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In this paper, with the help of Hermite interpolating polynomial, extension of Jensen’s functional for #-convex function is deduced
from Jensen’s inequality involving diamond integrals. Special Hermite conditions, including Taylor two-point formula and
Lagrange’s interpolation, are also deployed to find further extensions of Jensen’s functional. The paper also includes discussion

on bounds for Griiss-type inequality, Ostrowski-type inequality, and Cebysev functional associated with newly defined Jensen’s

functional.

1. Introduction

John Jensen proved Jensen’s inequality in [1]. It serves as a
tool in discrete and continuous analysis for generating classi-
cal inequalities. A discrete variant is as below:

() s o

where (z,, -+, 2,) €S, Sis interval in R(g,, -+, g,,) € R (ie,
nonnegative weights are taken into account in this inequal-
ity), and function y : S— R is a convex on S. Steffensen
in [2] extended it by using negative weights.

Integral representation of Jensen’s inequality in [3] is as
follows: If 7 € C([a,, a,)], (a5, a4)) and x € C((a5, ay), R) are
convex, then

a, —4a; a, G~

“1(8)ds % (T
X(Jm (%) )J x(x(8))ds )

The researchers have devised several new functions for
refinements of Jensen’s discrete/integral inequalities. For

instance, in [4-7], improvements of the operated version of
Jensen’s inequality are given. In [8], Aras-Gazic et al. gener-
alized Jensen’s inequality via the Hermite polynomial.

Several researchers discussed and applied these inequal-
ities on time scales. In [9], Anwar et al. proved Jensen’s
inequality for delta integrals.

Suppose a,a, € T s.t. a; <a,. Let d e C,;([a;,a,]3 R)
assures J“Z? | 0(8) 148> 0. If y € C(S, R) is convex, an inter-

val ScRand hie Cy([a,, ay]1 S), then

J210(3) | x(h(2))4s
RECIEE

“215(8) | h(8)AS
X(J’al (8) | 1(8) )S 5

[REBIEE

Under a similar hypothesis, in [10], by replacing the
delta integral with the nabla integral, the same results are
obtained.

Sheng et al. in [11] presented the convex combination of
the delta and nabla integrals named as diamond alpha inte-
grals, where a € [0, 1]. For a = 1, we get the usual delta inte-
gral and nabla integral for a =0. In [12], following Jensen’s
inequality for the diamond alpha integral is given.
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Suppose a time scale Ta;, a, € Ts.t. g, <a,, and E€ R is
an interval h € C,4([a,, a,]y, E), and d € C([a;, a,], R) so that

rz 13(8)[0,8 > 0, (4)

if x € C(E, R) is convex, then

JE10(8) (80,8 _ [219(8) x(1(8))0.8
* J"Zflé‘(fv)lw i} I“j\5 |<>§ '

In [13], the authors introduced the more generalized var-
iant of diamond-alpha integrals; termed as the diamond inte-
gral, those are of special concern even for T =IR. These
integrals get us nearer in building a true symmetric integral
on time scales.

In [14], Jensen’s inequality for diamond integrals is
proved.

Let a;,a, € T with a; < a,, d € C([ay, a,], R*) and he C
([a1> a5y S). Suppose a convex function y € C(S, R) assuring
ija(u)()u >0, where S = [m;, m,] and m; = ming, h(8),

M, = MaXge(, o1 7(8), then

<J“25 3)h(s >_J”25 Jx(h(8))08.

[%20(2)0 Jo0(8)08

aya; )y

(6)

Jensen’s-type linear functional defined on T is given as
the following.

Let a;,a, € T with a, <a, and d € C([a}, a,]1, R), he C
(a1, a,]¢,S) and { € C(S, R) satisfying ijé(é)()é #0, where
§=[my, my] and m; =ming(, .1 F(8), m, = maxge, .1 A(S);
then,

Dly

_ LEReE)08 (121065108
Iz10(8)[08 J18(8)[08
Remark 1. Inequality (6) implies that J({) > 0 for the family of

convex mappings and J({)=0 for identity or constant
functions.

