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In this paper, with the help of Hermite interpolating polynomial, extension of Jensen’s functional for n-convex function is deduced
from Jensen’s inequality involving diamond integrals. Special Hermite conditions, including Taylor two-point formula and
Lagrange’s interpolation, are also deployed to find further extensions of Jensen’s functional. The paper also includes discussion
on bounds for Grüss-type inequality, Ostrowski-type inequality, and C̆ebyšev functional associated with newly defined Jensen’s
functional.

1. Introduction

John Jensen proved Jensen’s inequality in [1]. It serves as a
tool in discrete and continuous analysis for generating classi-
cal inequalities. A discrete variant is as below:

χ
∑n

m=1gmzm
∑n

m=1gm

� �
≤
∑n

m=1gmχ zmð Þ
∑n

m=1gm

, ð1Þ

where ðz1,⋯, znÞ ∈ S, S is interval in ℝðg1,⋯, gnÞ ∈ℝn
+ (i.e.,

nonnegative weights are taken into account in this inequal-
ity), and function χ : S⟶ℝ is a convex on S. Steffensen
in [2] extended it by using negative weights.

Integral representation of Jensen’s inequality in [3] is as
follows: If τ ∈ Cð½a1, a2�, ða3, a4ÞÞ and χ ∈ Cðða3, a4Þ,ℝÞ are
convex, then

χ

Ð a2
a1
τ sð Þds

a2 − a1

 !
≤
ða2
a1

χ τ sð Þð Þds
a2 − a1

: ð2Þ

The researchers have devised several new functions for
refinements of Jensen’s discrete/integral inequalities. For

instance, in [4–7], improvements of the operated version of
Jensen’s inequality are given. In [8], Aras-Gazic et al. gener-
alized Jensen’s inequality via the Hermite polynomial.

Several researchers discussed and applied these inequal-
ities on time scales. In [9], Anwar et al. proved Jensen’s
inequality for delta integrals.

Suppose a1, a2 ∈ T s.t. a1 < a2. Let ð ∈ Crdð½a1, a2�T ,ℝÞ
assures

Ð a2
a1
∣ ððsÞ ∣ Δs > 0. If χ ∈ CðS,ℝÞ is convex, an inter-

val S ⊂ℝ and ℏ ∈ Crdð½a1, a2�T , SÞ, then

χ

Ð a2
a1
∣ ð sð Þ ∣ ℏ sð ÞΔsÐ a2
a1
∣ ð sð Þ ∣ Δs

 !
≤

Ð a2
a1
∣ ð sð Þ ∣ χ ℏ sð Þð ÞΔsÐ a2
a1
∣ ð sð Þ ∣ Δs : ð3Þ

Under a similar hypothesis, in [10], by replacing the
delta integral with the nabla integral, the same results are
obtained.

Sheng et al. in [11] presented the convex combination of
the delta and nabla integrals named as diamond alpha inte-
grals, where α ∈ ½0, 1�. For α = 1, we get the usual delta inte-
gral and nabla integral for α = 0. In [12], following Jensen’s
inequality for the diamond alpha integral is given.
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Suppose a time scale Ta1, a2 ∈ T s.t. a1 < a2, and E ∈ℝ is
an interval ℏ ∈ Crdð½a1, a2�T , EÞ, and ð ∈ Cð½a1, a2�,ℝÞ so that

ða2
a1

ð sð Þj j◊αs > 0, ð4Þ

if χ ∈ CðE,ℝÞ is convex, then

χ

Ð a2
a1
ð sð Þj jℏ sð Þ◊αsÐ a2
a1
ð sð Þj j◊αs

 !
≤

Ð a2
a1
ð sð Þj jχ ℏ sð Þð Þ◊αsÐ a2
a1
ð sð Þj j◊αs

: ð5Þ

In [13], the authors introduced the more generalized var-
iant of diamond-alpha integrals; termed as the diamond inte-
gral, those are of special concern even for T =ℝ. These
integrals get us nearer in building a true symmetric integral
on time scales.

In [14], Jensen’s inequality for diamond integrals is
proved.

