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Newly, the field of fractional differential operators has engaged with many other fields in science, technology, and engineering
studies. The class of fractional differential and integral operators is considered for a real variable. In this work, we have
investigated the most applicable fractional differential operator called the Prabhakar fractional differential operator into a
complex domain. We express the operator in observation of a class of normalized analytic functions. We deal with its
geometric performance in the open unit disk.

1. Introduction

The class of complex fractional operators (differential and
integral) is investigated geometrically by Srivastava et al.
[1] and generalized into two-dimensional fractional
parameters by Ibrahim for a class of analytic functions
in the open unit disk [2]. These operators are consumed
to express different classes of analytic functions, fractional
analytic functions [3] and differential equations of a com-
plex variable, which are called fractional algebraic differen-
tial equations studding the Ulam stability [4, 5].

We carry on our investigation in the field of complex
fractional differential operators. In this investigation, we for-
mulate an arrangement of the fractional differential operator
in the open unit disk refining the well-known Prabhakar
fractional differential operator. We apply the recommended
operator to describe new generalized classes of fractional
analytic functions including the Briot-Bouquet types. Conse-
quently, we study the classes in terms of the geometric func-
tion theory.

2. Methods

Our methods are divided into two subsections, as follows.

2.1. Geometric Methods. In this place, we clarify selected
notions in the geometric function theory, which are situated
in [6–8].

Definition 1. Let ∪≔fz ∈ℂ : jzj < 1g be the open unit disk.
Two analytic functions g1, g2 in ∪ are called subordinated
denoting by g1 ≺ g2 org1ðzÞ ≺ g2ðzÞ, z ∈U, if there exits an
analytic function ω, jwj ≤ jzj < 1 having the formula

g1 zð Þ = g2 w zð Þð Þ, z ∈ ∪: ð1Þ

g1 is majorized by g2 denoting by g1 ≪ g2 if and only if

g1 zð Þ =w zð Þg2 zð Þ, z ∈ ∪; ð2Þ

equivalently, the coefficient inequality is held janj ≤ jbnj,
respectively.

There is a deep construction between subordination and
majorization [9] in ∪ for selected distinct classes comprising
the convex class ðCÞ:
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1 +R
zg″ zð Þ
g′ zð Þ

 !
> 0, z ∈ ∪, ð3Þ

and starlike functions ðS∗Þ

R
zg′
g zð Þ

 !
> 0, z ∈ ∪: ð4Þ

Definition 2. We present a class of analytic functions by

f zð Þ = z + 〠
∞

n=2
anz

n, z ∈ ∪: ð5Þ

This class is denoted by Λ and known as the class of uni-
valent functions which is normalized by f ð0Þ = f ′ð0Þ − 1 = 0.

Associated with the terms S∗ and C , we present the
term P of all analytic functions p in ∪ with a positive real
part in ∪ and pð0Þ = 1.

Two analytic functions f , g are called convoluted, denot-
ing by f ∗ g if and only if

f ∗ gð Þ zð Þ = 〠
∞

n=0
anz

n

 !
∗ 〠

∞

n=0
gnz

n

 !
= 〠

∞

n−0
angnz

n: ð6Þ

Definition 3. The generalized Mittag-Leffler function is
defined by [10–12]

Ξ℘
v,μ zð Þ = 〠

∞

n=0

℘ð Þn
Γ vn + μð Þ

zn

n!
, ð7Þ

where ðϑÞn represents the Pochhammer symbol and

Ξ1
v,μ zð Þ∶ = Ξv,μ zð Þ = 〠

∞

n=0

zn

Γ vn + μð Þ
� ℘ð Þ0 = 1, ℘ð Þn = ℘ ℘+1ð Þ⋯ ℘+n − 1ð Þ� �

:

ð8Þ

Note that Ξ℘
v,uðzÞ is an ultimate traditional generalization

of the function ez , where Ξ1
1,1ðzÞ = ez .