The present study is aimed at extending (7) for the
n-convex function with some types of interpolations intro-
duced by Hermite. In the next section, after defining dia-
mond derivative and integral, we recall the Hermite
interpolating polynomial along with some of its special
forms. Section 3 consists of the paper’s main results, and
finally, concluding remarks are given in the last section.

2. Preliminaries

2.1. Some Essentials Form Diamond Calculus. A time scale T
is a nonempty closed subset of R. It may be connected or not;
keeping the time scales’ disconnection under consideration,
forward and backward jump operators o,p: T — T, are
defined by o(h)=inf {s€ T:s>h}, and p(h) =sup {s€T:s
<h}.In general, o(h) >y and p(h) <h. The mappings u,
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v:T—>[0,4+00) defined by p(h)=0(h)—h, and v(h)=h
— p(h) are called in the sequal the forward and backward
graininess functions. For the classification of points on time
scales, for any heT,

(i) if p(h) = h, then £ is left dense

(ii) if o(f) = h, then F is right dense
(iii) if p(h) < h, then h is left scattered
(iv) ifo
(v) if p(h)=hand o(h) =

(vi) if p(h) < hand o(h) > h, then h is isolated

h, then h is dense

(
(h) =
(h)
(h) > h, then right scattered
(h) =
(h)

A mapping p : T — R is said to be rd-continuous if

(i) it is continuous Vh € T s.t. o(h) = h
(i) left-sided limit is finite VA € T s.t. p(h) = h

A set of such functions is denoted by C,,,.

Definition 2. Let A : T — R be a mapping and # € T define

A%(h) (presumed it as a finite positive number) having char-
acteristic that, for given € > 0, there exists neighbourhood W
of h (ie. W=h—-s,hi+s)NT) for some & > 0 such that

[A7(R) = A(s) + A(2h = 5) = A ()]

- A%(h)[o(h) +2h— 25 — p(h)]| <o (h) + 2k — 25— p(h)|

(8)

holds. For all s€ W for which 2 —se W. Then A%(r) is
known as diamond derivative of A at h.

Definition 3. LetQ : T — Rand a,, a, € T be a function. The
diamond integral of @ from g, to a, is given by

a;

j%@(h)orz J%y(hm(hmh « [0 ymemye, ©

forallheT.

Let pg and (1 — y)g be delta and nabla integrable on [r, s];
, respectively. It is to be noted that the antiderivative is absent
for diamond combined derivatives. For # € T¥, (IEQ(PL)O)O

#Q(s), in general. The fundamental theorem of calculus also
does not hold for diamond integrals.

2.2. Results on Hermite Interpolating Polynomial. Let —co <
p<v<ooand y=a, <---<a, =v(r > 2) be the given r points.
For S €C'[u,v], there is a (n—1)"
Cy(t), defined as

degree polynomial
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It satisfies the following Hermite condition:

cy“(a,)=("(a,),0susk,1<vsr, Yk, +r=n.
v=1
(11)

H,, represents essential polynomials of the Hermite

basis which satisfy the relations:

HY)(ag)=0,d#v,p=0,k; (12)
12
HY)(a,)=8,,,p=0,-k,foru=0,-k,
with d,v=1,---,r and
lu=p,
6p=1 7 (13)
Ou#p.

H,(t) is given by

1 1d [((t—a)"
H,,(t) T kel (t a,) k+1 - Z K gtk <w(t))> o (t-a,)"
(14)
with
o(t) = T (t-a,)5". (15)

Hermite conditions encompass the following specific
cases.

2.2.1. Lagrange Conditions. Let r = n,k, = 0 for all v, where 1
< v < r. Then, we have Lagrange polynomial C, (t), satisfying

Ei(a,)=C(a,),1<v<n. (16)
2.2.2. Conditions for Type (3,n—3). Let r=2,1<3<n-1,

ki=3—1k,=n—3—1. Then we have £, , (t) polynomial,
satistying

:,)n)(.“) :C(u)(,u),o <u<z-1,

(17)
(V):((u)(\/),OSuSn_s_l_

2.2.3. Conditions for Taylor’s Two-Point Formula. For n=2
3 17=2,k, =k, =3-1, we have Taylor two-point interpolat-
ing polynomlal —2T( ), satisfying

W) =) () =g v),0<u<g -1 (18)

The next theorem is useful for our results and is given
in [15].

