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Newly, the field of fractional differential operators has engaged with many other fields in science, technology, and engineering
studies. The class of fractional differential and integral operators is considered for a real variable. In this work, we have
investigated the most applicable fractional differential operator called the Prabhakar fractional differential operator into a
complex domain. We express the operator in observation of a class of normalized analytic functions. We deal with its
geometric performance in the open unit disk.

1. Introduction 2.1. Geometric Methods. In this place, we clarify selected
notions in the geometric function theory, which are situated

The class of complex fractional operators (differential and in [6-8].

integral) is investigated geometrically by Srivastava et al.

[1] and generalized into two-dimensional fractional Definition 1. Let U={z € C : |z| < 1} be the open unit disk.

parameters by Ibrahim for a class of analytic functions Two analytic functions g,, g, in U are called subordinated

in the open unit disk [2]. These operators are consumed denoting by g, < g, or g,(2) < g,(2), z € U, if there exits an

to express different classes of analytic functions, fractional analytic function w, |w| < |z| < 1 having the formula

analytic functions [3] and differential equations of a com-

plex variable, which are called fractional algebraic differen-

tial equations studding the Ulam stability [4, 5]. 9,(2) = g,(w(z)), zeuU. (1)
We carry on our investigation in the field of complex

fractional differential operators. In this investigation, we for-

mulate an arrangement of the fractional differential operator g, is majorized by g, denoting by g, < g, if and only if

in the open unit disk refining the well-known Prabhakar

fractional differential operator. We apply the recommended

operator to describe new generalized classes of fractional 9,(2) =w(2)g,(z), z€Uy; (2)

analytic functions including the Briot-Bouquet types. Conse-

quently, we study the classes in terms of the geometric func-

tion theory. equivalently, the coefficient inequality is held |a,|<|b,|,
respectively.
2. Methods There is a deep construction between subordination and

majorization [9] in U for selected distinct classes comprising
Our methods are divided into two subsections, as follows. the convex class (€):
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1+R (zg," (Z))> >0, ze€euU, (3)

and starlike functions (&™)

zg'
m(g(z)> >0, zeu. (4)

Definition 2. We present a class of analytic functions by
[ee]
Z)=z+ Zanz”, Z€U. (5)
n=2

This class is denoted by A and known as the class of uni-
valent functions which is normalized by f(0) = f'(0) =1 =0.

Associated with the terms & and €, we present the
term & of all analytic functions p in U with a positive real
part in U and p(0) =

Two analytic functions f, g are called convoluted, denot-
ing by f * g if and only if

) <§> * (igﬂz"> =Y a0 ©

Definition 3. The generalized Mittag-Leffler function is
defined by [10-12]

- v (), 7
50 (7) = n_
£ru(@) ’;)F(vn +u)n! @)
where (9), represents the Pochhammer symbol and
=l ) — \ z'
£l =20l = 2 (8)

Note that 5%,,(z) is an ultimate traditional generalization
of the function ¢?, where Eil(z) =é%.

Moreover, it can be formulated by the Fox-Write hyper-
geometric function, as follows:

,1
Ef)ﬂ(z) = <F(lp)> W, l(f “) ;Z] . 9)

2.2. Complex Prabhakar Operator (CPO). The Prabhakar
integral operator is defined for analytic function

v(z) € Z[0,1] = {y(2) =y, z +y,2°+---zeu}  (10)
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by the formula [13, 14]

Piavie) = [ =0 Syt~ 0Ot

(11)
= (v-0ls) (@) (@ B.vswe Cooev).
Moreover [13, 14],
VO N = LPlgY
Q(x,ﬁ( ) 4 ‘B(wz )
i I'(y+n) X" (12)
Z0a0)= 2 T e )

For example, let y(z) =z"!, then (see [15], Corollary
2.3)

wazc 1 J ﬁ 1~Y w(z_()a] (Cc—l)dc

F ) ﬁ+< 1HZ¢[3+<

(13)

(wz").