Moreover, it can be formulated by the Fox-Write hyper-
geometric function, as follows:

Ξ℘
v,μ zð Þ = 1

Γ ℘ð Þ
� �

1Ψ1
℘,1ð Þ
v, μ

; z
" #

: ð9Þ

2.2. Complex Prabhakar Operator (CPO). The Prabhakar
integral operator is defined for analytic function

ψ zð Þ ∈H 0, 1½ � = ψ zð Þ = ψ1z + ψ2z
2+⋯,z∈∪

� � ð10Þ

by the formula [13, 14]

Pγ,ω
α,βψ zð Þ =

ðz
0
z − ζð Þβ−1Ξγ

α,β ω z − ζð Þα� 	
ψ ζð Þdζ

= ψ · ϱγ,ωα,β

 �

zð Þ α, β, γ, ω ∈ℂ, z∈∪ð Þ:
ð11Þ

Moreover [13, 14],

ϱ
γ,ω
α,β zð Þ≔ zβ−1Ξγ

α,β ωzαð Þ,

Ξ
γ
α,β χð Þ = 〠

∞

n=0

Γ γ + nð Þ
Γ γð ÞΓ αn + βð Þ

χn

n!
:

ð12Þ

For example, let ψðzÞ = zς−1, then (see [15], Corollary
2.3)

Pγ,ω
α,βz

ς−1 =
ðz
0
z − ζð Þβ−1Ξγ

α,β ω z − ζð Þα� 	
ζς−1

 �

dζ

= Γ ςð Þzβ+ς−1Ξγ
α,β+ς ωzαð Þ:

ð13Þ

The Prabhakar derivative can be computed by the for-
mula [13]

kD
γ,ω
α,β f χð Þ = dk

dχk
P−γ,ω
α,k−β f χð Þ


 �
: ð14Þ

Definition 4. Let ψ ∈Λ. Then the complex Prabhakar differ-
ential operator (CPFDO) of (13) is formulated in terms of
the Riemann-Liouville derivative, as follows:

R
k D

γ,ω
α,βψ zð Þ = dk

dzk

ðz
0
z − ζð Þk−β−1Ξ−γ

α,k−β ω z − ζð Þα� 	
ψ ζð Þdζ

= dk

dzk
P−γ,ω
α,k−βψ zð Þ


 �
,

ð15Þ

and in terms of the Caputo derivative, as follows:

C
k D

γ,ω
α,βψ zð Þ =

ðz
0
z − ζð Þk−β−1Ξ−γ

α,k−β ω z − ζð Þα� 	 dk

dζk
ψ ζð Þ

 !
dζ

= P−γ,ω
α,k−β

dk

dzk
ψ zð Þ

 !
:

ð16Þ

Note that

C
k D

γ,ω
α,βψ zð Þ = R

k D
γ,ω
α,βψ zð Þ − 〠

k−1

m=0
zm−βΞ

−γ
α,m−β ωzα½ �ψ mð Þ 0ð Þ:

ð17Þ
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For example, let ψðzÞ = zε, ε ≥ 1, then in virtue of [15]
(Corollary 2.3), we conclude that

C

1 D
γ,ω
α,β zεð Þ =

ðz
0
z − ζð Þ1−β−1Ξ−γ

α,1−β ω z − ζð Þα� 	 d
dζ

ψ ζð Þ
� �

dζ∶

=
ðZ
0
z − ζð Þμ−1Ξ−γ

α,μ ω z − ζð Þα� 	 d
dζ

ζε
� �� �

dζ

= ε
ðz
0
ζε−1 z − ζð Þμ−1Ξ−γ

α,μ ω z − ζð Þα� 	
dζ

= Γ ε + 1ð Þzμ+ε−1Ξ−γ
α,μ+ε ω zα½ �, μ∶ = 1 − β:

ð18Þ

In general, we have

C
k D

γ,ω
α,β zεð Þ =

ðz
0
z − ζð Þk−β−1Ξ−γ

α,k−β ω z − ζð Þα� 	 dk

dζk
ζε
� � !

dζ

=
ðz
0
z − ζð Þk−β−1Ξ−γ

α,k−β ω z − ζð Þα� 	 d
dζ

ζε
� �� �

dζ

= 1 − k + εð Þk
ðz
0
ζε−k z − ζð Þk−β−1Ξ−γ

α,k−β ω z − ζð Þα� 	
dζ

= 1 − k + εð Þk
ðz
0
ζ ε−k+1ð Þ−1

� z − ζð Þk−β−1Ξ−γ
α,k−β ω z − ζð Þα� 	

dζ∶

= vð Þk
ðz
0
ζv−1 z − ζð Þμ−1Ξ−γ

α,μ ω z − ζð Þα� 	
dζ

= vð ÞkΓ vð Þzv+μ−1Ξ−γ
α,μ+v ωz

α½ �,
ð19Þ

where μ≔ k − β, ν≔ ε − k + 1, and ðvÞk = Γð1 + εÞ/Γð1 +
ε − kÞ. Hence, we obtain

C
k D

γ,ω
α,β zεð Þ = Γ 1 + εð Þzv+μ−1Ξ−γ

α,μ+v ωz
α½ �

= Γ k + vð Þzv+μ−1Ξ−γ
α,μ+v ωz

α½ �:
ð20Þ

We have the following property.