Theorem 4. Suppose we have —co < p < v<00 and p=a; <
--<a, =v(r>2), and S € C"[u, v]. Then we have

C(t) =Cu(t) + Ry (G, ), (19)

where Ty (t) is the Hermite interpolating polynomial as
defined in (10) and Ry ({, t) denotes the remainder given by

Ru(6,)= [ G (490 (5 (20)
u

Gp,u(t,s) is

b & . Rynu-l

;;;((an—u)— 1) H,,(t), s<t,
GH,n(t, S) =

r " (a, N
) v:zb:ﬂ 1;) ((an - u)— 1! o), s>t

foralla,<s<ay,;,b=0,---,rwitha,=p and a,,; =v.

Remark 5. By imposing the Lagrange conditions, Theorem 4
takes the form

C(t)=Cr(t) + R (G 1) (22)

Here, C, (t) represents the Lagrange polynomial, which is

=2 IG5 Jeer @

k#v

and R;((, 1) is the remainder, defined by

v

RG1)= | Gulh 90 s (24)
‘M
with
> (0, T (L% s
= el \Pv T % o
1 kv
Gu(ts) = (n—1)! b t
e a
- 2.(a9) ‘g(d _;k) s<t,
k#v

a,<s<ay,;,b=1,--,n—1lalonga, =panda,=v.

Remark 6. Similarly, by imposing (3, n—3) conditions on
Theorem 4, one gets

C(t) =T (1) + Ry (6 1), (26)
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where n-3-1-u X
1 Wi $m8 3+k-1 t—v
0=yt (325 3 (=)
3-1 n—3—1 u: V-HU k=0 k Uu-v
S (®)= 2 EME @+ Y n b m),  @7) (29)
u=0 u=0
with The remainder R, ,(C, 1) is
= - ()T ey R (=] G (092705, (0
u u! 13 - P k v-u > U
(28)  with
lfs v /iy 2411 I AV, vl N
Z $ (t v> x(t '#) (=) ' (v t) us<s<t<y,
=l 1 V- vi(n—v-1)! V-
Gy (b5) = (31)

Remark 7. Theorem 4 in the form of the Taylor two-point
formula becomes

¢(t) =Er(t) + Ryr(G: 1), (32)

where the Taylor two-point interpolating polynomial C,(t)
is defined by

(33)
and R,;({, 1) is
Ror(6)= [ Gart 9" (5)ds (34)
‘H
with
—1)® 51 —1+v
%l“(t,s);(& V+ )(t—s)slvw(t,s), s<t,
Gyr(t,s) =

_1\é 31 -1+v
%ﬁ(t s>Z<5 + )“—w”mns) t<s,

v=0 v

(35)

n—zz,—l n—3—u—1 3+T— 1 (V —t
u=0 | 1=0 v-u

)] e (st

where I(t,s) =
€ [uv].

3. Main Results

s)=1(t,s), for all t, s

(s—pwv—-t)lv—u, x(t,

3.1. Extension of Jensen’s Functional via Hermite Polynomial.
Here, we prove our key identity regarding the extension of
Jensen’s functional.

Theorem 8. Let n € N and { € C"[u, v] be a convex function.
Then for all t € [y, v], we have

k

= 3 Y LK @) + [ TGt )"0,

v=1 u=0 u

(36)
where J(Gy (1, 5)) is defined as

Jalh®IGra(F(£190t ([elh®lf ot
J2[h(t)lot B TRt )

(37)

J(Gru(t5)) =

Proof. Substitute (19) in (7), then the linearity of J(-) gives
us (36). O

Remark 9. Instead of using (19) in (7), if we use (22), (26), or
(32) in (7), then extended results similar to Theorem 8 are
obtained for Lagrange conditions, type (3,7 — 3) conditions,
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and two-point Taylor conditions, respectively, in the follow-
ing form:

10)= Y@ I1 (‘k) [ HGun e 9as

v k=1 "
k#v
3-1 n-3-1
J€)= X8 &)+ X S ()
[ 1(Gn )¢5

oo (152 (22 (122 o)

Theorem 10. Presume n be a natural number and G, be a
Green function given in (21) satisfying

J(Gpyn(t:5)) 2 0, (39)
for all t € [u, v]. Then for every n-convex { : [u,v] — R,
J(6)=J(B) (40)
holds, where
r ok
B(t)= ) > ¢"(a,)H,(t). (41)

Proof. As the function { is n-convex, {"(t) > 0 for all t € [p, V];
hence,

J(Gpyu(t:9))8" (1) 2 0. (42)
Substituting (42) in (36), we have
k,
J@©) = X % ¢ (@) (Hy (1) 2 0. (43)
v=1 u=0
Since ] is linear, (43) can be written as
](C) - ](B) >0. (44)
Hence,
J(§)=](B). (45)

Remark 11. (40) is reversed if (39) is reversed.

Utilization of the Lagrange condition produced the result
given below.

Corollary 12. Presume n is a natural number and G defined
as in (25) satisfying
J(Gi(t,5)) =0, (46)

for all t € [y, v]. Then for every n-convex function { : [u, V]

_>IR)

J(€) = ](B), (47)
where
=N e TT (2%
)= Y4 >kHI(_k) (48)
k#v

The use of type (3,7 — 3) condition yields the following
result.

Corollary 13. Let n be a natural number and G, ,, be defined
in (31). Suppose & .1, are defined as in (28) and (29), respec-
tively, satisfying

1(Ggn(8:9)) 20, (49)

for all t € [y, v]. Then for every n-convex function { : [u, V]
— R, we have

12 18), (50
where
BO= Y S @E M+ Y (. (6D

The application of two-point Taylor conditions gives a
result as below.

Corollary 14. Let n€IN and G,; be the Green function
defined as in (35), satisfying

J(Gzr(t5)) 20, (52)
for all t € [u, v]. Then for n-convex function { : [u,v] — R,

J(§)=J(B), (53)



L
(i) e S () () o]

(54)

Remark 15. Technique to prove Corollaries 12-14 is the same
as proof of Theorem 10, where we use n convexity of { and
linearity of J.

Theorem 16. In addition to presumptions of Theorem 10,
consider h € C([a,, a,]v, RY) and B : [u, v] — R is convex,
then

J(E(1) =0, (55)

for all t € [u, v].

Proof. As B(t) is convex for all te€[u,v], so Remark 1,
inferred J(B(t)) = 0. Hence, (40) implies J({(t)) > 0. O

Remark 17. Relation (55) in Theorem 16 is an extension of
Jensen’s inequality (6).

3.2. Bounds for Identities Associated to Generalization of
Jensen’s Functional. Here, we utilize Cebyéev functional and
Griiss-type inequalities to present few important results. Let
two functions g, g, : [ty] — R be Lebesgue integrable,

and the Cebysev functional is

1 ¢ p U
= owe -~

L[ a.0a

1Y(91>9,)| =

The next two theorems are given in [16].

Theorem 18. Let g,, g, : [ty] — R be functions such that g,
is Lebesgue integrable and g, be the function which is abso-

lutely continuous along (-—2)(/—-)[g2’}2€L[2J}. Then, we

have

0-0G-2[a.' 0] Zdy)

Y(919>) \<\[[Y(91 +91)] \/—z(J

1/\/2in (57) is possibly the best constant.

Theorem 19. Let g,, g, : [j] — R be functions, such that g,
is absolutely continuous with g,' € L [2y] and g, is mono-
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tonic nondecreasing on [, ]|, then

Y9015 555 o1l j G=0)(i-»)dg,)- (58)

The best possible constant is 1/2 in (58).
We denote

¥($) =J(G(%:9))- (59)

The Cebysev functional is given as

2

1 (v 1 (v
— sz(s)ds - (V—{/‘ J#W(S)ds> . (60)

Theorem 20. Let { : [u, v] — ]R be such that { € C"[u, v] for
nelN with (~—u)(v- ~)[((”+1 | €Ly, v] and tep,v] and
Gy, W and Y are defined in (21), (59), and (60), respectively.
Then,

