)) <¢0)+¢(®) Jo¢ (Cx T (- C)y) &

<9(0) +9(O) - ¢(2ﬂ>

X+y

1

¢ ((1/0) +(1/@) - ((x +y)/2xy))
1

< xy (71
- xJ<¢<<1/6> o)€@
< §(0) + 9(0) - ¢(X);r¢(y),

for all x, y € [0, ©)]. The proof of remark is proved by Baloch
et al. in [18], Theorem 3.5, and [19], Theorem 2.1.

3. Related Variants of (H-H-M) Type
Inequalities for ¢ € H,(I) via (RL) Fractional
Integrals

Throughout assumed

assumption.

the paper, we the following

A=Let ¢ : I=[0,0] < (0,00) — R be a differentiable
function on (0, ®) with 0< 0 < ©,

1

Ly(hs o, x, y) = 1{ <(1/9)+(1/®) (1/x)>+¢<(1/9) (1/1®) (l/y))]
RS A

. 11
+ (o) (ue)-(uy) (¢ h)( })}’

(29)

where x, y € I with x <y, >0, and h(r) = 1/r, r € [1/©, 1/6].
We give the new following lemma for our results.

Lemma 13. If ¢ € L[0, @] along with assumption A,, then
the following equality for fractional integrals holds:

h;ax, _r7x ' [ (1 (ﬂ !
Iy ) nyJ ((1/6) + (1/©) - (((/x)+((1—6)/y)))2¢
| ! Jac
(1/6) + (1/©) = ((L/x) + ((1-)ly))
(30)

Proof. Let A, =(1/0) +
fices to note that

(1/©) - ((L/x) + (1= O)ly)). Tt suf-

tisen = o [ Ly ()

S e ()

Integrating by parts, we get

L (o) L ()
(3 e
”/’(W) —F(“+1)<y%)a]?(ue)+ 1@)~(11x))* (P 1)

1 1
X +——-—.
< C] y>

DI~

(32)



Similarly, we get

1 ( o 1 a— 1
IFJ’ '[0( A?) ( )d{ (1-7) ¢<7> 0 J(l 0 l(p(A()d{
xy | (OO
¢< 1/6) + 1/9 (1/)’)> +a<¥‘x> j(1/8)+(1/®)7(1/x)

1

“(-(r5-30) o)
=¢ (1/9 +(1/@ (1/y)>+r(°‘“)

) e @0 (5+ 5~ 3):
(33)

Using (32) and (33) in (31), we get inequality (30).0 O

Corollary 14. If we choose a = 1 in Lemma 13, then we have
the following equality:

1 1 1

2 [¢<(1/9) +(1/0) - (1/x)> " ¢<(1/9) ¥ (1/0) - (1/y)>}

oy (1/6)+(1/©)~(11y) 1 .

y-x J(1/6)+(1/®)(1/x)¢ (”) ?

_ y—le (20 -1)
2xy Jo ((1/6) + (1/©) - ((¢/x) + ((1

1

“(amaer-te o) ©

-C)/y)))2¢

(34)

Remark 15. If we take x =0 and y = ©® in Corollary 14, then
the equality (34) reduces to the equality

$(0) +¢(©) _ 60 [9¢(x)
~5 GJ dx

2 g X2
_06O-0) (1 (20-1) ' 60
S 2 JO (ce+(1-c)@)2¢ (59+(1—C)®>dc’

(35)

which is proved by Iscan in [12].

Using Lemma 13, we present the following fractional
integral inequality for |¢'|” € Hy(I) as follows.

Theorem 16. If |¢'|* € H ([0, ®]) for some fixed q>1 and

¢' € L[0,0] along with assumption A,, then the following
inequality for fractional integrals holds:

g5 a,9)] < 22K (@) (K xg) [ |8 0]+ [0 ©)]]

2xy
1/
- (Katasx)|¢' ) + K(sxn)|o' o)) !
(36)
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where
Ky (i) = (O £0/0) - (L)
(1) + (1/8) - (1/x)
.[2F1(2,1,oc+2>1 (1/6)+(1/@)—(1/y))
(1/6) + (1/0) - (1/x)
+,F (2 a+l;a+2;1- (1/0) + (1/@)—(1/y))}
Ky(asx,y) = (o (Z(:))z_ e
1 ot 31 110)+(1/O) — (1/x)
. LC+12F1(2,2,0¢+3,1— (1/9) (1/@) - (11y ))
' ' (1/9 1/@ (I/x
+2F1(2,¢x+2,0t+3>1_(1/9 (1/1©) = (11y) ﬂ
Ki(a;x,y) = ((116) + (1/6) - (11y))”?

oa+2
L (18)+ (1/©) ~ (1/x)
'{23(2’1’“3’1 <1/0>+<1/®)—<uy>>

1<z,a+1;a+3;1_wﬂ.