The Prabhakar derivative can be computed by the for-
mula [13]

dk

Dol (X) = 7% "

e (P (0)- (14)

Definition 4. Let € A. Then the complex Prabhakar differ-
ential operator (CPFDO) of (13) is formulated in terms of
the Riemann-Liouville derivative, as follows:

dk k-p-1=-v «
7Dy (2) = j (=08 [w(z -0 W)

dz*
k

- (PE),
(15

and in terms of the Caputo derivative, as follows:

0

k
=P} (dkw( )>

€Y i k—B-1 —— dk
IDa’,ﬁllf(z)=J(Z—C) p- Eppplw(z=0) }(dc (())d(

(16)
Note that
po k-1
{0, s (2) =D gv(2) mZ Fe ) gloz Ty (0)
(17)
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For example, let y(z) =z%, &> 1, then in virtue of [15]
(Corollary 2.3), we conclude that

=T(e+1)z""* 157

ocy+s[w Zu]’

In general, we have

- [0 Ed a0

0

Gl ‘ k-p-1 =y o [ dF

k Dy p(2 ):JO(Z—() = kﬁ[w(z_c)]< (C))dC
y
k-

~OMPE] slw(z-0)]dg

o)

—(1—k+ e)krc*k(z

0

=(1-k+ s)krf(s_kﬂ)_l
(2= ) ez - 0)%dL:
-0 0 -0 et -0

0

= (V)L (v)2" 5

Uty [wzoc]’

(19)

where p:=k-f, vi=e—k+1, and (v), =
e—k). Hence, we obtain

IF(1+e)/r(1+

C v 2t 1= o
<D =I'(l+e)z"""E) oz
a [3( ) ( ) “a ;4+v[ ] (20)
=T'(k+v)z"™" 1:‘,CLJrV[wz"‘].
We have the following property.
Proposition 5. Let y € A. Define a functional EAZ; U—
U by
gAVw L (%IDV‘”) (21)
Sk glw) )N

Then [ AVgy = { AL+ y € A, By, w € C, z€).

Proof. Let ¢ € A. Then a computation implies
%”AY"U _ Z‘B € yw
k Do p¥(2) = W ( D, gw(z ))
B
=\ == [Dyw zZ+ ll/n
(5%5—/%[“’2“]) ( < Z ))
(7 [Dy‘” + Zl// b v
E;,yz—ﬁ[“’za] ek
P - o1
= - T = .:a’];_ﬁ[wz ]zl B
Eea-plwz"]
(22)
+ Z‘/’nr(”"' 1) z" ﬁztxtﬁ-l ﬁ[wz ])
n=2
=Y o
=z+ Z v, I( n+1)7"‘"+1 plez’] z"
n=2 Za2- ﬁ[wz(x]
=z+ Z v,8,2" = (z + Z 6nz”>
n=2 n=2
w2+ Ywe ) = (Falh+v) (@),
n=2

“IE), glwz*]. This indi-
cates that { A? W €A 0

where 8,:=T(n+1)5) plwz

We call %Ay’w the normalized complex Prabhakar opera-
tor (NCPO) in the open unit disk. Since Alx 5 € A, then we

can study it in view of the geometric function theory.

Our aim is to formulate it in terms of some well-known
classes of analytic functions. It is clear that §,, is a complex
connection (coefficient) of the operator and it is a constant
when a = 0.

Remark 6. The integral operator corresponding to the frac-
tional differential operator CAK;‘; is expanded by the series

Fad- ﬁ[wzﬂ >z". (23)
l’l+1) otn+1 ,B[wza]

ocﬁw =z+ Z (V/n
It is clear that
(Fris = angs )v(e) = (£l £ Y05 ) vi@) =v(2). (29)

The linear convex combination of the operators CTZ 8

and fAz‘g can be recognized by the formula

=Gk dgw(z) + (10 Yogw(z),  (25)

[
D v(2)
wp

where (€[0, 1]. Clearly, % Z‘gw(z) € A, where v € A



2.3. Subclasses of NCPO. In terms of the NCPO, we formu-
late the next classes.

Definition 7. A function y € A is considered to be in the class
¢S:1%(0) if and only if

o
2(falv(a)’

(STo)=dyeA: L
k*a, K
g CALgv(2)

We shall deal with the conditions of a function y to be in
iS.s (o) whenever o € C is convex as well as nonconvex.

