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This paper is aimed at establishing new upper bounds for the first positive eigenvalue of the ϕ-Laplacian operator on
Riemannian manifolds in terms of mean curvature and constant sectional curvature. The first eigenvalue for the ϕ-

Laplacian operator on closed oriented m-dimensional slant submanifolds in a Sasakian space form ~M
2k+1ðεÞ is estimated in

various ways. Several Reilly-like inequalities are generalized from our findings for Laplacian to the ϕ-Laplacian on slant
submanifold in a sphere S2n+1 with ε = 1 and ϕ = 2.

1. Introduction and Statement of Main Results

Finding the bound of the eigenvalue for the Laplacian on a
given manifold is a key aspect in Riemannian geometry,
and there are different classes of submanifolds such as slant
submanifolds, CR-submanifolds, and singular submanifolds,
which motivates further exploration and attracts many
researchers from different research areas [1–11]. A major
objective is to study the eigenvalue that appears as solutions
of the Dirichlet or Neumann boundary value problems for
curvature functions. Because there are different boundary
conditions on a manifold, one can take a philosophical view
of the Dirichlet boundary condition, finding the upper
bound for the eigenvalue as a method of investigation for
the suitable bound of the Laplacian on the given manifold.
In recent years, there has been increasing interest to obtain
the eigenvalue for the Laplacian operator and the ϕ-Lapla-
cian operators. The linearized operator of the ðr + 1Þ-th
anisotropic mean curvature that is an extension of the usual
Laplacian operator was also studied in [12]. Let N m be a
complete noncompact Riemannian manifold and Σ be the

compact domain in N m. Assume that Λ1ðΣÞ > 0 denotes
the first eigenvalue of the Dirichlet boundary value problem:

Δf +Λf = 0, inΣ and f = 0 on ∂Σ, ð1Þ

where Δ denotes the Laplace operator on N m. Then, the first
eigenvalue Λ1ðN Þ is defined by Λ1ðN Þ = inf ΣΛ1ðΣÞ: The
Reilly formula is solely concerned with the manifold’s intrin-
sic geometry, and most notably with the PDE in question.
With the following example, this is easily understood. Let ð
N m, gÞ be compact m-dimensional Riemannian manifold,
and let Λ1 denote the first nonzero eigenvalue of the Neu-
mann problem:

Δf +Λ1 f = 0 onN and ∂f
∂N

= 0 on ∂N , ð2Þ

where N is the outward normal on ∂N m. A result of Reilly
[13] reads the following.
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Let N m be Riemannian manifold, and ℝk is the
Euclidean space having dimensions m and k, respectively.
The manifold N m is connected, closed, and oriented as
well. The N m is isometrically immersed in ℝk with condi-
tion ∂N m = 0. The mean curvature of this isometric
immersion is denoted by ℍ, and the first nonzero eigen-
value Λ∇

1 of the Laplacian on N m can be written as in
the sense of Reily [13].

Λ∇
1 ≤

l
Vol N mð Þ

ð
N m

ℍj j2dV : ð3Þ

where the volume element of N m is denoted by dV . It can
be seen in literature that many authors prompted to work
in such inequalities for different ambient spaces after the
breakthrough of inequality (3). In Minkowski spaces, the
upper bound for Finsler submanifold is proposed by both
Zeng and He [14]. This upper bound relates to the very
1st eigenvalue of the ϕ-Laplacian. For closed manifold,
the first eigenvalue of the ϕ-Laplace operator is presented
by Seto and Wei [15] by using the condition of integral
curvature. In the hyperbolic space, the bottom spectra of
the Laplace manifold for complete and no-compact sub-
manifold are calculated by Lin [16], and mean curvature
has condition of integral pinching. In addition to this,
Xiong [17] contributed his role on closed hyperspace to
find the first Hodge-Laplacian eigenvalue. Moreover,
Xiong worked for complete Riemannian manifold which
includes the Reilly-type sharp upper bounds for the eigen-
values in product manifolds. The generalized Reilly
inequality (3) and first nonzero eigenvalue of ϕ-Laplace
operator are calculated by Du et.al [18]. On compact sub-
manifold, they used the Wentzel-Laplace operator having
boundary in Euclidean space. Following the same pattern,
for Neumann and Dirichlet boundary restrictions, Blacker
and Seto [3] evidenced the Lichnerowicz-type lower bound
for the first nonzero eigenvalue of the ϕ-Laplacian. They
used the Hessian decomposition on Kaehler manifolds
having a positive Ricci curvature. A simply connected
space form MkðεÞ having a constant curvature ε is
obtained, a well-known evaluation for the first nonzero
eigenvalue of Laplacian by the immersion of submanifold
N m in simply connected space having m-dimension. This
space form includes the Euclidean space ℝk, the unit
sphere Skð1Þ, and the hyperbolic space ℍð−1Þk with ε =
0, 1 and ε = −1, respectively.

Theorem 1. [13, 19] Let N m be an m-dimensional closed
orientable submanifold in a k-dimensional space form Mkðε
Þ. Then, the first nonnull eigenvalue Λ∇

1 of Laplacian satisfies

Λ∇
1 ≤

m
Vol Nð Þ

ð
N m

ℍj j2 + ε
� �

dV , ð4Þ

where ℍ is the mean curvature vector of N m in MkðεÞ. The
equality holds if and only if N m is minimally immersed in

a geodesic sphere of radius rε of ~M
kðεÞ with r0 = ðm/ΛΔ

1 Þ
1/2,

r1 = arcsin r0 and r−1 = arcsinh r0.