(1/6) + (1/©) - (11y)

(37)
Proof. Let A, = (1/6) + (1/©) - (/%) + (1 - {)1y)) = ¢((1/6
)+ (1/0) - (1/x)) + (1= 0)((1/6) + (1/@) — (1/y)).  From

Lemma 13 and Lemma 9, using the properties of the modu-

lus, the power mean inequality, and |¢'|* € H(I), we find
that

1
y-x (-
[Ly(hs %, y)| < X)’JO (A(>df
1-(1/g)
Yo jW
Xy 0

<<> ol

)1(1@
([ ) +l¢' @[

-(|¢ |” 0l wl")]df)”q

& (llq)(a xy)( a;x,y)“(p’(e)}H|¢'(®)|q]

+K3(a;x,)’)|¢,()’)‘q))1/q‘
(38)

}’
( ocxy|¢

Calculating K, (a;x,y), K,(a;x,y), and K;(a;x,y), we
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have

o= L]

(e {le-orl-ep-
fe(-eh- aha=ta
+(

)

©)
((1/0> (116) - (1)) [2F1<2,1;a+2;1—

)

0)

d¢

T a+1l © 7(1/},
. L (10) + (118) - (1/x)
+2F1<2,¢x+1,o¢+2,1 i +(1/@)—(1/y))]’
(39)
Kz(a;x,y):ﬁ[(l%?*‘“}cdc

(a3 {lre-o (- GRREE
[e (- )
_ () + (1) - ()™
a+2
’ [rxi 1

4 L (1/6) + (1/0) - (1/x)
,F, <2,2,a+3,1— m)
. L (16) + (10) - (1/x)
+2F1<2,tx+2,¢x+3,1* m)]’

(40)
Ky(a;x,y) = ILWU -0)dg
“(5re5) Pho-or( <[ TREEE

o[ro-o(-<[ - igtierm)) ]
_((10) + (1/©) - (11y)) L e+
e A [ZFI 2154331 e

(1/0) - ( ))
(1/0) -
i+ o=} |

1
+ —2F1<2,tx+1;a+3;1—
a+1
(41)

Using (39), (40), and (41) in (38), we get the inequality
of (36).00 O

Remark 17. If we take x =0 and y = ® in Theorem 16, then it
becomes Theorem 5 proved by Iscan and Whu in [27].

When 0 < @ < 1, using Lemma 9 and Lemma 13, we can

obtain another results for |¢'|? € Hy(I) via fractional inte-
gral as follows.

Theorem 18. If |¢'|* € H ([0, ®]) for some fixed q>1 and
¢' € L[0, 0] along with assumption A; and 0<a<1, then
the following inequality for fractional integrals holds:

|1¢(h;a,x,y)|gyz;y"Kf(“q)(a;x,y)(K (@sxy)[|¢'©O)"+1¢"©)|]
- (Kz(oc;x,y)|¢'(x)|q+K3(a;x,)’)|¢'()’)(q>)”q,
(42)

7
where
1/0) + (1/©) — (1/y))?
s = (010~ 11)
. (108 + (1) - (11x)
{25(2""”"“2’1 (116) + (1/0) - (1/y))
(1) + (1/©) ~ (1/x)
2F1(2 I ey (e - (I/y))
(1/6) + (1/0) — (1/x)
+2F1(2’1’”‘+2 5( <1/0>+(1/®>—<1/y)))}
Ky(asx,y) = (1) + (Z(?Z_ <Uy))72
L (18)+ (1/0) ~ (1x)
-[2F1<2,a+2,a+3,17—(1/6) 1/@) (I/y))
1 L (18)+ (1)~ (1/x
S (2 e )
1 I (10)+(1/0) - (1x
+2<a+1>2F1<2’2’“+3’5<1 (1/0) + (1/6) - (1/y>>>]’
K@ y) = ((1/6) + (1/©) - (1/y))~*

a+2
I L (108)+ (118) - (11x)
' [a+12F1<2’“+1’“+3’1_ (1/9)+(1/®)7(1/y)>

‘ ,(116) + (1/0) - (1/x)
’2F1<2’1"“3’1 (1/6) + (1/©) - (I/y))