Proposition 5. Let ψ ∈Λ. Define a functional Ck Δ
γ,ω
α,β : ∪⟶

∪ by

C
k Δ

γ,ω
α,β ≔

zβ

Ξ
−γ
α,2−β wzα½ �

 !
CD

γ,ω
α,β


 �
: ð21Þ

Then C
k Δ

γ,ω
α,βψ = C

k Δ
γ,ω
α,β ∗ ψ ∈Λðα, β, γ, ω ∈ℂ, z∈∪Þ.

Proof. Let ψ ∈Λ. Then a computation implies

C
k Δ

γ,ω
α,βψ zð Þ = zβ

Ξ
−γ
α,2−β ωzα½ �

 !
C
k D

γ,ω
α,βψ zð Þ


 �

= zβ

Ξ
−γ
α,2−β ωzα½ �

 !
C

k
D

γ,ω
α,β z + 〠

∞

n=2
ψnz

n

 ! !

= zβ

Ξ
−γ
α,2−β ωzα½ �

 !
C

k
D

γ,ω
α,βz + 〠

∞

n=2
ψn

C
k D

γ,ω
α,βz

n

 !

= zβ

Ξ
−γ
α,2−β ωzα½ �

 ! 
Ξ
−γ
α,2−β ωzα½ �z1−β

+ 〠
∞

n=2
ψnΓ n + 1ð Þzn−βΞ−γ

α,n+1−β ωzα½ �
!

= z + 〠
∞

n=2
ψnΓ n + 1ð Þ

Ξ
−γ
α,n+1−β ωzα½ �
Ξ
−γ
α,2−β ωzα½ �

 !
zn∶

= z + 〠
∞

n=2
ψnδnz

n = z + 〠
∞

n=2
δnz

n

 !

∗ z + 〠
∞

n=2
ψnz

n

 !
= C

k Δ
γ,ω
α,β ∗ψ


 �
zð Þ,

ð22Þ

where δn∶ = Γðn + 1ÞΞ−γ
α,n+1−β½ωzα�/Ξ−γ

α,2−β½ωzα�. This indi-

cates that C
k Δ

γ,ω
α,βψ ∈Λ. ☐

We call Ck Δ
γ,ω
α,β the normalized complex Prabhakar opera-

tor (NCPO) in the open unit disk. Since C
k Δ

γ,ω
α,β ∈Λ, then we

can study it in view of the geometric function theory.
Our aim is to formulate it in terms of some well-known

classes of analytic functions. It is clear that δn is a complex
connection (coefficient) of the operator and it is a constant
when α = 0.

Remark 6. The integral operator corresponding to the frac-
tional differential operator C

kΔ
γ
α
ω
β is expanded by the series

C
kϒ

γ,ω
α,βψ zð Þ = z + 〠

∞

n=2
ψn

Ξ
−γ
α,2−β ωzα½ �

Γ n + 1ð ÞΞ−γ
α,n+1−β ωzα½ �

 !
zn: ð23Þ

It is clear that

C
kϒ

γ,ω
α,β ∗

C
kΔ

γ,ω
α,β


 �
ψ zð Þ = C

kΔ
γ,ω
α,β ∗

C
kϒ

γ,ω
α,β


 �
ψ zð Þ = ψ zð Þ: ð24Þ

The linear convex combination of the operators C
kϒ

γ,ω
α,β

and C
k Δ

γ,ω
α,β can be recognized by the formula

∁
k
〠
γ,ω

α,β
ψ zð Þ = ∁CkΔ

γ,ω
α,βψ zð Þ + 1−∁ð ÞCkϒ

γ,ω
α,βψ zð Þ, ð25Þ

where ∁∈½0, 1�. Clearly, ∁k∑γ,ω
α,βψðzÞ ∈Λ, where ψ ∈Λ.
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2.3. Subclasses of NCPO. In terms of the NCPO, we formu-
late the next classes.