In [20, 21], the first nonnull eigenvalue of the Laplacian
is evidenced which is considered the generalization of the
results in Reilly [13]. For various ambient spaces, the out-
comes of different classes of Riemannian submanifolds indi-
cate that the result of both 1st nonzero eigenvalues depict
alike inequalities and ultimately have identical upper bounds
[20, 22]. This result is valid for both Dirichlet and Neumann
conditions. For ambient manifold, it is obvious from the lit-
erature that Laplace and ϕ-Laplace operators on Riemannian
submanifolds helped a lot to acquire different breakthroughs
in Riemannian geometry (see [12, 14, 23–29]) through the
work of [13]. To define the ϕ-Laplacian which is second
order quasilinear elliptic operator on N m (compact Rie-
mannian manifold N m having m-dimension), we have

Δϕ f = div ∇fj jϕ−2∇f
� �

, ð5Þ

where ϕ > 1 to satisfy the above equation. We have the usual
Laplacian for ϕ = 2. On the other hand, the eigenvalue of Δϕ

has similarity with Laplacian. For instance, if a function f
≠ 0 satisfies the subsequent equation with Dirichlet bound-
ary condition (1) (or Neumann boundary condition (2)),
then Λ (any real number) is Dirichlet eigenvalue. Similarly,
the above criteria also hold for Neumann boundary
condition (2).

Δϕ f = −Λ fj jϕ−2 f : ð6Þ

Let us study a Riemannian manifold N m with no bound-
ary. The Rayleigh-type variational characterization is
observed in first nonzero eigenvalue of Δϕ which is given
by Λ1,ϕ, from (cf. [30])

Λ1,ϕ = inf
Ð
N
∇fj jϕÐ

N
fk kϕ

fj ∈W1,ϕ N l
� �

0f g,
ð
N

fj jϕ−2 f = 0
( )

:

ð7Þ

This naturally raises the question: Is it possible to gener-
alize the Reilly-type inequalities for submanifolds in spheres
through the class almost-contact manifolds which were
proved in [1, 20, 21]? In the Sasakian space form, our aim
is to derive the 1st eigenvalue for the ϕ-Laplacian on slant
submanifold. Following this opinion and motivated by the
historical development in the analysis of the first nonnull
eigenvalue of the ϕ-Laplacian on submanifold in various
space forms, by using the Gauss equation and influenced
by studied of [18, 20, 22], our goal is to give general view
of the above Reilly’s conclusion for ϕ-Laplace operator,
and we are going to provide a sharp estimate to the first
eigenvalue for the ϕ-Laplacian on slant submanifold of Sasa-
kian space form M2k+1ðεÞ. In fact, the main finding of this
paper will be announced in the following theorem.
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Theorem 2. Let N m be an mð≥2Þ-dimensional closed orien-

tated slant submanifold in a Sasakian space form ~M
2k+1ðεÞ.

Then

(1) The first nonnull eigenvalue Λ1,ϕ of the ϕ-Laplacian
satisfies

Λ1,ϕ ≤
2 1−ϕ/2ð Þ k + 1ð Þ 1−ϕ/2ð Þmϕ/2

Vol Nð Þð Þϕ/2
 !

×
ð
N m

ε + 3
4

� ���

+ ε − 1
4

� �
3 cos2θ − 2

m

� �
+ ℍj j2

	
dVg

ϕ
2

for 1 < ϕ ≤ 2,

ð8Þ

Λ1,ϕ ≤
2 1−ϕ/2ð Þ k + 1ð Þ ϕ/2−1ð Þmϕ/2

Vol Nð Þ

 !
×
ð
N m

ε + 3
4

� �



�

+ ε − 1
4

� �
3 cos2θ − 2

m

� �
+ ℍj j2





gϕ/2dV for 2 < ϕ ≤
m
2
+ 1

ð9Þ

(2) The equality carries in (8) and (9) if and only if ϕ = 2
and N m is minimally immersed in a geodesic sphere

of radius rε of ~M
2k+1ðεÞ with the following equalities:

r0 =
m

ΛΔ
1

� �1/2
,

r1 = sin−1r0,
r−1 = sinh−1r0:

ð10Þ

Remark 3. For ϕ = 2, our estimate finds the corollary.

Corollary 4. Let N m be an m-dimensional closed orientated

slant submanifold in Sasakian space form ~M
2k+1ðεÞ. Then,

ΛΔ
1 satisfies the following inequality for the Laplacian:

ΛΔ
1 ≤

m
Vol Nð Þ

ð
N

ℍj j2 + ε + 3
4

� �
+ ε − 1

4

� �
3 cos2θ − 2

m

� �� 	
dV:

ð11Þ

The equality’s cases are same as that in Theorem 2 (2).
This is an immediate application of Theorem 2 by using

1 < ϕ ≤ 2, as Sasakian space form.