+2F1<2,1;a+3;é<1 M@E”")))
(1/16) + (1/@)—(1/x)>>}

(116) + (1/0) — (11y)
—1 F,(22; 3; 1-— =
Tk 1<’ o ’§< " (106) + (1) — (1ly)

(43)
Proof. Let A, = (1/6) + (1/0) - (/%) + (1 - {)1y)) = ¢((1/6
)+ (1/0) = (1/x)) + (1 - )((1/0) + (1/®) — (1/y)).  From

Lemma 13 and Lemma 9, using the properties of the modu-
lus, the power mean inequality, and |¢'|* € H([6, ®]), we
|I¢(h;oc,x,y)|£— . 2

find that
¢(x)
3 A<
B fE: S PR
T 2xy \ o A
1/q
— , 1 q
) ”’()

y—x 1 |(1_c)a_cot| 1-(1/9)
< L Agdg’) (44)

y_xr}(l_;)a_(a} a

-(ﬂ”‘% Aeer-wer
- (S @[+ -0 »)) |0
iy IW(U¢ I+l @]

-zl szl )"
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where | )
o] oo )
S {lev-o-dp-fsiea-t])
7 J Wéda (45) i J;“ O (1 ‘ {l(1,2?23(:/;/2;(1/%%)
2 =leU ~{)dL. {(1)(1 2 {1 <1/9>1+6 <1+/®1> Uy >1D du
0o Al +5L“<1‘”)“<1‘5{1 EI;O;+EI;(;§ &%D d"}

_ ((18) + (1/©) = (1))~
- a+2

Calculating Z,, Z,, and Z,, by lemma, we have

1 o (U8)+ (1) - (1/x)
' {sz‘ (2"”1"“3’1_ (1/6)+(1/®)—(1/y))

(1/6) + (1/©) - (I/x)) F

—2F1(2,1;¢x+3;1—

Z:[w P [“2 -0~ zdu[ C-0-0" 4 (1/6) + (1/©) - (1/y)
e A o A hin A Ay tiass: L1 (10)+(110) - (11x)
:ch“—(l—o“d(”r“u—C)“—C“d(: ( o ’E( (1/9)+(1/®)—(1/y)))
L vt R (220 k(1o WOF1O) 2 (1)
SJL,K_JU—O ‘“”J (=207 4 20+ )2\ "0\ (10) + (118) - (1hy)
ALl A 0o A _Ky(@iny)
AR A (110) + (110) - (N7 o ') oy
~(6v573) {JC (1-<[- Warewer-ap)) «- [0 (48)
(1/6) + (1/©) - (1/x) .
x (1_41_ (1/6) + (1/©) — (l/y)D d“jo( 4 Using (46), (47), and (48) in (44), we get the mequahty
L, (18)+ (1) - (11x) of (42).00
( ‘5{ (10) + (1/) - <1/y>D
((1/8) + (/) - (1/y))" 19) + (1/0) — (1/x) Remark 19. If we take x =0 and y = ® in Theorem 18, then it
= arl [ZF 1 (2 a+lsa+2;1- m) becomes Theorem 6 proved by Iscan and Whu in [27].
F(Zla P21 (116) + (1/©) (/x))
(1/9)+( c ) (17y) Remark 20. If we take & =1, x =0, and y = ® in Theorem 18,
1/ (1/6)+(1/0) - (1/x) . then it becomes Theorem 2.6 proved by Iscan in [12].
(21500253 (1 e ) )| e TR
(46)  Theorem 21. If |¢'|" € H, (|6, ®)) for some fixed q> 1 and
¢' € L[0,8] along with assumption A; and 0<a<1, then
the following inequality for fractional integrals holds:
Similarly, we get
I \"m 1 N7
e ) )
i i 1lq
0= =], (1,1 1\? . @)
7T .L A s ( e ?) < 2
i wif L[, (10)+(10) = (Ux)]\ 7 P _(18) + (1/6) - (1/x)
{J ¢ (1 <[1- e -1 ) { (2" fipr2id (1/6>+<1/@>—(1/y>)
(1/0) + (1/©) — (1/x) 1ip . S, (116)+ (1/©) - (1/x)
( [ (1/0) + (1/@) - 1/y]) *ah (Zp’apH’ap”’] (1/9)+(1/@)*(1/)’)>}
e u (1/6) + (1/©) — (1/x) 49
<175[ (176) + (1/8) - 1/y)D d”} (49)
((1/9) (1) - (1))~ (1/6) + (1/©) - (1/x)
a+2 [ <2 arziar3 - _(1/},)> where (1/p) + (1/q) =
R cpeneg . (10)+ (16) - (11x)
a+l 2F1<2’2’ 3 ey (1e) - (1/y)> Proof. Let A, = (1/0) + (1/©) — ((¢/x) + (1 = {)/y)) = {((1/6
+;2F1<2,2;a+3;1<1—M>>]:Kz(tx;x,y), )+ (1/0) - (1/x)) + (1= ¢)((1/0) + (1/©) = (1/y)).  From
Hat1) 2\ (16)+(1/8) - (1) Lemma 13 and Lemma 9, using the Hélder inequality and