Definition 8. A function y € A is considered to be in the class
ICJZ;(;%)@[’ B,b) if and only if

w 1 ZCAZ,LU z
L%, B,b) = veaitsy (o K ,ﬁéw(w?
kA“’ﬁv/(z)_kAtx,ﬁv/(_z)
1+92Az
< m}

(27)

We request the next result, which can be located in [6].

Lemma 9. Define the class of analytic functions as follows: for
0 € C and a positive integer n

Hly,n]={y: y(2) =Q+Q,2" + 0, 2" +--}.  (28)
(i) Let €eR. Then R(y(z)+Lzy'(2))>0—
R(y(z)) > 0. In addition, if £>0 and v € H[1, n,

then there are constants >0 and k>0 such that
k=x(€g,n) and

v @< (1) —ve< (1) @)

1-z 1-z

(ii) Let c€[0,1) and y € H[1,n|. Then there exists a
fixed real number € > 0 so that

R(() +24(2) 29 (2)) > — R(y() >¢ (30)
(iii) Let w € H[y, n] with R(y) > 0. Then

%(w(z) +zy' (2) +z21p"(z)> >0  (31)
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or for X : U— R such that

R (w(z) +R(2) Zi(i?) >0, (32)
Then R(y(z)) > 0.
3. Results

Our results are as follows.

Theorem 10. Let v € A. If one of the next inequalities is
considered,

[+

(i) EAVZ‘El//(z) is of bounded turning function
(ii) (,fAz’f;y/(z))’ <(1+z/l1-2)" k>0, z€U

(iii) R((FALpy(2) ) (FALgy(2)/2)) > c/2, c€ [0, 1),

Q.

zeU

(iv) R((Z ALy (2))" = (CALY(2)) +2(EAL 5w (2)12))
>0

(v) R((E(CALgw(2) 1EAY W (2) + 2C ALy (2)12)
> 1

then ,?Amy/(z)/z € P(A) for some A €|0,1).

Proof. Define a function p as follows:

CAY (2
p:%, z€U. (33)

Then a computation implies that
zp' = (Al ’ 34
P (2) +p(2) = (kAep¥(2) ) - (34)

In virtue of the first inequality, we have that EAZZI//(Z)

is of bounded turning function, which leads to R (zp' (z) +
p(z)) > 0. Therefore, Lemma 9(i) indicates that R(p(z)) >0
which gives the first part of the theorem. Consequently, the
second part is confirmed. In virtue of Lemma 9(i), we have
a fixed real number £ > 0 such that x = x(¢) and

CAV’“) 2
upt®) (“Z) . (35)

z 1-z

This implies that

C AV®
m(@)m, Aeo,1). (36)
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Suppose that
R(p*(2) +2p(2) -2 (2) )
C AP . ;A
—9R <k a,/://(z) ((Eﬂﬁjﬁw(@) k é;;l’( ))) -
(37)

According to Lemma 9(ii), there exists a fixed real num-
ber € > 0 satisfying R(p(z)) > € and

Fo v (2)

p(z) = - €P(A), Aelo,1). (38)

It follows from (37) that W(fAZZZw(z))') >0; conse-
quently, by Noshiro-Warschawski and Kaplan theorems,
ears «pV¥/(2) is univalent and of bounded turning function in
U. Taking the derivative (33), then we get

R(p() +2p'(2) +2%"(2))
-R(=(Cal@)" - (Falv@)

C AP
, <k a,iw(z)» o

Hence, Lemma 9(ii) implies R({A”; /31//( z)/z) > 0.
The logarithmic differentiation of (33) yields

R (p(z) + %i)z) + zzp"(z)>

= 2R( (CAV W(Z)), +2 it

CAou ()
(40)
Hence, Lemma 9(iii) implies, where X(z) =1,
CAY (z
R <M> >0. (41)
z
O

The next results show the upper bound of the operator
ears ﬁty( z) utilizing the exponential integral in the open unit

disk provided that the function vy € CSaTB“’( o).