Let a1, a2 ∈ T with a1 < a2, ð ∈ Cð½a1, a2�T ,ℝ+Þ and ℏ ∈ C
ð½a1, a2�T , SÞ. Suppose a convex function χ ∈ CðS,ℝÞ assuringÐ a2
a1
ððuÞ◊u > 0, where S = ½m1,m2� and m1 = mins∈½a1,a2�T ℏðsÞ,

m2 = maxs∈½a1,a2�T ℏðsÞ, then

χ

Ð a2
a1
ð sð Þℏ sð Þ◊sÐ a2
a1
ð sð Þ◊s

 !
≤

Ð a2
a1
ð sð Þχ ℏ sð Þð Þ◊sÐ a2

a1
ð sð Þ◊s : ð6Þ

Jensen’s-type linear functional defined on T is given as
the following.

Let a1, a2 ∈ T with a1 < a2 and ð ∈ Cð½a1, a2�T ,ℝÞ, ℏ ∈ C
ð½a1, a2�T , SÞ and ζ ∈ CðS,ℝÞ satisfying Ð a2a1ððsÞ◊s ≠ 0, where
S = ½m1,m2� andm1 =mins∈½a1,a2�T ℏðsÞ,m2 = maxs∈½a1,a2�T ℏðsÞ;
then,

J ζð Þ =
Ð a2
a1
ð sð Þj jζ ℏ sð Þð Þ◊sÐ a2
a1
ð sð Þj j◊s − ζ

Ð a2
a1
ð sð Þj jℏ sð Þ◊sÐ a2
a1
ð sð Þj j◊s

 !
: ð7Þ

Remark 1. Inequality (6) implies that JðζÞ ≥ 0 for the family of
convex mappings and JðζÞ = 0 for identity or constant
functions.

The present study is aimed at extending (7) for the
n-convex function with some types of interpolations intro-
duced by Hermite. In the next section, after defining dia-
mond derivative and integral, we recall the Hermite
interpolating polynomial along with some of its special
forms. Section 3 consists of the paper’s main results, and
finally, concluding remarks are given in the last section.

2. Preliminaries

2.1. Some Essentials Form Diamond Calculus. A time scale T
is a nonempty closed subset ofℝ. It may be connected or not;
keeping the time scales’ disconnection under consideration,
forward and backward jump operators σ, ρ : T ⟶ T , are
defined by σðℏÞ= inf fs ∈ T : s > ℏg, and ρðℏÞ = sup fs ∈ T : s
< ℏg: In general, σðℏÞ ≥ y and ρðℏÞ ≤ ℏ. The mappings μ,

ν : T ⟶ ½0,+∞Þ defined by μðℏÞ = σðℏÞ − ℏ, and νðℏÞ = ℏ
− ρðℏÞ are called in the sequal the forward and backward
graininess functions. For the classification of points on time
scales, for any ℏεT ,

(i) if ρðℏÞ = ℏ, then ℏ is left dense

(ii) if σðℏÞ = ℏ, then ℏ is right dense

(iii) if ρðℏÞ < ℏ, then ℏ is left scattered

(iv) if σðℏÞ > ℏ, then right scattered

(v) if ρðℏÞ = ℏ and σðℏÞ = ℏ, then ℏ is dense

(vi) if ρðℏÞ < ℏ and σðℏÞ > ℏ, then ℏ is isolated

A mapping ρ : T ⟶ℝ is said to be rd-continuous if

(i) it is continuous ∀ℏ ∈ T s.t. σðℏÞ = ℏ

(ii) left-sided limit is finite ∀ℏ ∈ T s.t. ρðℏÞ = ℏ

A set of such functions is denoted by Crd .

Definition 2. Let Λ : T ⟶ℝ be a mapping and ℏ ∈ T k
k define

Λ◊ðℏÞ (presumed it as a finite positive number) having char-
acteristic that, for given ε > 0, there exists neighbourhood W
of ℏ (i.e. W = ℏ − s, ℏ + sÞ∩ T) for some δ > 0 such that

Λσ ℏð Þ −Λ sð Þ +Λ 2ℏ − sð Þ −Λρ ℏð Þ½ �j
−Λ◊ ℏð Þ σ ℏð Þ + 2ℏ − 2s − ρ ℏð Þ½ ��� ≤ ε σ ℏð Þ + 2ℏ − 2s − ρ ℏð Þj j

ð8Þ

holds. For all s ∈W for which 2ℏ − s ∈W. Then Λ◊ðrÞ is
known as diamond derivative of Λ at ℏ.