(47)  |¢'|" € Hi([6,©)]), we find



Journal of Function Spaces
et (5 e[
101 _ el Up , 4 1
{(LaAgpﬂ) qa | L
&) M@ boxs o)
(6@ +]

+¢@W—@Wmfuh0Wwﬁygw

G
%))

y

+<J
(0,

¢
1/q

4
d{)

2xy
(50)
Calculating Z, and Zs, we have
Y U A U S A N e
Z4_Jo A7 d(_<9+® y) Jo(l 9
Al (8 + (1/8) - (1x)]\ ¥
(=4 warser-an)) (51)
_ (10 + (o) - (uy)* .
- ap+1 2
. L (16) + (1/@) - (1/x)
R R,

yxl”Pll_l’z . (1/6) +(1/0) - (1/x)
Lo(hs03.7)| <3 (ap+l> ite y) P52 we v we)-

’x q 1 q\ /9
< y_x (ZI/PJrZ”P) <|¢r(9)|q+ |¢’(®)|‘17 w) )

(1/x)
(17y) [

9
KA CORE S i P
_JOA?’ C_<9+@ y> JO(
(1/6) +(1/6) - (1x)]\ *
(1’5{ ‘(u9>+<1/@>—<1/y>D * (52)
_ (18 + (e) - () ¥
— ap+1 241
. o (U6) +(1/0) - (1/x)
.<2P,(xp+1,“P+2’l_m>'

Using (51) and (52) in (50), we get the inequality of (49).
This completes the proof.(] O

Remark 22. If we take x=0 and y=0 in Theorem 21,
then it becomes Theorem 7 proved by Iscan and Whu
in [27].

Theorem 23. If |¢'|" € H, (|0, ®]) for some fixed q> 1 and
¢' € L[0, ] along with assumption A, and 0 < a < 1, then fol-
lowing inequality for fractional integrals holds:

PO le' e

JF1(20,:2335 1 (((16) + (1/8) — (1/x))/((1/6) + (1/©) — (11y))))[¢' (x )|q +,F,(2, 15351 (((1/6) + (1/0) - (1/x))/((1/6) + (1/©) - (11y))))|¢' ()|
(53)
Proof. Let A; = (1/0) + (1/©) — ((¢/x) + (1 = ¢)/y)) = {((1/6 Calculating Z, Z,, Zg, and Z,, we have
)+ (1/@) - (1/x)) + (1 -{)((1/0) + (1/©) — (1/y)).  From
Lemma 13 and Lemma 9, using the Holder inequality and
|¢'[" € Hy ([0, ©]), we find | 1
=||1-2¢|"d¢ = , 55
e Jo‘ e ap + 1 (55)
y-x! ¢’ 1
|Lp(5 o x, )| < P [0714% <A7> 'dC
1/q
1o ()] «)
¢ e

fla-erera) ([
=1}

1p
1-20|% d()

- (zs|¢’(x)\”1 +zg\¢’(y)|q))”q

1 1 1 1\
7| —gr=(-4+2_2
’ JOA?( <9+® y)

[ (ool Garimrto])

1 1 1\ %6)
:<§ @—;) 2F1<2q,1;2;1
_( 0) + (1/0) - (1/x)>)
(1/0) + (1/©) - (11y)
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A B A
Zs‘LA—;qu‘<é+@‘;> I

271

[ (18 + (1E) - (1Ux)]\ M
(1 ([1 (1/9)+(1/@)‘(1/y)D “ (57)
_ ((1/6)+(1/®)_(1/y))—2q ;
2

o (U8) + (1/©) — (1/x)
(2‘1’2’3’1 (1/6)+(1/@)—(1/y))’

(1/6) + (1/©) - (1/x)
(1/6) + (1/©) - (1/y)>'
(58)

Using (55), (56), (57), and (58) in (54), we get the
inequality of (53). This completes the proof.(] |

Remark 24. If we take x = 0 and y = @ in Theorem 23, then it
becomes Theorem 9 proved by Iscan and Whu in [27].

