Hindawi

Journal of Function Spaces

Volume 2021, Article ID 6344079, 11 pages
https://doi.org/10.1155/2021/6344079

Research Article

Hindawi

Study of a Fractal-Fractional Smoking Models with Relapse and
Harmonic Mean Type Incidence Rate

Zareen A. Khan(,' Mati ur Rahman,”> and Kamal Shah ©»>*

"Department of Mathematics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
Department of Mathematics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China

*Department of Mathematics, University of Malakand, Chakdara Dir(L), 18000 Khyber Pakhtunkhwa, Pakistan
*Department of Mathematics and General Sciences, Prince Sultan University, Riyadh, Saudi Arabia

Correspondence should be addressed to Zareen A. Khan; zakhan@pnu.edu.sa

Received 24 June 2021; Accepted 24 September 2021; Published 11 October 2021

Academic Editor: Richard I. Avery

Copyright © 2021 Zareen A. Khan et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

This manuscript investigates fractal-fractional order smoking models with relapse and harmonic mean type incidence rate under
the Caputo derivative. We derive the existence and unique results about the solution for the considered model via fixed point
theory. For the stability of the considered system, Ulam-Hyers (UH) approach is used. We compute the numerical solution by
using fractional Adams-Bashforth method. For the simulation of the model, we consider different values of fractional order &
and fractal dimension 6 by using some real values of the parameters. The proposed scheme is used to simulate the available
data for some smoking community including potential, light, and quit smokers. Various graphical presentations are given to
understand the dynamics of the model at various fractional orders.

1. Introduction

The first biological model that describes the dynamics of
infectious disease was presented in 1927. Later on, scientists
and researchers started to investigate different properties of
the models such as the spreading behavior and trends of
the diseases by studying the various aspects [1-4]. They have
formulated several models for different diseases like pine
wilt, HIV, viral disease including leishmania, TB, and
COVID-19 [5-12].

Smoking is also similar to infectious diseases by spreading
its behavior in the population. The ratio of diseases due to
smoking is increasing day by day. Castillo-Garsow et al. [13]
formulated for the first time a simple giving up smoking
model with known spreading behavior of smoking in the
community. The same authors modified and extended the
work by adding another class of light smoking. The authors
[14] focused on the control strategy of smoking epidemic by
choosing optimal campaigns. Furthermore, some of the
smokers may relapse because they may have frequent contacts

with smokers, whereas some of them may cease smoking per-
manently. Rahman et al. [15] have been worked on a smoking
model and included the relapse terms for the quit smokers.
The abovementioned models have been investigated
under ordinary derivatives. During the last twenty years,
fractional calculus (FC) has gained more interest from the
researcher and been used in different fields of sciences.
Mathematical models along with fractional differential equa-
tions (FDEs) have been proved for several smoking models.
Compared with integer-order model, fractional-order
models have better fitting degree with different experimental
results in signal processing, mathematical biology and engi-
neering [16, 17-19]. In this regard, Mahdy et al. [20] found
the approximate solution for a smoking model by utilizing
the Sumudu transform with Caputo derivative. Sing et al.
[21] has been introduced a giving up smoking dynamic frac-
tional model with nonsingular kernel. Khan et al. [22] have
been studied a biological model of smoking type with some
iterative method. Mohamed et al. [23] used reduced differ-
ential transform method to solve the nonlinear smoking
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fractional-order model. Alrabaiah et al. [24] have been
applied Adams-Bashforth-Moulton method to investigate
the tobacco smoking fractional model order containing
snuffing class. Therefore, for the past periods, to develop
the real phenomena for a better degree of precision and
accuracy, FDEs have been utilized very well. Many
researchers have utilized several methods for studying the
theoretical investigation of fractional-order mathematical
models, (for instance see [25-29]). For further detail, see
[30-35]. Adomian in 1980 introduced a useful decomposi-
tion method for the solution of nonlinear systems analyti-
cally. Later on, the abovementioned method has been
slowly enforced as an actual tool for consideration semiana-
Iytical or estimated results to several systems of applied sci-
ences. Mathematical models have been examined widely
using the Homotopy method, decomposition method along
with integral transforms, and difference methods, for details,
see [30, 31]. Recently, many methods have been utilized to
handle problems of fractional order (see details in [36-38]).