Definition 3. Let ϱ : T ⟶ℝ and a1, a2 ∈ T be a function. The
diamond integral of ϱ from a1 to a2 is given by

ða2
a1

ϱ ℏð Þ◊ℏ≔
ða2
a1

γ ℏð Þϱ ℏð ÞΔℏ +
ða2
a1

1 − γ ℏð Þð Þϱ ℏð Þ∇ ℏð Þ, ð9Þ

for all ℏ ∈ T :

Let γϱ and ð1 − γÞϱ be delta and nabla integrable on ½r, s�T
, respectively. It is to be noted that the antiderivative is absent

for diamond combined derivatives. For ℏ ∈ T k
k, ð
Ð s
bϱðℏÞ◊Þ

◊

≠ ϱðsÞ, in general. The fundamental theorem of calculus also
does not hold for diamond integrals.

2.2. Results on Hermite Interpolating Polynomial. Let −∞ <
μ < ν<∞ and μ = a1 <⋯<ar = νðr ≥ 2Þ be the given r points.
For I ∈ Cn½μ, ν�, there is a ðn − 1Þth degree polynomial
⊑HðtÞ, defined as

⊑H tð Þ = 〠
r

v=1
〠
kv

u=0
Huv tð Þζ uð Þ avð Þ: ð10Þ
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It satisfies the following Hermite condition:

⊑H
uð Þ avð Þ = ζ uð Þ avð Þ, 0 ≤ u ≤ kv, 1 ≤ v ≤ r, 〠

r

v=1
kv + r = n:

ð11Þ

Huv represents essential polynomials of the Hermite
basis which satisfy the relations:

H pð Þ
uv adð Þ = 0, d ≠ v, p = 0,⋯, kd ,

H pð Þ
uv avð Þ = δup, p = 0,⋯, kv, for u = 0,⋯, kv,

ð12Þ

with d, v = 1,⋯, r and

δup =
1u = p,
0u ≠ p:

(
ð13Þ

HuvðtÞ is given by

Huv tð Þ = 1
u!

ω tð Þ
t − avð Þkv+1−u

〠
kv−u

k=0

1
k!

dk

dtk
t − avð Þkv+1
ω tð Þ

 !�����
t=av

t − avð Þk,

ð14Þ

with

ω tð Þ =
Yr
v=1

t − avð Þkv+1: ð15Þ

Hermite conditions encompass the following specific
cases.

2.2.1. Lagrange Conditions. Let r = n,kv = 0 for all v, where 1
< v < r: Then, we have Lagrange polynomial ⊑LðtÞ, satisfying

⊑L avð Þ = ζ avð Þ, 1 ≤ v ≤ n: ð16Þ

2.2.2. Conditions for Type ðz, n − zÞ. Let r = 2, 1 ≤ z ≤ n − 1,
k1 = z − 1, k2 = n − z − 1: Then we have ⊑ðz,nÞðtÞ polynomial,
satisfying

⊑ uð Þ
z,nð Þ μð Þ = ζ uð Þ μð Þ, 0 ≤ u ≤ z − 1,

⊑ uð Þ
z,nð Þ νð Þ = ζ uð Þ νð Þ, 0 ≤ u ≤ n − z − 1:

ð17Þ

2.2.3. Conditions for Taylor’s Two-Point Formula. For n = 2
z, r = 2, k1 = k2 = z − 1, we have Taylor two-point interpolat-
ing polynomial ⊑2TðtÞ, satisfying

⊑ ið Þ
2T μð Þ = ζ uð Þ μð Þ, ⊑ uð Þ

2T νð Þ = ζ uð Þ νð Þ, 0 ≤ u ≤ z − 1: ð18Þ

The next theorem is useful for our results and is given
in [15].

Theorem 4. Suppose we have −∞ < μ < ν<∞ and μ = a1 <
⋯<ar = νðr ≥ 2Þ , and I ∈ Cn½μ, ν�: Then we have

ζ tð Þ = ⊑H tð Þ + RH ζ, tð Þ, ð19Þ

where ⊑HðtÞ is the Hermite interpolating polynomial as
defined in (10) and RHðζ, tÞ denotes the remainder given by

RH ζ, tð Þ =
ðν
μ

GH,n t, sð Þζ nð Þ sð Þds ; ð20Þ

GH,nðt, sÞ is

GH,n t, sð Þ =
〠
b

v=1
〠
kv

u=0

av − hð Þn−u−1
n − u − 1ð Þ! Huv tð Þ, s ≤ t,

− 〠
r

v=b+1
〠
kv

u=0

av − hð Þn−u−1
n − u − 1ð Þ! Huv tð Þ, s ≥ t,

8>>>>><
>>>>>:

ð21Þ

for all ab ≤ s ≤ ab+1, b = 0,⋯, r with a0 = μ and ar+1 = ν:

Remark 5. By imposing the Lagrange conditions, Theorem 4
takes the form

ζ tð Þ = ⊑L tð Þ + RL ζ, tð Þ: ð22Þ

Here, ⊑LðtÞ represents the Lagrange polynomial, which is

⊑L tð Þ = 〠
n

v=1

Yn
k=1
k≠v

t − ak
av − ak

� �
ζ avð Þ, ð23Þ

and RLðζ, tÞ is the remainder, defined by

RL ζ, tð Þ =
ðν
μ

GL t, sð Þζ nð Þ sð Þds, ð24Þ

with

GL t, sð Þ = 1
n − 1ð Þ!

〠
b

v=1
av − sð Þn−1

Yn
k=1
k≠v

t − ak
av − ak

� �
s ≤ t,

−〠
b

v=1
av − sð Þn−1

Yn
k=1
k≠v

t − ak
av − ak

� �
s ≤ t,

8>>>>>>>>><
>>>>>>>>>:

ð25Þ

ab ≤ s ≤ ab+1, b = 1,⋯, n − 1 along a1 = μ and an = ν:

Remark 6. Similarly, by imposing ðz, n − zÞ conditions on
Theorem 4, one gets

ζ tð Þ = ⊑ z,nð Þ tð Þ + R z,nð Þ ζ, tð Þ, ð26Þ
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where

⊑ z,nð Þ tð Þ = 〠
z−1

u=0
ξu tð Þζ uð Þ μð Þ + 〠

n−z−1

u=0
ηu tð Þζ uð Þ νð Þ, ð27Þ

with

ξu tð Þ = 1
u!

t − μð Þu t − ν

μ − ν

� � n−zð Þ
〠

z−1−u

k=0

n − z + k − 1
k

 !
t − μ

ν − μ

� �k

,

ð28Þ

ηu tð Þ = 1
u!

t − νð Þu t − μ

ν − μ

� �z

〠
n−z−1−u

k=0

z + k − 1
k

 !
t − ν

μ − ν

� �k

:

ð29Þ
The remainder Rðz,nÞðζ, tÞ is

R z,nð Þ ζ, tð Þ =
ðν
μ

G m,nð Þ t, sð Þζ nð Þ sð Þds, ð30Þ

with

Remark 7. Theorem 4 in the form of the Taylor two-point
formula becomes

ζ tð Þ = ⊑2T tð Þ + R2T ζ, tð Þ, ð32Þ

where the Taylor two-point interpolating polynomial ⊑2TðtÞ
is defined by

⊑2T tð Þ = 〠
z−1

u=0
〠

z−1−u

k=0

z + k − 1

k

 !"
t − μð Þu
u!

t − ν

μ − ν

� �z t − μ

ν − μ

� �k

ζ uð Þ μð Þ

+ t − νð Þu
u!

t − μ

ν − μ

� �z t − ν

μ − ν

� �k

ζ uð Þ νð Þ
#
,

ð33Þ

and R2Tðζ, tÞ is

R2T ζ, tð Þ =
ðν
μ

G2T t, sð Þζ nð Þ sð Þds, ð34Þ

with

G2T t, sð Þ =

−1ð Þz
2z − 1ð Þ! l

z t, sð Þ〠
z−1

v=0

z − 1 + v

v

 !
t − sð Þz−1−vrv t, sð Þ, s ≤ t,

−1ð Þz
2z − 1ð Þ! r

z t, sð Þ〠
z−1

v=0

z − 1 + v

v

 !
s − tð Þz−1−vlv t, sð Þ t ≤ s,

8>>>>><
>>>>>:

ð35Þ

where lðt, sÞ = ðs − μÞðν − tÞ/ν − μ, rðt, sÞ = lðt, sÞ, for all t, s
∈ ½μ, ν�:

3. Main Results

3.1. Extension of Jensen’s Functional via Hermite Polynomial.
Here, we prove our key identity regarding the extension of
Jensen’s functional.