Remark 25. If we take a« = 1, x =6, and y = ® in Theorem 23,
then it becomes Theorem 2.7 proved by Iscan in [12].

4. Application to Special Means

For positive numbers 6 >0 and ® > 0 with 0 # O.

(1) The arithmetic mean

a0.0)=22 (59)
(2) The geometric mean
G(0,0) =V00. (60)
(3) The harmonic mean
200
H(G,@)—9+®. (61)
(4) The p-logarithmic mean
®p+1 _ 9p+1 lp
L,(6,0)= [W , (62)

wherep € R\ {-1,0}.

Journal of Function Spaces

Proposition 26. Let 0< 0 < ®. Then, the following inequal-
ities holds

7 r+2

2A(67,07") -H! (x,y)]
<2A(072,0) - GP(x, y)Li(x, y)
< 2A (9r+2, ®r+2) _ HHZ(JC, y),

(63)

1 r+2
lZA (6,0 -H"! (x,y)]
< L:(HZ; (ZA (9_1, @—1) _ x—]) 24 (9_1, @—1) _y—l)

(r+2
< 2A (6r+2’ ®r+2) _ A(XHZ,)/HZ).
(64)

Proof. Let a =1 and ¢(x) = x> where x>0, r € (~1,00) \ {
0} in Theorem 11 leads to the desired inequality (63) and
(64) immediately, respectively.(] O

5. Conclusion

In this paper, we present the (H-H-M) inequalities involving
(RL) fractional integrals for the class of harmonic convex
function (instead of convex function) and established some
integral inequalities connected with the right and left sides
of fractional (H-H-M) type inequalities for differentiable
mappings whose derivatives in absolute value are harmoni-
cally convex. Some applications to special means have also
been presented. Our obtained results are an extension of
previously known results. An interesting topic is whether
we can use the techniques in this paper to establish the
(H-H-M) inequalities for other kinds of convex functions
via (RL) fractional integrals. Our ideas and approach may

stimulate further research for the researchers working in this
field.

Data Availability

Data sharing does not apply to this article as no datasets
were generated or analyzed during the current study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] N.Mehmood, S. I. Butt, D. Pecari¢, and J. Pecarié, “Generaliza-
tions of cyclic refinements of Jensen’s inequality by Lidstone’s
polynomial with applications in information theory,” Journal
of Mathematical Inequalities, vol. 14, no. 1, pp. 249-271, 2007.

[2] S. L. Butt, M. K. Bakula, D. Pecarié, and J. Pecarié, “Jensen-
Griiss inequality and its applications for the Zipf-Mandelbrot
law,” Mathematical Methods in the Applied Sciences, vol. 44,
no. 2, pp. 1664-1673, 2021.

[3] M. A.Khan, S. Khan, I. Ullah, K. A. Khan, and Y. M. Chu, “A
novel approach to the Jensen gap through Taylor’s theorem,”



Journal of Function Spaces

(10]

(11]

(12]

(13]

(14]
(15]

(16]

(17]

(18]

(19]

(20]

Mathematical Methods in the Applied Sciences, vol. 44, no. 5,
pp. 3324-3333, 2021.

D. S. Mitrinovié, J. E. Pecari¢, and A. M. Fink, Classical and
New Inequalities in Analysis, Mathematics and Its Applications
(East European Series), 61, Kluwer Academic Publishers
Group, Dordrecht, 1993.

S.S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-
Hadamard Inequalities and Applications, Victoria University,
RGMIA Monographs, 2000.

A. M. D. Mercer, “A variant of Jensens inequality,” Journal of
Inequalities in Pure and Applied Mathematics, vol. 4, no. 4,
2003.

M. Kian and M. S. Moslehian, “Refinements of the operator
Jensen-Mercer inequality,” Electronic Journal of Linear Alge-
bra, vol. 26, pp. 742-753, 2013.

H. R. Moradi and S. Furuichi, “Improvement and generaliza-
tion of some Jensen-Mercer-type inequalities,” Journal of
Mathematical Inequalities, vol. 14, no. 2, pp. 377-383, 2007.