Keeping in mind that derivative of noninteger can be
defined in several ways. The first definition of fractional
derivative was given by Riemann-Liouville. Later on in
1967, Caputo gave his own definition which has been
increasingly used. The mentioned both definitions include
singular kernels which often cause problem in numerical
investigations. To overcome these difficulties, recently,
Caputo and Fabrizio [39] have introduced a new definition.
The said definition contains exponential function instead of
singular kernel. In subsequent years, the said definition has
been further generalized by Atangana and Baleanu [40] by
replacing exponential function on Mittag-Leftler one. This
fact has been proved that the concerned derivative also has
interesting features (see [41-46]).

Recently, the area involves fractal-fractional derivative
has got much attention (see [47, 49-51]). Motivated from
the above work and from, we consider the model presented
in [48] to fractal-fractional (FF) order in sense of Caputo
operator which has various advantages. This model consists
of four compartments, namely, people vulnerable to smok-
ing P(t), light smokers L(t), smoker class S(¢), and quit
smokers Q(t). This work also includes theoretical, practical
analytical, and numerical results of smoking models with
relapse and harmonic mean type incidence rate. Our consid-
ered model under Caputo operator for fractional-order &
and fractal dimension 0 is as follows:

FFpd0p _ H 2/3;() )t)+LI(Jt()t) — (b+a)P(t) + 7Q(1),
FFDOIL _ o pft()t)LY()t) —(b+a+Q)L(b),
(b+a+¢)S(1),

FFDSGS (L(t)
(t) -

FFDPPQ=¢S(t) - (b+a+T1)Q(t),

with initial conditions
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P(0) = Py, L(0) = Ly, S(0) = S, Q(0) = Qs (2)
where f3 is the transmission rate that the potential smoker
contact with the chain smoker, 7 is the relapse rate, IT is
the recruitment rate, « is the natural death rate, and b is
the death rate induced by smoking. Also, { is the conversion
rate from light to chain smoker class. In same line, ¢ is the
chain smokers rate when they quit smoking. We also discuss
some stability results devoted to UH type. The mentioned
stability has been recently investigated for various problems
of FDEs (see [55-57]).

The rest of the paper we organized is as follows: Section
2 is related to basic definitions and theorems. By using fixed
point theorems, we show some suitable results for the
uniqueness and existence in Section 3. With the help of
famous AB technique, we find the numerical solution of
the considered system in Section 4. Using the AB technique,
we also perform the numerical simulation by using Matlab
for getting the graphical representation for our analytic
and briefly discuss the obtained results. Finally, we conclude
our work in Section 5.

2. Basic Results

Definition 1 (see [47]). Let % (t) on a < t < b be a continuous
and differentiable function with order 6, then the FF order
derivative can be defined as

| e @)

Y (2 (1)) =

along-with p—1< &, O <p, where pe N and d%(x)/dx’ =
lim, % (t) - % (x)/t® - x°.

Definition 2 (see [47]). Let % (t) be continuous on a<t<b
then the FF order integral of % (¢) with order ¢ is defined as

R (1) = %J;(t—x)alxe"l?l(x)dx.. (4)

Definition 3. The system (1) is UH stable if 3 any real num-
ber C54 >0 such that for every € >0 and all the solutions
W € C'([0, T],R), where 0<t< T < oo, the inequality can
be defined as

Dy )~ W, W ()| <etefo, T,  (5)

% € C'([0, T], R) is the unique solution for the consid-
ered model (1) such that

7 (t) = ¥ ()] < Copr 1 [0, T. (6)

Note: let us define a Banach space For the qualitative

analysis U = X x X x X x X, where X = C([0, T]) with norm:
19711 = 1P, L. S, Qlf = max {|P(6)] + [L()] + [S(£)] + [Q()]}-



Journal of Function Spaces

3. Theoretical Results of Model (1)

Here in this section, we will investigate the model (1) for
existence. Since the given integral is differentiable, so we
can express the RHS of the model (1) as

A7D°P(1) = 00016y (P, 1,5, Q1) = [ 26 POLW) | a)p(e) +7Q(0),

P(t) + L(1)
‘%yDaL(t)=6t9’1G2(P,L,S,Q,t):2/3P<t>)+(() - (b+a+)L(1),

CL(t) = (b+a+¢)S(t),
2IDOQ(t) = 01971 G, (P, L, S, Q 1) = pS(t) — (b + a + T)Q(2).