Definition 7. A function ψ ∈Λ is considered to be in the class
c
kS

∗γ,ω
α,β ðσÞ if and only if

c
kS

∗γ,ω
α,β σð Þ = ψ ∈Λ :

z C
kΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ ≺ σ zð Þ, σ 0ð Þ = 1

8<
:

9=
;:

ð26Þ

We shall deal with the conditions of a function ψ to be in
c
kS

∗γ,ω
α,β ðσÞ whenever σ ∈ C is convex as well as nonconvex.

Definition 8. A function ψ ∈Λ is considered to be in the class
c
k J

γ,ω
α,βðA,B, ♭Þ if and only if

c
k J

γ,ω
α,β A,B, ♭ð Þ =

(
ψ ∈Λ : 1 + 1

♭
2CkΔ

γ,ω
α,βψ zð Þ

C
kΔ

γ,ω
α,βψ zð Þ−C

kΔ
γ,ω
α,βψ −zð Þ

 !

≺
1 +Az
1 +Bz

)
:

ð27Þ

We request the next result, which can be located in [6].

Lemma 9. Define the class of analytic functions as follows: for
ϱ ∈ℂ and a positive integer n

ℍ ψ, n½ � = ψ : ψ zð Þ = ϱ + ϱnz
n + ϱn+1 z

n+1+⋯
� �

: ð28Þ

(i) Let ℓ ∈ℝ. Then RðψðzÞ + ℓzψ′ðzÞÞ > 0⟶
RðψðzÞÞ > 0. In addition, if ℓ > 0 and ψ ∈ℍ½1, n�,
then there are constants ℘>0 and κ > 0 such that
κ = κðℓ,℘,nÞ and

ψ zð Þ + ℓzψ′ zð Þ ≺ 1 + z
1 − z

� �κ

⟶ ψ zð Þ ≺ 1 + z
1 − z

� �℘
ð29Þ

(ii) Let c ∈ ½0, 1Þ and ψ ∈ℍ½1, n�. Then there exists a
fixed real number ℓ > 0 so that

R ψ2 zð Þ + 2ψ zð Þ ⋅ zψ′ zð Þ

 �

> c⟶R ψ zð Þð Þ > ℓ ð30Þ

(iii) Let ψ ∈ℍ½ψ, n� with RðψÞ > 0. Then

R ψ zð Þ + zψ′ zð Þ + z2ψ″ zð Þ

 �

> 0 ð31Þ

or for ℵ : ∪⟶ R such that

R ψ zð Þ +ℵ zð Þ zψ′ zð Þ
ψ zð Þ

 !
> 0: ð32Þ

Then RðψðzÞÞ > 0.

3. Results

Our results are as follows.

Theorem 10. Let ψ ∈Λ. If one of the next inequalities is
considered,

(i) C
kΔ

γ,ω
α,βψðzÞ is of bounded turning function

(ii) ðCkΔγ,ω
α,βψðzÞÞ′ ≺ ð1 + z/1 − zÞκ, κ > 0, z ∈ ∪

(iii) RððCkΔγ,ω
α,βψðzÞ′ÞðCkΔ

γ,ω
α,βψðzÞ/zÞÞ > c/2, c ∈ ½0, 1Þ,

z ∈ ∪

(iv) RððzCkΔγ,ω
α,βψðzÞÞ″ − ðCkΔγ,ω

α,βψðzÞÞ′ + 2ðCkΔγ,ω
α,βψðzÞ/zÞÞ

> 0

(v) RððzðCkΔγ,ω
α,βψðzÞÞ′/CkΔ

γ,ω
α,βψðzÞÞ + 2ðCkΔγ,ω

α,βψðzÞ/zÞÞ
> 1

then C
kΔ

γ,ω
α,βψðzÞ/z ∈P ðλÞ for some λ ∈ ½0, 1Þ.