Theorem 5. Let N m be an mð≥2Þ-dimensional closed ori-

entated slant submanifold in Sasakian space form ~M
2k+1ð

εÞ. Then, Λ1,ϕ satisfies the following inequality for the ϕ-

Laplacian:

Λ1,p ≤
21−ϕ/2 m + 1ð Þ 1−ϕ/2ð Þmϕ/2

Vol Nð Þð Þ ϕ−1ð Þ

 !
×
ð
N m

ε + 3
4

� ���

+ ε − 1
4

� �
3 cos2θ − 2

m

� �
+ ℍj j2

� ϕ
2 ϕ−1ð Þ

dV

) ϕ−1ð Þ

,

ð12Þ

for 1 < ϕ ≤ 2.

Remark 6. Consider the inequality (12) and give value ϕ = 2,
and then inequality (12) reduces to the Reilly-type inequality
(11). This shows that Reilly-type calculates the first eigen-
value for the Laplace operator on slant submanifold in
Euclidean sphere S2k+1 (see Theorem 2 in [20] and Theorem
1.5 in [21]), which are the same on the case of our Theorem
2 for ε = 1 and ϕ = 2.

2. Preliminaries and Notations

An almost-contact manifold is odd-dimensional C∞-mani-

fold ð ~M2k+1, gÞ with almost-contact structure ðψ, ξ, ηÞ that
satisfies the succeeding properties, i.e.

ψ2 = −I + η ⊗ ξ,
η ξð Þ = 1,
ψ ξð Þ = 0,
η ∘ ψ = 0,

g ψU2, ψV2ð Þ = g U2, V2ð Þ − η U2ð Þη V2ð Þ,
η U2ð Þ = g U2, ξð Þ,

ð13Þ

for any U2, V2 belonging to ~M
2k+1

.
The three parameters of almost-contact structure can be

developed on its own as ψ is a ð1, 1Þ-type tensor field,
whereas ξ is the structure vector field and η is dual 1-form.
In the perspective of the Riemannian connection, an
almost-contact manifold can be a Sasakian manifold [2,
31] if

∇~
U2
ψÞV2 = g U2, V2ð Þξ − η V2ð ÞU2:

� ð14Þ

It indicates that

∇~
U2
ξ = −ψU2, ð15Þ

where ∇ indicates the Riemannian connection in regard to g

and U2, V2 is any vector fields on ~M
2k+1

. We consider that
~M
2k+1

converts into a Sasakian space form if it has ψ-sec-

tional constant curvature ε and is represented by ~M
2k+1ðεÞ.

With all this, we can represent the curvature tensor ~R of
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~M
2m+1ðεÞ as

~R X2, Y2, Z2,W2ð Þ = ε + 3
4 g Y2, Z2ð Þg X2,W2ð Þf

− g X2, Z2ð Þg Y2,W2ð Þg
+ ε − 1

4 η X2ð Þη Z2ð Þg Y2,W2ð Þf
+ η W2ð Þη Y2ð Þg X2, Z2ð Þ
− η Y2ð Þη Z2ð Þg X2,W2ð Þ
− η X2ð Þg Y2, Z2ð Þη W2ð Þ
+ g ψY2, Z2ð Þg ψX2,W2ð Þ
− g ψX2, Z2ð Þg ψY2,W2ð Þ
+ 2g X2, ψY2ð Þg ψZ2,W2ð Þg,

ð16Þ

for any arbitary X2, Y2, Z2,W2 that belong to ~M
2k+1

(for
more details, see [2, 31, 32]).

Assuming that N m is an m-dimensional submanifold

isometrically immersed in a Sasakian space form ~M
2k+1ðεÞ:

If ∇ and ∇⊥ are generated connections on the tangent bundle
TN and normal bundle T⊥N of N , respectively, then the
Gauss and Weingarten formulas are given by

ið Þ∇~
U2
V2 = ∇U2

V2 + h U2, V2ð Þ, iið Þ∇~
U2
ζ = −AζU2 + ∇⊥

U2
ζ,

ð17Þ

for each U2, V2 ∈ ΓðTN Þ and ζ ∈ ΓðT⊥N Þ, where h and Aζ

are the second fundamental form and shape operator (anal-
ogous to the normal vector field ζ), respectively, for the

immersion of N m into ~M
2k+1ðεÞ. They are linked as gðhð

U2,V2Þ, ζÞ = gðAζU2, V2Þ. In the whole article, ζ is assumed
to be tangential to N ; otherwise N is simply anti-invariant.
Now for any U ∈ ΓðTN Þ and N ∈ ΓðT⊥N Þ, we have

ið ÞψU2 = TU2 + FU2, ð18Þ

iið Þψζ = tζ + f ζ, ð19Þ
where TU2ðtζÞ and FU2ð f ζÞ are the tangential and normal
components of ψU2ðψζÞ, respectively. From (18), it is not
difficult to check that for each U2, V2 ∈ ΓðTN Þ:

g TU2, V2ð Þ = −g U2, TV2ð Þ: ð20Þ

A submanifold N m is defined to be slant submanifold if
for any x ∈N and for any vector field U2 ∈ ΓðTN mÞ, line-
arly independent on ξ, the angle between ψU2 and TN is
a constant angle θðU2Þ that lies between zero and π/2.

It follows the definition of slant immersions by Cabrer-
izo et al. [33] who obtained the necessary and sufficient con-
dition that a submanifold N m is said to be a slant
submanifold if and only if there exists a constant C ∈ ½0, π/
2� and one one tensor fled T is satisfied by the following:

T2 = −C I − η ⊗ ξð Þ, ð21Þ

such that C = cos2θ: Also, we have consequence of above
formula:

g TU2, TV2ð Þ = cos2θ g U2, V2ð Þ − η U2ð Þη V2ð Þf g: ð22Þ

Remark 7. It is clear that slant submanifold is generalized to
invariant submanifold with slant angle θ = 0.