Y(y,y)=

r k, (n-1) (n-1) v

)= 3 Xt @)+ IO [y ga
v=1 u=0 4
+R,(1v;0)s

where the remainder satisfies R, (4, v ;{) the estimation

[R5 O <[Y (v, wn’”@

Proof. We use Theorem 18 for g, — y and g, — (", to
obtain

viuﬁy“ﬂ“ﬂﬁ— iﬂf@@M& . J%%g%

<

1 1/2
S;ghﬂmwﬂ’ —

Therefore, we have

IO S ($)ds = 1 (1=1) () — ) v $\ds
o) s s (€00 =) [ v
v (n-1) V) — (n-1) v
[Fwtoras= 0= Py gase wuvid)
u “ u

(64)
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where the remainder R(y, v; () satisfy the estimation (62).
Now, from the identity (36),

r k,
MO=ZZdW%m&Mm+jwwW@m

) "

V=1 u=0 v-u
-ﬁwam+%wa>
(65)
O

The Griiss-type inequality given below can be obtained
by using Theorem 19.

Theorem 21. Assume { : [u, v] — R such that { € C"[u,v

J(neN) and {*>0 on [u,v]. Suppose y and Y are
defined in (59) and (60), respectively. Then, we have (61) the
remainder R(u, v : {) satisfies the bound

R v < v-mly|,
XFMWW+W”wLﬁ“%w—W”wW

V- v
(66)

Proof. Applying Theorem 19 for g, — y and g, — ", we
have

L[ " —LV s)ds - ! v”ss
V_#Ly@ﬁ($¢ v_#Ly<w v_#Lz<w
o I [ ==
(67)
Since

using (36) and (67), we get (66). |

Theorem 22. Let all the presumptions of Theorem 8 be satis-
fied. Suppose (i, ]) is a couple of numbers, i.e., 1 <1, < 00,1/i

+1/j= 1. Suppose |C(")|i : [, v] — R is a function which is
R -integrable for some n > 2. Then, we have

N N
;<Jf@ﬂ%$V%>-

(69)

k,
J@) = Y ¢ a,) ] (H, (x))| < ||

S ’
v=1u=0

Fori € [1, 00l, the constant on the right of (69) is sharp and
suitable when i is one.

Proof. Assume (s) =J(G,(t,s)). Holder’s inequality and
identity (36) give us

ok, .
WO—ZZK&AWWWMHJ@@W%W
v=1 u=0 12
v 1/j
<||¢™ ( t }ds>
e [ 1ect

Taking ¢ for ie(1,00), such that, {"(s)=sgngp(s)
lo(s)]". In case of 1 = co, take (™ (s)=sgng(s).
We prove that for i = 1,

r@®5W$%Sm“WSNOW

) seluv] )

&“@Mﬁ (71)

is the suitable inequality. Let |@(s) | achieve its maximum at

p € [u, v]. We suppose firstly that go(d) > 0. We define {(s) for
small enough §, by

O,u<s<p,
1 n
5(s) = Q(S—P)’PSSSPHS, (72)

! (s—=p)"Lp+S<s<v.

nl

Then, for § small enough,

p+d 1 d
J, w5

5. oo <o



For g(p) <0, we set {5(s) as

! (s—p-8)"""uss<y,

n!

Cs(s) = 1 (75)

—%(s—p—é‘)”,pgsgp%&,

0, p+8<s<v.
The rest of the proof is the same as above. O

4. Conclusion

Jensen’s functional for diamond integral (7) is generalized for
n-convex functions using the Hermite polynomial in the
present article. Different conditions of Hermite polynomial
are utilized to describe respective refinements of the func-
tional. In seek of applications, bounds for identities associ-
ated to constructed functional are also discussed. Moreover,
by defining the functional as difference of right and left sides
of extended inequality (40) (where B is defined in (41)), it is
possible to study n-exponential convexity, exponential con-
vexity, and applications to Stolarsky-type means as discussed
by Aras-Gazic et al., in [17] (Sections 5 and 6). This article
extends the results of [8] on time scales.
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