Proof. Define a function ρ as follows:

ρ =
C
kΔ

γ,ω
α,βψ zð Þ
z

, z ∈ ∪: ð33Þ

Then a computation implies that

zρ′ zð Þ + ρ zð Þ = C
kΔ

γ,ω
α,βψ zð Þ


 �
′: ð34Þ

In virtue of the first inequality, we have that C
kΔ

γ,ω
α,βψðzÞ

is of bounded turning function, which leads to Rðzρ′ðzÞ +
ρðzÞÞ > 0. Therefore, Lemma 9(i) indicates that RðρðzÞÞ > 0
which gives the first part of the theorem. Consequently, the
second part is confirmed. In virtue of Lemma 9(i), we have
a fixed real number ℓ > 0 such that κ = κðℓÞ and

C
kΔ

γ,ω
α,βψ zð Þ
z

≺
1 + z
1 − z

� �ℓ

: ð35Þ

This implies that

R

C
kΔ

γ,ω
α,βψ zð Þ
z

 !
> λ, λ ∈ 0, 1½ Þ: ð36Þ
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Suppose that

R ρ2 zð Þ + 2ρ zð Þ ⋅ zρ′ zð Þ

 �

= 2R
C
kΔ

γ,ω
α,βψ zð Þ
z

C
kΔ

γ,ω
α,βψ zð Þ


 �
′−

C
kΔ

γ,ω
α,βψ zð Þ
2z

 ! !
> ς:

ð37Þ

According to Lemma 9(ii), there exists a fixed real num-
ber ℓ > 0 satisfying RðρðzÞÞ > ℓ and

ρ zð Þ =
C
kΔ

γ,ω
α,βψ zð Þ
z

∈P λð Þ, λ ∈ 0, 1½ Þ: ð38Þ

It follows from (37) that RðCkΔγ,ω
α,βψðzÞÞ′Þ > 0; conse-

quently, by Noshiro-Warschawski and Kaplan theorems,
C
kΔ

γ,ω
α,βψðzÞ is univalent and of bounded turning function in

∪. Taking the derivative (33), then we get

R ρ zð Þ + zρ′ zð Þ + z2ρ″ zð Þ

 �
=R z C

kΔ
γ,ω
α,βψ zð Þ


 �
″ − C

kΔ
γ,ω
α,βψ zð Þ


 �
′




+ 2
C
kΔ

γ,ω
α,βψ zð Þ
z

 !!
> 0:

ð39Þ

Hence, Lemma 9(ii) implies RðCkΔγ,ω
α,βψðzÞ/zÞ > 0.

The logarithmic differentiation of (33) yields

R ρ zð Þ + zρ′ zð Þ
ρ zð Þ + z2ρ″ zð Þ

 !

=R
z C

kΔ
γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

+ 2
C
kΔ

γ,ω
α,βψ zð Þ
z

 !
− 1

0
@

1
A > 0:

ð40Þ

Hence, Lemma 9(iii) implies, where ℵðzÞ = 1,

R

C
kΔ

γ,ω
α,βψ zð Þ
z

 !
> 0: ð41Þ

☐

The next results show the upper bound of the operator
C
kΔ

γ,ω
α,βψðzÞ utilizing the exponential integral in the open unit

disk provided that the function ψ ∈ C
k S

∗γ,ω
α,β ðσÞ.

Theorem 11. Suppose that ψ ∈ C
k S

∗γ,ω
α,β ðσÞ, where σðzÞ is con-

vex in ∪. Then

C
kΔ

γ,ω
α,βψ zð Þ ≺ z exp

ðz
0

σ Ψ ωð Þð Þ − 1
ω

dω
� �

, ð42Þ

where ΨðzÞ is analytic in ∪, with Ψð0Þ = 0 and jΨðzÞj < 1.
Also, for jzj = ξ, CkΔ

γ,ω
α,βψðzÞ satisfies the inequality

exp
ð1
0

σ Ψ ξð Þð Þ − 1
ξ

� �
dξ

≤
C
kΔ

γ,ω
α,βψ zð Þ
z

�����
����� ≤ exp

ð1
0

σ Ψ ξð Þð Þ − 1
ξ

� �
dξ:

ð43Þ

Proof. By the hypothesis, we receive the following conclu-
sion:

z C
kΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

0
@

1
A ≺ σ zð Þ, z ∈ ∪: ð44Þ

This gives the occurrence of a Schwarz function with
Ψð0Þ = 0 and jΨðzÞj < 1 such that

z C
kΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

0
@

1
A = σ Ψ zð Þð Þ, z ∈ ∪: ð45Þ

That is,

C
kΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

0
@

1
A −

1
z
= σ Ψ zð Þð Þ − 1

z
: ð46Þ

Integrating the above equality, we get

log C
kΔ

γ,ω
α,βψ zð Þ


 �
− log zð Þ =

ðz
0

σ Ψ ωð Þð Þ − 1
ω

� �
dω: ð47Þ

Consequently, we get

log
C
kΔ

γ,ω
α,βψ zð Þ
z

 !
=
ðz
0

σ Ψ ωð Þð Þ − 1
ω

dω: ð48Þ

By the definition of subordination, we arrive at the
following inequality

C
kΔ

γ,ω
α,βψ zð Þ ≺ z exp

ðz
0

σ Ψ ωð Þð Þ − 1
ω

dω
� �

: ð49Þ

Note that the function σðzÞ plots the disk 0 < jzj <
ξ < 1 onto a reign, which is convex and symmetric with
respect to the real axis. That is,

σ −ξ zj jð Þ ≤R σ Ψ ξzð Þð Þð Þ ≤ σ ξ zj jð Þ,  ξ ∈ 0, 1ð Þ, ð50Þ

then we have the inequalities

σ −ξð Þ ≤ σ −ξ zj jð Þ, σ ξ zj jð Þ ≤ σ ξð Þ ; ð51Þ
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consequently, we get

ð1
0

σ Ψ −ξ zj jð Þð Þ − 1
ξ

dξ

≤R

ð1
0

σ Ψ ξð Þð Þ − 1
ξ

dξ
� �

≤
ð1
0

σ Ψ ξ zj jð Þð Þ − 1
ξ

dξ:

ð52Þ

In view of Equation (48), we obtain the general log-
inequality

ð1
0

σ Ψ −ξ zj jð Þð Þ − 1
ξ

dξ ≤ log
C
kΔ

γ,ω
α,βψ zð Þ
z

�����
�����

≤
ð1
0

σ Ψ ξ zj jð Þð Þ − 1
ξ

dξ ;
ð53Þ

that is,

exp
ð1
0

σ Ψ −ξ zj jð Þð Þ − 1
ξ

dξ
� �

≤
C
kΔ

γ,ω
α,βψ zð Þ
z

�����
����� ≤ exp

ð1
0

σ Ψ ξ zj jð Þð Þ − 1
χ

dξ
� �

:

ð54Þ

Hence, we have

exp
ð1
0

σ Ψ −ξð Þð Þ − 1
ξ

dξ
� �

≤
C
kΔ

γ,ω
α,βψ zð Þ
z

�����
����� ≤ exp

ð1
0

σ Ψ ξð Þð Þ − 1
ξ

dξ
� �

:

ð55Þ

☐

Proceeding, we illustrate the sufficient condition of ψ to
be in the class C

k S
∗γ,ω
α,β ψðσÞ, where σ is convex univalent satis-

fying σð0Þ = 1.

Theorem 12. If ψ ∈Λ satisfies the inequality

z CΔ
γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

2 +
z CΔ

γ,ω
α,βψ zð Þ


 �
″

CΔ
γ,ω
α,βψ zð Þ


 �
′

0
@

1
A

−
z CΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

0
@

1
A ≺ σ zð Þ,

ð56Þ

then ψ ∈ C
k S

∗γ,ω
α,β ðσÞ.