Remark 8. Totally real submanfiold is a particular case of
slant submanifold with slant angle θ = π/2.

With the help of moving frame method, we explore
some of the interesting features of conformal geometry and
slant submanifolds. The specific convection has been applied
on indices range. Though we exclude in a way the following:

1 ≤ i, j, s,⋯≤m ;m + 1 ≤ α, β, γ,⋯≤ 2k + 1 1 ≤ a, b, c,⋯≤ 2k + 1:
ð23Þ

The mean curvature and squared norm of the mean cur-
vature vector HN of a Riemannian submanifold N m is
defined by

ℍ = 1
m
〠
n

i=1
h ei, eið Þ and ℍk k2 = 1

m2 〠
k

r=m+1
〠
m

i=1
hrii

 !2

: ð24Þ

Similarly, the length of the second fundamental form h is
given:

hrij = g h ei, ej
� �

, er
� �

and S = hk k2 = 〠
k

r=m+1
〠
n

i,j=1
hrij
� �2

: ð25Þ

In addition, we denoted the following:

Tk k2 = 〠
m

i,j=1
g2 Tei, ej
� �

: ð26Þ

Our main motivation comes from the following
example:

Example 9. (see [33]. Let ðℝ2k+1, ψ, ξ, η, gÞ denotes the Sasa-
kian manifold with Sasakian structure:

η = 1
2 dz1 − 〠

k

i=1
yi1dx

i
1

 !
, ξ = 2 ∂

∂z1
,

g = η ⊗ η + 1
4 〠

k

i=1
dxi1 ⊗ dxi1 ⊗ dyi1 ⊗ dyi1
� � !

,

ψ 〠
k

i=1
Xi

∂
∂xi1

+ Yi
∂
∂yi1

� �
+ Z

∂
∂z1

 !

= 〠
k

i=1
Yi

∂
∂yi1

− Xi
∂
∂xi1

� �
+ 〠

k

i=1
Yiy

i
1
∂
∂z1

,

ð27Þ
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where ðxi1, yi1, z1Þ, i = 1⋯ k are the coordinates system. It is
easy to explain that ðℝ2k+1, ψ, ξ, η, gÞ is an almost-contact
metric manifold. Now consider the 3-dimension submani-
fold in ℝ5 with Sasakian structure, for any θ ∈ ½0, ðπ/2Þ� such
that

ψ u1, v1, tð Þ = 2 u1 cos θ, u1 sin θ, v1, 0, tð Þ: ð28Þ

Under above immersion, N 3 is a three-dimension mini-

mal slant submanifold containing slant angle θ and scalar
curvature τ = −ðcos2θ/3Þ.

Similarly, we give more examples for nonminimal
submanifold.

Example 10 (see [33]). For any constant λ, we define an
immersion:

It is easy see that above immersion is a three-dimension

slant submanifold with slant angle θ = cos−1ðjλj/ð
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + λ2

p
ÞÞ.

Moreover, scalar curvature τ = −λ2/ð3ð1 + λ2ÞÞ and mean

curvature jℍj = 2e−λu1 /3
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + λ2

p
.

It is necessary to clarify the definition of the curvature
tensor ~R for slant submanifold in Sasakian space form
~M
2k+1ðεÞ and is given by

ψ~R ei, ej, ei, ej
� �

= ε + 3
4

� �
m2 −m
� �

+ ε − 1
4

� �
3 〠

m

i,j=1
g2 ψei, ej
� �

− 2 m − 1ð Þ
( )

:

ð30Þ

On the other hand, let fe1,⋯eq,⋯em = ξg be an ortho-
normal basis of TxN such that e1, e2 = sec θTe1,⋯, e2q =
sec θTe2q−1,⋯e2q+1 = ξ, since we define

g ψe1, e2ð Þ = g ψe1, sec θTe1ð Þ = sec θg ψe1, Te1ð Þ = sec θg Te1, Te1ð Þ:
ð31Þ

It is clear that the dimension of N m can be decomposed
as m = 2q + 1. Then, from (22), we derive that

g ψe1, e2ð Þ = cos θ: ð32Þ

In similar way, we repeat that

g2 ψei, ei+1ð Þ = cos2θ 〠
m

i,j=1
g2 ψei, ej
� �

= m − 1ð Þ cos2θ: ð33Þ

Merging (30) and (33) implies that

~R ei, ej, ei, ej
� �

= ε + 3
4

� �
m2 −m
� �

+ ε − 1
4

� �
m − 1ð Þ 3 cos2θ − 2

� 
:

ð34Þ

2.1. Structure Equations for Slant Submanifolds. Let x be a

totally real embedding from N m to an ð2k + 1Þ-dimen-
sional Riemannian manifold ð ~M, ~gÞ. Then N m has a gener-

ated metric gN = x∗~g. Let us consider ~M
2k+1 = ~M

2k+1ðεÞ,
then pulling back in [[1] Eq. (12)] by x and using [[1] Eqs
(13), (14)], we obtain the Gauss equations for slant submani-

fold in Sasakian space form ~M
2k+1ðεÞ and taking into

account (30).