Theorem 11. Suppose that y € ISS::;U (0), where o(z) is con-
vex in U. Then

R e

where V(z) is analytic in U, with ¥(0)=0 and |¥(z)| < 1.
Also, for |z| =&, ,fAKZt//(z) satisfies the inequality

o ]/ 71 =1)

CAV/;‘//( ) cexp (J;o(l}l(?)_l)dg'

(43)

Proof. By the hypothesis, we receive the following conclu-

sion:
2(faly()’
—_ z), z . 44

( CAYﬁIV(Z) ) <U( ) €u ( )

This gives the occurrence of a Schwarz function with

¥(0) =0 and |¥(z)| <1 such that
C A
(%) =0(¥(z)), zeU. (45)
That is,
(cmﬁu/( )) 1 _o(¥(2) -1 (46)
CAV/;‘//( ) z z -

Integrating the above equality, we get

log (CAY sV(2 )) —log (z) = r (W) dw. (47)

0 w

Consequently, we get

0 w

By the definition of subordination, we arrive at the
following inequality

ea wp¥(2) <z exp (Jz de). (49)

0 w

Note that the function o(z) plots the disk 0< |z| <
£ <1 onto a reign, which is convex and symmetric with
respect to the real axis. That is,

o(=8lz]) <R(0(¥(82))) <0 (&lz]),  §€(0.1),  (50)
then we have the inequalities
0(=8) <o (=5[z)), o(8J2]) <0 (&) s (51)



consequently, we get

Lo(¥(-gz]) - 1
L .

o J;awf(s)) -1

; dg) SJLW‘E'

§

In view of Equation (48), we obtain the general log-
inequality

Jl T () 1 g 1o [A¥ )
0 d ‘ (53)
S J (¥ (D)) -1 4.
o &£
that is,
o ([[OEFEEED) -1
P (J ; E) “
Ay (@) Lo (¥ (§]) - 1
ﬁ4<ex _— .
- B p(L X dE)
Hence, we have
IIRGIRY
p(J ; 5) -
wp¥(2) To(¥(£)) -1
i P(J ; dg)
O

Proceeding, we illustrate the sufficient condition of y to
be in the class ,(\;S;i;wl//(o), where 0 is convex univalent satis-

fying 0(0) = 1.

Theorem 12. If y € A satisfies the inequality

z(CAZ:2)1//(z))' (2+ Z(CAZZZW(Z»N)

Caug () (CAZZ(/;"’(Z)) , (56)
)y
FAL wp¥(2) ’

then v € (S, yw( ).

Proof. The proof directly comes from [6] (Theorem 3.1a).
Taking

o Lame)

= S 57
P e 7)
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and P(z) =1 in the inequality
P(2)+PE) - (2'(2)) <0(2) (58)
then we obtain
p()+P@E)- (2'(2))

_#(Cave)" (2+ 2(a(a)"

S A ()

(50
K a,ﬁll/(z)

This implies that

(gAy lgll’(z))

0€G, 60
CALY(2) ) 0

p(z)= <o(2),

CS Pw

that is v € | aﬁ( ). 0

Corollary 13. Let the assumption of Theorem 12 hold. Then

2(“ave)" (1 = (CAv@)"

FALpv (@) (“aliv(@)’ o
— M < O”(Z)
aﬁW(z) .
Proof. Let
ALY (2)
p(z) = M (62)
k a,ﬁW(z)

In view of Theorem 12, we have

2(“agy(@)’

KAy (2)

<0o(z), (63)
where o € C. Then by [9] (Theorem 3), we get p' (z) < o' (z)

for some z € U, where
yw "
z (CA%[;I//(Z))

, (Z(
pz= " ;
(CAZ:ﬁV’(Z)) 68

“av@)\ [
v (2)
_((Cdve)’
CALY(2) '
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It is well known that the function o(z) =e%, 1< |€|<m then y € CS y“’( 2).
/2 is not convex in U, where the domain ¢(U) is lima-bean
(see [6] (P123)). One can obtain the same result of Theorem
12 as follows. Proof. Let
Theorem 14. If y € A satisfies the inequalit W
If y i quality . Z<CA;ﬁw(z))’ o
p(z)= W (66)
C " k :x,ﬁw
z( Aa,;;EV(Z)) . .
I+ ————7~ <%, I<|e< =, (65)
CA y(2) 2 o
. Then a computation implies
!
zp (2)
p(z
e
(Cav@)"\  (=(Canpv@) Eariv@) (1+2(“Al) "1 (Caigv@) ' - (2(Aipv@)) KAl E))
+
C AV@ AW
KAy (@) 2(Cargvia)) EaLgv ()
(“Av@)"\
=11+ 7 ; <e
Aa,ﬁV’(Z)
(67)
This implies that [6] (P123) (@) 1) ( 21?+1AY";1//( ) )
] z)—1)= X7 >
P (2) — K ALsv(-2) o
C AP !
(z) = m <e“ (68) 2k+1Ay/31//( z)
P CA"w(z ’ b(J(=2)-1) = | 5w C AV®
KA gy (2) FAup¥(=2) =k Ay gy (2 ))
that is, € ¢ S:zw( ). 0 This confirms that