Proof. The proof directly comes from [6] (Theorem 3.1a).
Taking

p zð Þ =
z CΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

, ð57Þ

and PðzÞ = 1 in the inequality

p zð Þ + P zð Þ ⋅ zp′ zð Þ

 �

≺ σ zð Þ, ð58Þ

then we obtain

p zð Þ + P zð Þ ⋅ zp′ zð Þ

 �

=
z CΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

× 2 +
z CΔ

γ,ω
α,βψ zð Þ


 �
″

CΔ
γ,ω
α,βψ zð Þ


 �
′

0
@

−
z CΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

0
@

1
A
1
A ≺ σ zð Þ:

ð59Þ

This implies that

p zð Þ =
z C

k Δ
γ,ω
α,βψ zð Þ


 �
′

C
k Δ

γ,ω
α,βψ zð Þ

≺ σ zð Þ, σ ∈C , ð60Þ

that is ψ ∈ C
k S

∗γ,ω
α,β ðσÞ. ☐

Corollary 13. Let the assumption of Theorem 12 hold. Then

z CΔ
γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

× 1 +
z CΔ

γ,ω
α,βψ zð Þ


 �
″

CΔ
γ,ω
α,βψ zð Þ


 �
′

0
@

−
z CΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

0
@

1
A
1
A≪ σ′ zð Þ:

ð61Þ

Proof. Let

p zð Þ =
z CΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

: ð62Þ

In view of Theorem 12, we have

z CΔ
γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

≺ σ zð Þ, ð63Þ

where σ ∈ C. Then by [9] (Theorem 3), we get p′ðzÞ≪ σ′ðzÞ
for some z ∈ ∪, where

p′z =
z CΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

0
@

1
A 1 +

z CΔ
γ,ω
α,βψ zð Þ


 �
″

CΔ
γ,ω
α,βψ zð Þ


 �
′

0
@

−
z CΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

0
@

1
A
1
A:

ð64Þ

☐
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It is well known that the function σðzÞ = e∈z , 1 < j∈j ≤ π
/2 is not convex in ∪, where the domain σð∪Þ is lima-bean
(see [6] (P123)). One can obtain the same result of Theorem
12 as follows.

Theorem 14. If ψ ∈Λ satisfies the inequality

1 +
z CΔ

γ,ω
α,βψ zð Þ


 �
″

CΔ
γ,ω
α,βψ zð Þ′

≺ e∈z , 1 < ∈j j ≤ π

2
, ð65Þ

then ψ ∈ C
k S

∗γ,ω
α,β ðe∈zÞ.

Proof. Let

p zð Þ≔
z CΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

: ð66Þ

Then a computation implies

This implies that [6] (P123)

p zð Þ =
z C

kΔ
γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

≺ e∈z ; ð68Þ

that is, ψ ∈ C
k S

∗γ,ω
α,β ðe∈zÞ. ☐

Theorem 15. If ψ∈ck J
γ,ω
α,βðA,B, ♭Þ then the function

B zð Þ = 1
2
ψ zð Þ − ψ −zð Þ½ �, z ∈ ∪, ð69Þ

satisfies

1 + 1
♭

C
kþ1Δ

γ,ω
α,βB zð Þ

C
kΔ

γ,ω
α,βB zð Þ

− 1

 !
≺
1 +Az
1 +Bz

,

R
zB zð Þ′
B zð Þ

 !
≥
1 − ð2

1 + ð2
,  zj j = ð < 1:

ð70Þ

Proof. Let ψ∈ck J
γ,ω
α,βðA,B, ♭Þ. Then there occurs a function

JðzÞ such that

♭ J zð Þ − 1ð Þ =
2Ckþ1Δ

γ,ω
α,βψ zð Þ

C
kΔ

γ,ω
α,βψ zð Þ − C

kΔ
γ,ω
α,βψ −zð Þ

 !
,

♭ J −zð Þ − 1ð Þ =
2Ckþ1Δ

γ,ω
α,βψ −zð Þ

C
kΔ

γ,ω
α,βψ −zð Þ − C

kΔ
γ,ω
α,βψ zð Þ

 !
:

ð71Þ

This confirms that

1 + 1
♭

C
kþ1Δ

γ,ω
α,βB zð Þ

C
kΔ

γ,ω
α,βB zð Þ

− 1
 !

= J zð Þ + J −zð Þ
2 : ð72Þ

However, J satisfies

J zð Þ ≺ 1 +Az
1 +Bz

, ð73Þ

which is univalent, then we get

1 + 1
♭

C
kþ1Δ

γ,ω
α,βB zð Þ

C
kΔ

γ,ω
α,βB zð Þ

− 1
 !

≺
1 +Az
1 +Bz

: ð74Þ

Also, BðzÞ is starlike in ∪ which implies that

ℏ zð Þ≔ zB zð Þ′
B zð Þ ≺

1 − z2

1 + z2
: ð75Þ

p zð Þ + zp′ zð Þ
p zð Þ

=
z CΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

0
@

1
A +

z CΔ
γ,ω
α,βψ zð Þ


 �
′/CkΔ

γ,ω
α,βψ zð Þ


 �
1 + z CΔ

γ,ω
α,βψ zð Þ


 �
″/ CΔ

γ,ω
α,βψ zð Þ


 �
′ − z CΔ

γ,ω
α,βψ zð Þ


 �
′/CkΔ

γ,ω
α,βψ zð Þ


 �
 �
z CΔ

γ,ω
α,βψ zð Þ


 �
′/CkΔ

γ,ω
α,βψ zð Þ

= 1 +
z CΔ

γ,ω
α,βψ zð Þ


 �
″

CΔ
γ,ω
α,βψ zð Þ′

0
@

1
A ≺ e∈z:

ð67Þ
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Hence, a Schwarz function k ∈ ∪, ∣ kðzÞ ∣ ≤ ∣ z∣ < 1,
kð0Þ = 0 gets