Theorem 8. Let n ∈ℕ and ζ ∈ Cn½μ, ν� be a convex function.
Then for all t ∈ ½μ, ν�, we have

J ζð Þ = 〠
r

v=1
〠
kv

u=0
J Huv tð Þð Þζ uð Þ avð Þ +

ðν
μ

J GH,n t, sð Þð Þζn sð Þds,

ð36Þ

where JðGH,nðt, sÞÞ is defined as

J GH,n t, sð Þð Þ =
Ð a2
a1
h tð Þj jGH,n f tð Þ, sð Þ◊tÐ a2

a1
h tð Þj j◊t −GH,n

Ð a2
a1
h tð Þj jf tð Þ◊tÐ a2
a1
h tð Þj j◊t , s

 !
:

ð37Þ

Proof. Substitute (19) in (7), then the linearity of Jð·Þ gives
us (36). ☐

Remark 9. Instead of using (19) in (7), if we use (22), (26), or
(32) in (7), then extended results similar to Theorem 8 are
obtained for Lagrange conditions, type ðz, n − zÞ conditions,

G z,nð Þ t, sð Þ =
〠
z−1

v=0
〠

z−1−v

l=0

n − z + l − 1
l

 !
t − ν

ν − μ

� �l
" #

× t − μð Þv μ − sð Þn−v−1
v! n − v − 1ð Þ!

ν − t

ν − μ

� �n−z

μ ≤ s ≤ t ≤ ν,

− 〠
n−z−1

u=0
〠

n−z−u−1

r=0

z + r − 1
r

 !
ν − t

ν − μ

� �r
" #

× t − νð Þu ν − sð Þn−u−1
u! n − u − 1ð Þ!

t − μ

ν − μ

� �e

μ ≤ t ≤ s ≤ ν:

8>>>>><
>>>>>:

ð31Þ
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and two-point Taylor conditions, respectively, in the follow-
ing form:

J ζð Þ = 〠
n

v=1
ζ avð ÞJ

Yn
k=1
k≠v

t − ak
av − ak

� �0
BB@

1
CCA +

ðν
μ

J GL t, sð Þð Þζn sð Þds,

J ζð Þ = 〠
z−1

u=0
ζ uð Þ μð ÞJ ξu tð Þð Þ + 〠

n−z−1

u=o
ζ uð Þ νð ÞJ ηu tð Þð Þ

+
ðν
μ

J G z,nð Þ t, sð Þ
� �

ζ nð Þ sð Þds,

J ζð Þ = 〠
z−1

u=0
〠

z−1−u

k=0

z + k − 1

k

 !"
J

t − μð Þu
u!

t − ν

μ − ν

� �z t − μ

ν − μ

� �k
 !

� ζ uð Þ μð Þ + J
t − νð Þu
u!

t − μ

ν − μ

� �z t − ν

μ − ν

� �k
 !

ζ uð Þ νð Þ
#

+
ðν
μ

J G 2Tð Þ t, sð Þ
� �

ζ nð Þ sð Þds:

ð38Þ

Theorem 10. Presume n be a natural number and GH,n be a
Green function given in (21) satisfying

J GH,n t, sð Þð Þ ≥ 0, ð39Þ

for all t ∈ ½μ, ν�: Then for every n-convex ζ : ½μ, ν�⟶ℝ,

J ζð Þ ≥ J Bð Þ ð40Þ

holds, where

B tð Þ = 〠
r

v=1
〠
kv

u=0
ζ uð Þ avð ÞHuv tð Þ: ð41Þ

Proof.As the function ζ is n-convex, ζnðtÞ ≥ 0 for all t ∈ ½μ, ν�;
hence,

J GH,n t, sð Þð Þζn tð Þ ≥ 0: ð42Þ

Substituting (42) in (36), we have

J ζð Þ − 〠
r

v=1
〠
kv

u=0
ζ uð Þ avð ÞJ Huv tð Þð Þ ≥ 0: ð43Þ

Since J is linear, (43) can be written as

J ζð Þ − J Bð Þ ≥ 0: ð44Þ

Hence,

J ζð Þ ≥ J Bð Þ: ð45Þ

☐

Remark 11. (40) is reversed if (39) is reversed.

Utilization of the Lagrange condition produced the result
given below.

Corollary 12. Presume n is a natural number and GL defined
as in (25) satisfying

J GL t, sð Þð Þ ≥ 0, ð46Þ

for all t ∈ ½μ, ν�. Then for every n-convex function ζ : ½μ, ν�
⟶ℝ,

J ζð Þ ≥ J Bð Þ, ð47Þ

where

B tð Þ = 〠
n

v=1
ζ avð Þ

Yn
k=1
k≠v

t − ak
av − ak

� �
: ð48Þ

The use of type ðz, n − zÞ condition yields the following
result.