M. Adil Khan, Z. Husain, and Y. M. Chu, “New estimates for
Csiszar divergence and Zipf-Mandelbrot entropy via Jensen—
Mercer’s inequality,” Complexity, vol. 2020, Article ID
8928691, 8 pages, 2020.

H. N. Shi and J. Zhang, “Some new judgement theorems of
Schur geometric and Schur harmonic convexities for a class
of symmetric functions,” Journal of Inequalities and Applica-
tions., vol. 2013, no. 1, 2013.

G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen,
“Generalized convexity and inequalities,” Journal of Mathe-
matical Analysis and Applications, vol. 335, no. 2, pp. 1294-
1308, 2007.

L. Iscan, “Hermite-Hadamard type inequalities for harmoni-
cally convex functions,” Hacettepe Journal of Mathematics
and Statistics, vol. 6, no. 1014, pp. 935-942, 2014.

F. Al-Azemi and O. Calin, “Asian options with harmonic aver-
age,” Applied Mathematics and Information Sciences, vol. 9,
pp. 1-9, 2015.

M. A. Noor, Advanced Convex Analysis and Optimization,
Lecture Notes, CIIT, 2017.

S. Dimitrijev, Effective Mass in Semiconductors, Bart ], Van
Zeghbroeck, 1997, http://ece-www.colorado.edu/bart/book/.

S. Rashid, D. Baleanu, and Y. M. Chu, “Some new extensions
for fractional integral operator having exponential in the ker-
nel and their applications in physical systems,” Open Physics,
vol. 18, no. 1, pp. 478-491, 2020.

S. S. Dragomir, “Inequalities of Jensen type for HA-convex
functions,” Analele Universitatii din Oradea Fascicola Mate-
matica, vol. 27, pp. 103-124, 2020.

L. A. Baloch, A. A. Mughal, Y. M. Chu, A. U. Haq, and M. D. L.
Sen, “A varient of Jensen-type inequality and related results for
harmonic convex functions,” Aims Mathematics, vol. 5, no. 6,
pp. 6404-6418, 2020.

L. A. Baloch, A. A. Mughal, Y. M. Chu, A. U. Haq, and M. D. L.
Sen, “Improvement and generalization of some results related
to the class of harmonically convex functions and applica-
tions,” Journal of Mathematics and Computer Science, vol. 22,
no. 3, pp. 282-294, 2010.

A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and
Applications of Fractional Differential Equations, Elsevier,
Amsterdam, 2006.

(21]

(22]

(23]

(24]

[25]

(26]

(27]

11

A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integral
and Series. Elementary Functions, vol. 1, Nauka, Moscow,
1981.

J. Wang, C. Zhu, and Y. Zhou, “New generalized Hermite-
Hadamard type inequalities and applications to special
means,” Journal of Inequalities and Applications, vol. 2013,
no. 1, 2013.

H. H. Chu, S. Rashid, Z. Hammmouch, and Y. M. Chu, “New
fractional estimates for Hermite-Hadamard-Mercer’s type
inequalities,” Alexandria Engineering Journal, vol. 59, no. 5,
pp. 3079-3089, 2020.

S. I. Butt, M. Umar, S. Rashid, A. O. Akdemir, and Y. M. Chu,
“New Hermite-Jensen-Mercer type inequalities via k-
fractional integrals,” Advances in Difference Equations,
vol. 2020, no. 1, 2020.

J. Zhao, S. 1. Butt, J. Nasir, Z. Wang, and L. Tlili, “Hermite-Jen-
sen-Mercer type inequalities for Caputo fractional deriva-
tives,” Journal of Function Spaces, vol. 2020, Article ID
7061549, 11 pages, 2020.

L. Tscan, “Weighted Hermite-Hadamard-Mercer type inequal-
ities for convex functions,” Numerical Methods for Partial Dif-
ferential Equations, vol. 37, pp. 118-130, 2021.

1. fscan and S. Whu, “Hermite-Hadamard type inequalities for
harmonically convex functions via fractional integral,” Applied
Mathematics and Computation, vol. 238, no. 1, pp. 236-244,
2014.


http://ece-www.colorado.edu/bart/book/

	New Fractional Hermite–Hadamard–Mercer Inequalities for Harmonically Convex Function
	1. Introduction
	2. (H-H-M) Inequalities for &phi;∈HKI via (RL) Fractional Integrals
	3. Related Variants of (H-H-M) Type Inequalities for &phi;∈HKI via (RL) Fractional Integrals
	4. Application to Special Means
	5. Conclusion
	Data Availability
	Conflicts of Interest