ℏ zð Þ ≺ 1 − k zð Þ2
1 + k zð Þ2 , ð76Þ

which leads to

k2 ζð Þ = 1 − ℏ ζð Þ
1 + ℏ ζð Þ , ζ ∈ ∪, ζ, ζj j = r < 1: ð77Þ

A calculation yields

1 − ℏ ζð Þ
1 + ℏ ζð Þ
����

���� = k ζð Þj j2 ≤ ζj j2: ð78Þ

Therefore, we get the following inequality: or

ℏ ζð Þ − 1 + ζj j4
1 − ζj j4

�����
�����
2

≤
4 ζj j4

1 − ζj j4

 �2 ð79Þ

ℏ ζð Þ − 1 + ζj j4
1 − ζj j4

�����
����� ≤ 2 ζj j2

1 − ζj j4

 � : ð80Þ

Thus, we have

R ℏ zð Þð Þ ≥ 1 − ð2

1 + ð2
,  ζj j = ð < 1: ð81Þ

This completes the assertion of the theorem. ☐

Example 16.

(i) Let

zf ′ zð Þ
f zð Þ ≔

z CΔ
γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

,

C
kΔ

γ,ω
α,βψ zð Þ = z

1 − zð Þ2 , ψ ∈Λ:

ð82Þ

Then the solution of zf ′ðzÞ/f ðzÞ = ðð1 + zÞ/ð1 − zÞÞ is
formulated, as follows:

CΔ
γ,ω
α,βψ zð Þ


 �
= z

1 − zð Þ2 , ψ ∈Λ: ð83Þ

Moreover, the solution of the equation

f zð Þ + zf ′ zð Þ
f zð Þ = 1 + z

1 − z

� �
ð84Þ

is approximated to f ðzÞ = z/ð1 − zÞ.

(ii) The solution of zf ′ðzÞ/f ðzÞ = ðð1 + zÞ/ð1 − zÞÞ0:25 is
given in terms of the hypergeometric function, as
follows (see Figure 1):

Im (f)

Im (f)

f (1)= 1

f (1)= 1

Re f

Re f

Re (f)

Re (f)

Im f

Im f

f

f

f

f

f'

f '

z

z

10

10

10

15

5

−10−20 −15 −5
−5

5

(sampling f (1))

(sampling f (1))

1.2

1.2

1.0

1.00.2

0.2
0.4

0.4

0.6

0.6

0.8

0.8

Figure 1: Plot of the solution for zf ðz/f ðzÞÞ and f ðzÞ + zf ðz/f ðzÞÞ, respectively.

f zð Þ = c exp
 
1:8 z + 1ð Þ z + 1

1 − z

� �0:25

� F1 1:25 ; 0:25,1 ; 2:25 ; 0:5z + 0:5, z + 1ð Þ
z 2:25 F1 1:25 ; 0:25,1 ; 2:25 ; 0:5z + 0:5, z + 1ð Þ + z + 1ð ÞF1 2:25 ; 0:25,2 ; 3:25 ; 0:5z + 0:5, z + 1ð Þ + 0:125z + 0:125ð ÞF1 2:25 ; 1:25,1 ; 3:25 ; 0:5z + 0:5z + 1ð Þð Þ

!
:

ð85Þ
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4. Conclusion

The Prabhakar fractional differential operator in the com-
plex plane is formulated for a class of normalized function
in the open unit disk. We formulated the modified operator
in two classes of analytic functions to investigate its geomet-
ric behavior. Differential inequalities are formulated to
include them. Examples showed the behavior of solutions
and the formula. The suggested operators can be utilized to
formulate some classes of analytic functions or to generalize
other types of differential operators such a conformable,
quantum, or fractal operators.
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