Corollary 13. Let n be a natural number and Gðz,nÞ be defined
in (31). Suppose ξu,ηu are defined as in (28) and (29), respec-
tively, satisfying

J G z,nð Þ t, sð Þ
� �

≥ 0, ð49Þ

for all t ∈ ½μ, ν�: Then for every n-convex function ζ : ½μ, ν�
⟶ℝ, we have

J ζð Þ ≥ J Bð Þ, ð50Þ

where

B tð Þ = 〠
z−1

u=0
ζ uð Þ μð Þξu tð Þ + 〠

n−z−1

u=o
ζ uð Þ νð Þηu tð Þ: ð51Þ

The application of two-point Taylor conditions gives a
result as below.

Corollary 14. Let n ∈ℕ and G2T be the Green function
defined as in (35), satisfying

J G2T t, sð Þð Þ ≥ 0, ð52Þ

for all t ∈ ½μ, ν�: Then for n-convex function ζ : ½μ, ν�⟶ℝ,

J ζð Þ ≥ J Bð Þ, ð53Þ
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where

B tð Þ = 〠
z−1

u=0
〠

z−1−u

k=0

z + k − 1

k

 !"
t − μð Þu
u!

t − ν

μ − ν

� �z

� t − μ

ν − μ

� �k

ζ uð Þ μð Þ + t − νð Þu
u!

t − μ

ν − μ

� �z t − ν

μ − ν

� �k

ζ uð Þ νð Þ
#
:

ð54Þ

Remark 15. Technique to prove Corollaries 12–14 is the same
as proof of Theorem 10, where we use n convexity of ζ and
linearity of J .

Theorem 16. In addition to presumptions of Theorem 10,
consider h ∈ Cð½a1, a2�T ,ℝ+Þ and B : ½μ, ν�⟶ℝ is convex,
then

J ζ tð Þð Þ ≥ 0, ð55Þ

for all t ∈ ½μ, ν�:

Proof. As BðtÞ is convex for all t ∈ ½μ, ν�, so Remark 1,
inferred JðBðtÞÞ ≥ 0. Hence, (40) implies JðζðtÞÞ ≥ 0. ☐

Remark 17. Relation (55) in Theorem 16 is an extension of
Jensen’s inequality (6).

3.2. Bounds for Identities Associated to Generalization of
Jensen’s Functional. Here, we utilize C̆ebyšev functional and
Grüss-type inequalities to present few important results. Let
two functions g1, g2 : ½≀,ȷ�⟶ℝ be Lebesgue integrable,
and the C̆ebyšev functional is

Y g1, g2ð Þj j = 1
ȷ−≀

ðȷ
≀
g1 tð Þg2 tð Þdt − 1

ȷ−≀

ðȷ
i
g1 tð Þdt

· 1
ȷ−≀

ðȷ
≀
g2 tð Þdt:

ð56Þ

The next two theorems are given in [16].

Theorem 18. Let g1, g2 : ½≀,ȷ�⟶ℝ be functions such that g1
is Lebesgue integrable and g2 be the function which is abso-

lutely continuous along ð·−≀Þðȷ − ·Þ½g2′�
2 ∈ L½≀,ȷ�. Then, we

have

Y g1, g2ð Þj j ≤ 1ffiffiffi
2

p Y g1, g1ð Þ½ �1/2 1ffiffiffiffiffiffiffiffi
j − i

p
ðȷ
≀
y−≀ð Þ j − yð Þ g2 ′ yð Þ

h i2
dy

� �1/2
:

ð57Þ

1/
ffiffiffi
2

p
in (57) is possibly the best constant.

Theorem 19. Let g1, g2 : ½≀,ȷ�⟶ℝ be functions, such that g1
is absolutely continuous with g1

′ ∈ L∞½≀,ȷ� and g2 is mono-

tonic nondecreasing on ½≀, ȷ�, then

Y g1, g2ð Þj j ≤ 1
2 j − ið Þ g1′

�� ��
∞

ðȷ
≀
y − ið Þ j − yð Þdg2 yð Þ: ð58Þ

The best possible constant is 1/2 in (58).
We denote

ψ sð Þ = J GH,n x, sð Þð Þ: ð59Þ

The C̆ebyšev functional is given as

Y ψ, ψð Þ = 1
ν − μ

ðν
μ

ψ2 sð Þds − 1
ν − μ

ðν
μ

ψ sð Þds
 !2

: ð60Þ

Theorem 20. Let ζ : ½μ, ν�⟶ℝ be such that ζ ∈ Cn½μ, ν� for
n ∈ℕ with ð·−μÞðν − ·Þ½ζðn+1Þ�2 ∈ L½μ, ν� and t ∈ ½μ, ν� and
GH,n, ψ and Y are defined in (21), (59), and (60), respectively.
Then,