Rijtl =
ε + 3
4

� �
δitδjl − δilδjt
� �

+ ε − 1
4

� �
3 ψei, ej
� ��

− 2 m − 1ð Þg +〠
α

hαith
α
jl − hαilh

α
jt

� �
:

ð35Þ

Taking trace of the above equation and using (34), we
get:

R =m2 ℍj j2 − S + ε + 3
4

� �
m m − 1ð Þ

+ ε − 1
4

� �
m − 1ð Þ 3 cos2θ − 2

� 
,

ð36Þ

where R is the scalar curvature of N m and S is the length of
the second fundamental form h:

2.2. Conformal Relations. In this section, we’ll look at how
the conformal transformation affects curvature and the sec-
ond fundamental form. Although these relationships are
well-known (cf. [1]), we use the moving frame method to
provide a quick proof for readers’ convenience.

Assume that ~M
2k+1

consist a conformal metric ~g = e2ρ~g,
where ρ ∈ C∞ð ~MÞ. Then ~Ωa = eρΩa stands for the dual
coframe of ð ~M, ~gÞ, and ~ea = eρea stands for the orthogonal
frame of ð ~M, ~gÞ. The equality’s equations of ð ~M, ~gÞ are given
in [[1], Eqs. (20), (21), (22) (23)] by:

~Ωab =Ωab + ρaΩb − ρbΩa, ð37Þ

where ρa is the covariant derivative of ρ with along to ea,

ψ u1, v1, tð Þ = 2 eλu1 cos u1 cos v1, eλu1 sin u1 cos v1, eλu1 cos u1 sin v1, eλu1 sin u1 sin v1, t
� �

: ð29Þ
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that is, dρ =∑aρaea.

e2ρ~Rijtl = Rijtl − ρitδjl + ρjlδit − ρilδjt − ρjtδil
� �

+ ρiρtδjl + ρjρlδit − ρjρtδil − ρiρlδjt
� �

− ∇αj j2 δitδjl − δilδjt
� �

:

ð38Þ

By pulling back (33) to N m by x, we have:

~h
α

ij = e−ρ hαij − ραδji
� �

, ð39Þ

eℍα = e−α ℍα − ραð Þ, ð40Þ

from there, it is easy to get the meaningful relationship:

e2ρ ~S −m eℍ


 


2� �
+m ℍj j2 = S: ð41Þ

3. Proof of Main Results

This section is about proving Theorem 2 announced in the
previous section. First of all, some fundamental formulas
will be presented and some useful lemmas from [27] will
be recalled to our setting. For the purpose of this paper, we
will provide a significant lemma that is motivated by the
review in [1, 27].

Remark 11. A simply connected Sasakian space form M2k+1

is a ð2k + 1Þ-sphere S2k+1 and Euclidean space ℝ2k+1 with
constant ψ-sectional curvature ε = 1 and ε = −3, respectively.

Based on the above arguments, we have the following
lemma:

Lemma 12 (see [1]. Let N m be a slant submanifold of Sasa-

kian space form ~M
2k+1ðεÞ that is close and oriented with

dimension m ≥ 2. If x : N m ⟶ ~M
2k+1ðεÞ is embedding from

N m into ~M
2k+1ðεÞ, then there is a standard conformal map

Γ : ~M
2k+1ðεÞ⟶ S2k+1ð1Þ ⊂ℝ2k+2 such that the embedding

ω = Γ ∘ x = ðω1,⋯ω2k+2Þ satisfiesð
N m

ωaj jϕ−2ωadVN = 0, a = 1,⋯2 k + 1ð Þ, ð42Þ

for ϕ > 1.

In the above Lemma 12 by the constructed test function,
we produce a higher bound for Λ1,ϕ in the form of the con-
formal functionand in comparability with Lemma 2.7
in [27].

Proposition 13. Let N m be an m ≥ 2-dimensional closed ori-

entated slant submanifold into Sasakian space form ~M
2k+1ðεÞ.

Then, we have

Λ1,ϕVol N
mð Þ ≤ 2 1−ϕ

2j j k + 1ð Þ 1−ϕ
2j jmϕ

2

ð
N m

e2ρ
� �ϕ

2dV , ð43Þ

where Γ stands for conformal map in Lemma 12 and for all

ϕ > 1. Identified by Yε, the standard metric on ~M
2k+1ðεÞ and

considered Γ∗Y1 = e2ρYε.

Proof. Considering ωa as a test function along with Lemma
12, we derive

Λ1,ϕ

ð
N m

ωaj jϕ ≤ ∇ωaj jϕdV , 1 ≤ a ≤ 2 k + 1ð Þ: ð44Þ

Observe ∑2k+2
a=1 jωaj2 = 1; then jωaj ≤ 1. We accomplish

〠
2k+2

a=1
∇ωaj j2 = 〠

m

i=1
∇ei

ω


 