Theorem 15. Ifl[/Ei]Z:Z(%[, B,b) then the function

1
B(z) = 5lw(z) —v(-2), zeu, (69)
satisfies
1 k+1AZﬁB( ) 1+9Az
+ = 1| < —,
b\ CAYB(2) 1+Bz
op
(70)
2
1 g |z| =0 < 1.

R z[EB(z)' ’

B(z) 1+

Proof. Let vy, ]yw@[ B,b). Then there occurs a function
J(z) such that

k+1AZﬁB( ) _J(2)+](~2)
(e )

However, ] satisfies

1+ Az
_—, 73
J(z) < 1+Bz (73)
which is univalent, then we get
A B(z 1+9
+7 <7"21 ot ®) 1) < %2. (74)
AL B[B;( ) 1+Bz
Also, B(z) is starlike in U which implies that
B(z)! 1-2
h(z) = —. 75
(2) B(z) 112 (75)
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5
Im (f)
12
1] f Im f -5 f=1 10
—_ 0.8
z f Ref 0.6 (samplingf (1))
0.4
0.2.

R
05 04 06 08 10 15 ke

Figure 1: Plot of the solution for zf (z/f(z)) and f(z) + zf (z/f(z)), respectively.

Hence, a Schwarz function keu, |k(z)|<|z|<1, Example 16.
k(0) =0 gets
(i) Let
1-k(z)?
h(z) ( )2, (76)
1+k(z) . ¢ A1 )
zf (z2) Z( a,ﬁW(Z))
which leads to @) f AZZZV’ @ , )
1-h({) C AV® _
K2() = , G =<1 A v (z) = , eA.
O= 1o Ceubl=rs (77) falve = o v
A calculation yields
1-h() ) ) Then the solution of zf'(z)/f(z) = ((1+2)/(1-2)) is
Th(()’ = k()" <[¢]" (78)  formulated, as follows:
Therefore, we get the following inequality: or @
g g inequality (CAZW(Z)) G yeA. (83)
2
1+(¢* 4t
‘h<°‘1_|c|4 <o oy
i (1 -4 ) Moreover, the solution of the equation
1+(¢* 200 /
() - 7| < - (80) zf (z) _(1+z
‘ LR (=) @+ sy = 1= (84)
Thus, we have
, is approximated to f(z) = z/(1 - z).
1-0
R(A(z)) 2 1+ Cl=0<1. (81) (i) The solution of zf'(2)/f(z) = (1 +2)/(1-2))*% is
given in terms of the hypergeometric function, as
This completes the assertion of the theorem. O follows (see Figure 1):
f(z)=cexp <1.8(z+ 1) (%) '
F,(1.2550.25,1;2.2550.52 +0.5,2 + 1)
"2(225F|(1.25;0.25,1;2.25;0.52 + 0.5,z + 1) + (z + 1)F|(2.25;0.25,233.25; 0.52 + 0.5,2 + 1) + (0.1252 + 0.125) F, (2.25; 1.25,13 3.25; 0.5z + 0.5z + 1)) |

(85)
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4. Conclusion

The Prabhakar fractional differential operator in the com-
plex plane is formulated for a class of normalized function
in the open unit disk. We formulated the modified operator
in two classes of analytic functions to investigate its geomet-
ric behavior. Differential inequalities are formulated to
include them. Examples showed the behavior of solutions
and the formula. The suggested operators can be utilized to
formulate some classes of analytic functions or to generalize
other types of differential operators such a conformable,
quantum, or fractal operators.
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