J ζð Þ = 〠
r

v=1
〠
kv

u=0
ζ uð Þ avð ÞJ Huv xð Þð Þ + ζ n−1ð Þ νð Þ − ζ n−1ð Þ μð Þ

ν − μ

ðν
μ

ψ sð Þds

+Rn μ, ν ; ζð Þ,
ð61Þ

where the remainder satisfies Rnðμ, ν ; ζÞ the estimation

Rn μ, ν ; ζð Þj j ≤ Y ψ, ψð Þ½ �1/2
ffiffiffiffiffiffiffiffiffiffi
ν − μ

2

r ðν
μ

s − μð Þ ν − sð Þ ζ n+1ð Þ sð Þ
h i2

ds

�����
�����
1/2

:

ð62Þ

Proof. We use Theorem 18 for g1 ⟶ ψ and g2 ⟶ ζn, to
obtain

1
ν − μ

ðν
μ

ψ sð Þζn sð Þds − 1
ν − μ

ðν
μ

ψ sð Þds · 1
ν − μ

ðν
μ

ζn sð Þds
�����

�����
≤

1ffiffiffi
2

p Y ψ, ψð Þ½ �1/2 1ffiffiffiffiffiffiffiffiffiffi
ν − μ

p
ðν
μ

s − μð Þ ν − sð Þ ζ n+1ð Þ sð Þ
h i2

ds

�����
�����
1/2

:

ð63Þ

Therefore, we have

1
ν − μ

ðν
μ

ψ sð Þζn sð Þds = 1
ν − μð Þ2 ζ n−1ð Þ νð Þ − ζ n−1ð Þ μð Þ

� �ðν
μ

ψ sð Þds,

ðν
μ

ψ sð Þζn sð Þds = ζ n−1ð Þ νð Þ − ζ n−1ð Þ μð Þ
ν − μ

ðν
μ

ψ sð Þds +R μ, ν ; ζð Þ,

ð64Þ

6 Journal of Function Spaces



where the remainder Rðμ, ν ; ζÞ satisfy the estimation (62).
Now, from the identity (36),

J ζð Þ = 〠
r

v=1
〠
kv

u=0
ζ uð Þ avð ÞJ Huv tð Þð Þ +

ðν
μ

ψ sð Þζ nð Þ sð Þds,

J ζð Þ = 〠
r

v=1
〠
kv

u=0
ζ uð Þ avð ÞJ Huv tð Þð Þ + ζ n−1ð Þ νð Þ − ζ n−1ð Þ μð Þ

ν − μ

�
ðν
μ

ψ sð Þds +R μ, ν ; ζð Þ:

ð65Þ

☐

The Grüss-type inequality given below can be obtained
by using Theorem 19.

Theorem 21. Assume ζ : ½μ, ν�⟶ℝ such that ζ ∈ CðnÞ½μ, ν
�ðn ∈ℕÞ and ζð2n+1Þ ≥ 0 on ½μ, ν�: Suppose ψ and Y are
defined in (59) and (60), respectively. Then, we have (61) the
remainder Rðμ, ν : ζÞ satisfies the bound

R μ, ν ; ζð Þj j ≤ ν − μð Þ ψ′
�� ��

∞

× ζ n−1ð Þ νð Þ + ζ n−1ð Þ μð Þ
ν − μ

−
ζ n−2ð Þ νð Þ − ζ n−2ð Þ μð Þ

ν − μ

" #
:

ð66Þ

Proof.Applying Theorem 19 for g1 ⟶ ψ and g2 ⟶ ζðnÞ, we
have

1
ν − μ

ðν
μ

ψ sð Þζn sð Þds − 1
ν − μ

ðν
μ

ψ sð Þds · 1
ν − μ

ðν
μ

ζn sð Þds
�����

�����
≤

1
2 ν − μð Þ ψ′

�� ��
∞

ðν
μ

s − μð Þ ν − sð Þζ n+1ð Þ sð Þds:

ð67Þ

Since

ðν
μ

s − μð Þ ν − sð Þζ n+1ð Þ sð Þds =
ðν
μ

2s − μ + νð Þ½ �ζ nð Þ sð Þds,

ðν
μ

s − μð Þ ν − sð Þζ n+1ð Þ sð Þds = ν − μð Þ ζ n−1ð Þ νð Þ + ζ n−1ð Þ μð Þ
h i

− 2 ζ n−2ð Þ νð Þ + ζ n−2ð Þ μð Þ
h i

;

ð68Þ

using (36) and (67), we get (66). ☐

Theorem 22. Let all the presumptions of Theorem 8 be satis-
fied. Suppose ð̆i, j̆Þ is a couple of numbers, i.e., 1 ≤ ĭ, j̆ ≤∞,1/̆i

+ 1/ j̆ = 1. Suppose jζðnÞjĭ : ½μ, ν�⟶ℝ is a function which is
R -integrable for some n ≥ 2. Then, we have

J ζð Þ − 〠
r

v=1
〠
kv

u=0
ζ uð Þ avð ÞJ Huv xð Þð Þ

�����
����� ≤ ζ nð Þ
��� ���

ĭ

ðν
μ

J GH x, sð Þð Þj j j̆ds
 !1/j

:

ð69Þ

For ĭ ∈ ½1,∞�, the constant on the right of (69) is sharp and
suitable when ĭ is one.

Proof. Assume ℘ðsÞ = JðGnðt, sÞÞ. Hölder’s inequality and
identity (36) give us

∣J ζð Þ − 〠
r

v=1
〠
kv

u=0
J Huv tð Þð Þζ uð Þ avð Þ∣ =

ðν
μ

℘ sð Þζ nð Þ sð Þds
�����

�����
≤ ζ nð Þ
��� ���

ĭ

ðν
μ

℘ tð Þj j j̆ds
 !1/ j̆

:

ð70Þ

Taking ζ for ĭ ∈ ð1,∞Þ, such that, ζnðsÞ =sgn℘ðsÞ
j℘ðsÞj1/̆i−1: In case of ĭ =∞, take ζðnÞðsÞ=sgn℘ðsÞ.

We prove that for ĭ = 1,

ðν
μ

℘ sð Þζ nð Þ sð Þds ≤ max
s∈ μ,ν½ �

℘ sð Þj j
ðν
μ

ζ nð Þ sð Þ
��� ���ds

 !
ð71Þ

is the suitable inequality. Let ∣℘ðsÞ ∣ achieve its maximum at
p ∈ ½μ, ν�. We suppose firstly that ℘ð€dÞ > 0. We define ζðsÞ for
small enough δ, by

ζδ sð Þ≔

0, μ ≤ s ≤ p,
1
εn!

s − pð Þn, p ≤ s ≤ p + δ,

1
n!

s − pð Þn−1, p + δ ≤ s ≤ ν:

8>>>>><
>>>>>:

ð72Þ

Then, for δ small enough,

ðν
μ

℘ sð Þζ nð Þ sð Þds
�����

����� =
ðp+δ
p

℘ sð Þ 1
δ
ds

����
���� = 1

δ

ðp+δ
p

℘ sð Þds: ð73Þ

Now, from the inequality (71), we have

1
δ

ðp+δ
p

℘ sð Þds ≤ ℘ pð Þ
ðp+δ
p

1
δ
ds = ℘ pð Þ: ð74Þ
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For ℘ðpÞ < 0, we set ζδðsÞ as

ζδ sð Þ≔

1
n!

s − p − δð Þn−1, μ ≤ s ≤ p,

−
1
εn!

s − p − δð Þn, p ≤ s ≤ p+∈,

0, p + δ ≤ s ≤ ν:

8>>>>><
>>>>>:

ð75Þ

The rest of the proof is the same as above. ☐

4. Conclusion

Jensen’s functional for diamond integral (7) is generalized for
n-convex functions using the Hermite polynomial in the
present article. Different conditions of Hermite polynomial
are utilized to describe respective refinements of the func-
tional. In seek of applications, bounds for identities associ-
ated to constructed functional are also discussed. Moreover,
by defining the functional as difference of right and left sides
of extended inequality (40) (where B is defined in (41)), it is
possible to study n-exponential convexity, exponential con-
vexity, and applications to Stolarsky-type means as discussed
by Aras-Gazic et al., in [17] (Sections 5 and 6). This article
extends the results of [8] on time scales.
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