2 =me2ρ: ð45Þ

By using 1 < ϕ ≤ 2, then we derive

ωaj j2 ≤ ωaj jϕ: ð46Þ

Using the Hölder inequality along with (44)–(46), we are
able to get

Λ1,ϕVol Nð Þ =Λ1,ϕ 〠
2k+2

a=1

ð
N m

ωaj j2dV ≤Λ1,ϕ 〠
2k+2

a=1

ð
N m

ωaj jϕdV

≤Λ1,ϕ

ð
N m

〠
2k+2

a=1
∇ωaj jϕdV

≤ 2k + 2ð Þ1−ϕ/2
ð
N m

〠
m

a=1
∇ωaj j2

 !ϕ
2

dV

= 21−ϕ
2 k + 1ð Þ1−ϕ

2

ð
N m

me2ρ
� �ϕ

2dV :

ð47Þ

This gives us the desired outcome (43). On the contrary,
if we assume ϕ ≥ 2, then by applying Hölder inequality, we
have

1 = 〠
2k+2

a=1
ωaj j2 ≤ 2k + 2ð Þ1−2

ϕ 〠
2k+2

a=1
ωaj jϕ

 !2
ϕ

: ð48Þ

And the outcome we get is

Λ1,ϕVol N
mð Þ ≤ 2k + 2ð Þϕ2−1 〠

2k+2

a=1
Λ1,ϕ

ð
N m

ωaj jϕdV
 !

: ð49Þ
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The Minkowski’s inequality gives

〠
2k+2

a=1
∇ωaj jϕ ≤ 〠

2k+2

a=1
∇ωaj j2

 !ϕ
2

= me2ρ
� �ϕ

2: ð50Þ

Hence, (43) follows from (44), (49), and (50). This com-
pletes the proof of proposition.☐

We are now in the position to prove Theorem 2.

3.1. Proof of Theorem 2. To begin with 1 < ϕ ≤ 2, then ϕ/2 ≤ 1
. Taking help from Proposition 13 and implementing the
Hölder inequality, we have

Λ1,ϕVol N
mð Þ ≤ 21−ϕ

2 k + 1ð Þ1−ϕ
2m

ϕ
2

ð
N m

e2ρ
� �ϕ

2dV

≤ 21−ϕ
2 k + 1ð Þ1−ϕ

2∣m
ϕ
2 Vol Nð Þð Þ1−ϕ

2

ð
N m

e2ρdV
� �ϕ

2
:

ð51Þ

By using both conformal relations and Gauss equations,

it is possible to calculate e2ρ. Let ~M
2k+1 = ~M

2k+1ðεÞ, and ~g =
e−2ρYε, ~g = Γ∗Y1 in previous. From (36), the Gauss equa-
tions for the embedding x and the slant embedding ω = Γ
∘ x are respectively

R = ε + 3
4

� �
m m − 1ð Þ + ε − 1

4

� �
m − 1ð Þ 3 cos2θ − 2

� 
+m m − 1ð Þ ℍj j2 + m ℍj j2 − S

� �
,

ð52Þ

~R −m m − 1ð Þ =m m − 1ð Þ eℍ


 


2 + m eℍ


 


2 − ~S
� �

: ð53Þ

Tracing (38), it can be established that

e2ρ~R = R − m − 2ð Þ m − 1ð Þ ∇ρ



 

2 − 2 m − 1ð ÞΔρ, ð54Þ

which replaceing together with (52) and (53) into (54) gives

e2ρ m m − 1ð Þ +m m − 1ð Þ eℍ


 


2 + m eℍ


 


2 − ~S
� �� �

= ε + 3
4

� �
m m − 1ð Þ + ε − 1

4

� �
m − 1ð Þ 3 cos2θ − 2

� 
+m m − 1ð Þ ℍj j2 + m ℍj j2 − S

� �
− m − 2ð Þ m − 1ð Þ ∇ρ



 

2
− 2 m − 1ð ÞΔρ:

ð55Þ

It implies the following:

e2ρ~S − S − m − 2ð Þ m − 1ð Þ ∇ρ



 

2 − 2 m − 1ð ÞΔρ

=m m − 1ð Þ e2ρ −
ε + 3
4

� ���
−

ε − 1
4

� � 3 cos2θ − 2
m

� �	
+ e2ρ eℍ


 


2 − ℍj j2
� �

g

+m e2ρ eℍ


 


2 − ℍj j2
� �

:

ð56Þ

Now from (39) and (41), we derive

m m − 1ð Þ e2ρ −
ε + 3
4

� �
−

ε − 1
4

� � 3 cos2θ − 2
n

� �� 	
+m m − 1ð Þ〠

α

ℍα − ραð Þ2 =m m − 1ð Þ ℍj j2

− m − 2ð Þ m − 1ð Þ ∇ρ



 

2 − 2 m − 1ð ÞΔρ:

ð57Þ

Dividing by mðm − 1Þ in the above equation, it implies
that

e2ρ = ε + 3
4

� �
+ ε − 1

4

� � 3 cos2θ − 2
m

� �
+ ℍj j2

� 	
−

2
m
Δρ −

m − 2
m

Δρ



 

2− ∇~
ρÞ⊥ −ℍ

� 

2:


 ð58Þ

Taking integration along dV , it is not complicated to get
the following:

Λ1,ϕVol N
mð Þ ≤ 21−ϕ

2 k + 1ð Þ1−ϕ
2∣m

ϕ
2 Vol N mð Þð Þ1−ϕ

2

ð
N m

e2ρdV
� �ϕ

2

≤
2k + 2ð Þ1− ϕ/2ð Þ∣mϕ/2

Vol Nð Þð Þϕ/2−1
ð
N m

ε + 3
4

� ���

+ ε − 1
4

� � 3 cos2θ − 2
m

� �
+ ℍj j2

	
dVg

ϕ
2

:

ð59Þ

The above result is comparable to (8) as we desired to
prove. In the case where ϕ > 2, it is not possible to apply

the Hölder inequality directly to govern
Ð
N
ðe2νÞϕ/2 by usingÐ

N
ðe2ρÞ. We did multiply both sides of (58) with the factor

eðϕ−2Þρ and then solve by using integration on N m (cf. [25]).

ð
N m

eϕρdV ≤
ð
N m

ε + 3
4

� �
+ ε − 1

4

� � 3 cos2θ − 2
m

� ��
+ ℍj j2e ϕ−2ð ÞρdV −

m − 2 − 2ϕ + 4
m

� �ð
N

e ϕ−2ð Þ Δρ



 

2dV
≤
ð
N m

ε + 3
4

� �
+ ε − 1

4

� � 3 cos2θ − 2
m

� �
+ ℍj j2

� 	
e ϕ−2ð ÞρdV :

ð60Þ
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Next, it follows from the assumption m ≥ 2ϕ − 2. We
apply Young’s inequality; then

ð
N m

ε + 3
4

� �
+ ε − 1

4

� � 3 cos2θ − 2
m

� �
+ ℍj j2

� 	
e ϕ−2ð ÞρdV

≤
2
ϕ

ð
N m

ε + 3
4

� �
+ ε − 1

4

� � 3 cos2θ − 2
m

� �
+ ℍj j2





 



� 	ϕ
2

dV

+ ϕ − 2ð Þ
ϕ

ð
N m

e
ϕ
ρdV :

ð61Þ

From (60) and (61) we deduce the following inequality:

ð
N m

epρdV ≤
ð
N m

ε + 3
4

� �
+ ε − 1

4

� � 3 cos2θ − 2
m

� �
+ ℍj j2





 



� �ϕ
2

dV :

ð62Þ

Now putting (62) into (43), we obtain (9). In the case of
slant submanifolds, the equality case holds in (8); then con-
sidering the cases in (44) and (46), we get this:

ωaj j2 = ωaj jϕ,
Δϕω

a = −Λ1,ϕ ω
aj jϕ−2ωa,

ð63Þ

for each a = 1,⋯, 2k + 2. If 1 < ϕ < 2, then jωaj = 0 or 1. So,
there would be only one a for which jωaj = 1 and Λ1,ϕ = 0,
which seems to be a contradiction as the eigenvalue is non-
zero. For this reason, we consider ϕ = 2 and only restricted to
Laplacian case. After this, we are able to apply Theorem 1.5
from [21].

Let ϕ > 2 and equality remains valid in (9); then it shows
that (49) and (50) become the equalities which indicates

ω1

 

ϕ =⋯ = ω2k+2



 


ϕ, ð64Þ

and condition j∇ωaj = 0 holds for existing a. It shows that ωa

is a constant value and Λ1,ϕ is also equal to zero. This last
result again represents a conflict that Λ1,ϕ is a nonnull eigen-
value. This completes the proof of the theorem.

3.2. Proof of Theorem 5. Suppose that 1 < ϕ ≤ 2; we have ϕ/
ð2ðϕ − 1ÞÞ ≥ 1. Then, by the Hölder inequality, we have

ð
N m

ε + 3
4

� �
+ ε − 1

4

� � 3 cos2θ − 2
m

� �
+ ℍj j2

� 	
dV

≤ Vol Nð Þð Þ1−
2 ϕ−1ð Þ

ϕ

� �
×
ð
N m

ε + 3
4

� ���

+ ε − 1
4

� � 3 cos2θ − 2
m

� �
+ ℍj j2

	 ϕ
2 ϕ−1ð Þ

dV

)2 ϕ−1ð Þ
ϕ

:

ð65Þ

Thus, combining Equation (8) with (65), we get the
desired result (12). This completes the proof of the theorem.

As a result of the observations in Remark 11, the next
result will be specified as a special variant of Theorem 2.
To be precise, we determine the following result by replacing
ε = 1 in (8) and (9), respectively.

Corollary 14. Assume N m is an mð≥2Þ-dimensional closed
orientated slant submanifold in ð2k + 1Þ-sphere S2k+1ð1Þ.
Then, Λ1,ϕ satisfies the following inequality for the ϕ-Lapla-
cian:

Λ1,ϕ ≤
21−ϕ/2 k + 1ð Þ 1−ϕ/2ð Þmϕ/2

Vol Nð Þð Þp/2
ð
N m

1 + ℍj j2� �
dV

� 	ϕ
2

for 1 < ϕ ≤ 2,

Λ1,ϕ ≤
21−ϕ/2 k + 1ð Þ 1−ϕ/2ð Þmϕ/2

Vol Nð Þ
ð
N k

1 + ℍj j2

 

� �ϕ
2dV for 2 < ϕ ≤

m
2
+ 1:

ð66Þ

There is an additional corollary derived from Corollary
14 as follows.

Corollary 15. Assuming that N m is an mð≥2Þ-dimensional
closed orientated slant submanifold in ð2k + 1Þ-sphere S2k+1

ð1Þ, then Λ1,ϕ satisfies the following inequality for the ϕ-
Laplacian:

Λ1,ϕ ≤
2k + 2ð Þ 1−ϕ/2ð Þmϕ/2

Vol Nð Þð Þ ϕ−1ð Þ

ð
N m

1 + ℍj j2� � ϕ
2 ϕ−1ð ÞdV

� 	 ϕ−1ð Þ
,

ð67Þ

for 1 < ϕ ≤ 2.

Remark 16. It is noticed that Corollaries 14 and 15 are exac-
tely same as Theorem 1.5 in [20].

3.3. Application to Invariant Submanifolds of Sasakian Space
Forms. Using Remark 7 and Theorem 2, we have the follow-
ing results.

Corollary 17. LetN m be anmð≥2Þ-dimensional closed orien-

tated invariant submanifold in a Sasakian space form ~M
2k+1

ðεÞ. Then, Λ1,ϕ satisfies the following inequality for the ϕ-
Laplacian:

Λ1,ϕ ≤
2 1−ϕ/2ð Þ k + 1ð Þ 1−ϕ/2ð Þmϕ/2

Vol Nð Þð Þϕ/2
 !

×
ð
N m

ε + 3
4

� �
+ ε − 1

4m

� �
+ ℍj j2

� 	
dV

� 	ϕ/2
for 1 < ϕ ≤ 2,

Λ1,ϕ ≤
2 1−ϕ/2ð Þ k + 1ð Þ ϕ/2−1ð Þmϕ/2

Vol Nð Þ

 !

×
ð
N m

ε + 3
4

� �
+ ε − 1

4m

� �
+ ℍj j2





 



� 	ϕ/2
dV for 2 < ϕ ≤

m
2
+ 1:

ð68Þ
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From Corollary 4 for ϕ = 2 and Remark 7, we have the
following.

Corollary 18. Assuming that N m is an m-dimensional closed
orientated invariant submanifold in a Sasakian space form
~M
2k+1ðεÞ, then ΛΔ

1 satisfies the following inequality for the
Laplacian:

ΛΔ
1 ≤

m
Vol Nð Þ

ð
N

ℍj j2 + ε + 3
4

� �
+ ε − 1

4m

� �� 	
dV : ð69Þ

Similarly, from Theorem 5, we obtain the following
corollary.

Corollary 19. Assuming that N m is an mð≥2Þ-dimensional
closed orientated invariant submanifold in a Sasakian space

form ~M
2k+1ðεÞ, then Λ1,ϕ satisfies the following inequality

for the ϕ-Laplacian:

Λ1,ϕ ≤
21−ϕ/2 k + 1ð Þ 1−ϕ/2ð Þmϕ/2

Vol Nð Þð Þ ϕ−1ð Þ

 !

×
ð
N m

ε + 3
4

� �
+ ε − 1

4m

� �
+ ℍj j2

� � ϕ
2 ϕ−1ð Þ

dV

( ) ϕ−1ð Þ
,

ð70Þ

for 1 < ϕ ≤ 2.

3.4. Application to Anti-Invariant Submanifolds of Sasakian
Space Forms. Using Remark 8 and Theorem 2, we have the
following results:

Corollary 20. LetN m be anmð≥2Þ-dimensional closed orien-
tated anti-invariant submanifold in a Sasakian space form
~M
2k+1ðεÞ. Then, Λ1,ϕ satisfies the following inequality for the

ϕ-Laplacian:

Λ1,ϕ ≤
2 1−ϕ/2ð Þ k + 1ð Þ 1−ϕ/2ð Þmϕ/2

Vol Nð Þð Þϕ/2
 !

�
ð
N m

ε + 3
4

� �
−

ε − 1
2m

� �
+ ℍj j2

� 	
dV

� 	p/2
for 1 < ϕ ≤ 2,

Λ1,ϕ ≤
2 1−ϕ/2ð Þ k + 1ð Þ ϕ/2−1ð Þmp/2

Vol Nð Þ

 !ð
N m

� ε + 3
4

� �
−

ε − 1
2m

� �
+ ℍj j2





 



� 	ϕ/2
dV for 2 < ϕ ≤

m
2
+ 1:

ð71Þ

From Corollary 4 for ϕ = 2 and Remark 8, we have the
following.

Corollary 21. Assuming that N m is an m-dimensional closed
orientated anti-invariant submanifold in a Sasakian space

form ~M
2k+1ðεÞ, then ΛΔ

1 satisfies the following inequality for

the Laplacian:

ΛΔ
1 ≤

m
Vol Nð Þ

ð
N

ℍj j2 + ε + 3
4

� �
−

ε − 1
2m

� �� 	
dV : ð72Þ

Similarly, from Theorem 5, we obtain the following
corollary.

Corollary 22. Assuming that N m is an mð≥2Þ-dimensional
closed orientated ani-invariant submanifold in a Sasakian

space form ~M
2k+1ðεÞ, then Λ1,ϕ satisfies the following inequal-

ity for the ϕ-Laplacian:

Λ1,ϕ ≤
21−ϕ/2 k + 1ð Þ 1−ϕ/2ð Þmϕ/2

Vol Nð Þð Þ ϕ−1ð Þ

 !

�
ð
N m

ε + 3
4

� �
−

ε − 1
2m

� �
+ ℍj j2

� � ϕ
2 ϕ−1ð Þ

dV

( ) ϕ−1ð Þ
,

ð73Þ

for 1 < ϕ ≤ 2.
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