ALDOS(t) = 091Gy (P, L, S, Q. t) =

(7)

In view of (7) and for ¢t € [0, T], the proposed model may
be written in the following form

AL (1) = 00 W (1, W (1)),0< 5,0<1,  (8)

V(0 =, (9)

by changing %< D> with °D*? and using the integral of

Riemann-Liouville, the solution of (8) will be

W(t)=W 4+ %J;xe_l(t—x)‘s_l‘l’(x,‘%(x))dx, (10)
where

P(t) P, G,(P,L,S, Q. 1),

wiy=1 " =l e GO

()= sty o(t) = s, ’ (L7 (1) = /P LS Q1)

Q(t), Q Gy(P, L, S, Q1)

(11)

Now, if we transform (1) to fixed point problem and let
the operator 7 : V—— V can be defined by

+ QJ;xG Yt =)' (x, 7 (x))dx.
(12)

To find the existence results of the considered model, we
use the following theorem [54].

Theorem 4. If the operator T
continuous and the set

:V—V be completely

I(T)V=AW eV W =vT (W),ve[0,1]},  (13)

is bounded, then, the operator I
point in V.

has at least one fixed

Theorem 5. Suppose the operator Y :DxV—Risa con-
tinuous operator. Then, I is compact.

Proof. First, we will show that 7 : V— V which is defined
in (12) is continuous. Consider & is a bounded set in V,
then 3Cy > 0 with | (t, #(t))| < Cy, for all W' € B. Any
W € B, we have

|7 (@) < J (7= )P e

F( ) or]
9 t
“T0) t?ﬁf‘ﬁh(l
0+0-1
_ 05,1
r(s)

_2)9—126—1t6+9—1dz (14)

B(5,0).

Hence, (14) implies that  is uniformly bounded, where
Beta function can be written as B(8, 0). Further, for equi-
continuity of the operator 7, for any t,,t, € D and % € B,
we obtain

|T (1) +) - T (F (1)) < % J( I

J t_x6101dx|
06,B

(é‘; 0) ( £0+6-1 tg+€—l)

— 0ast, — 1,.

(15)

Hence, J is equi-continuous and then the operator
J is bounded and continuous as well, therefore, by
Arzeld-Ascoli theorem, the operator J is relatively com-
pact and so completely continuous. Furthermore, we use
the following hypothesis:

(C) There exist constants Ly, > 0 such that, for each 7,
W € f, we have

V(&)=Y (W )| <Ly |W|-W|. (16)

For existence uniqueness, we use fixed point approach as
given in [54]. O

Theorem 6. Applying the hypothesis (C) and if ® < 1, then,
the model (1) has a unique solution if

~ GLY/T6+9_1
=T B <L (17)

Proof. Assume max |¥(t,0)| =

H ¢ < 00, such that
t€[0,T]

OTo*"1B(8, 0)H
r'(8)-0T**1B(8,0)L,

(18)



We prove that 7 (Br) c Br, where B,={W e f : |W||
<r} and # € B,, we have

9 t
17 ()] < mtg[}fgjoxe'l(t =)W W (1) - ¥ (1,0)] + [¥(8,0)]dx

_ OT'B(8,0) (Ly | 7| + F )
< o) ,
(
)

ST

(19)

Suppose the operator 7 : V—V is defined in (12).
Using the assumption C and for every t€ D, W, W € 2,
we obtain

(20)

By this, I is contraction by using (20). Therefore,
equation (10) has one solution and so our model (1) has
unique solution.

Now, we have to develop UH stability for the considered
system (1), taking v € C(D) depending on the solution with
¥(0) =0. Then

(i) y(t)| <e fore>0
Gi) FFDXw (1) =W (1, W (1)) + (1)

O
Lemma 7. The solution of perturbed equation
DY (1) = W (£, 7 (1)) + y(0), e
W(O0)=W
satisfies the given relation
’W(t) - (%/ (t) + Gthe’l(t —5)° Iy (x W(x))) ’
TIE) ),
01°*"'B(5,0
< (ﬁ) €= Ca,es.

(22)

Theorem 8. With the assumption (C) and (22), the solution
of the integral equation (1) is UH stable. Hence, the analytical
results of the considered system are UH stable if © < 1, where
O is given in (17).
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TABLE 1: Parametric values for our model (1).

Parameter Value Source
I1 10.25 Assumed
B 0.038 [52]

b 0.0019 [52, 53]
o 0.0111 [52]

¢ 0.021 [15, 52]
(o} 0.000274 [15]

T 0.006 Assumed

Proof. Suppose that Z €V be a unique solution and % €V
be any solution of (10), then using fractalfractional integra-
tion as in an equation (2), we have

|7 (1) - Z (1) = ’W(t) - (zo(t) + %Jo(t - x0T (x, :Z(x))dx>
o [ —-1,60-1
<|w(t)- (Wo(t)+ O] O(t %) (x W(x))dx)

S B(5,0)[7 - 7.

<Cspet+ @)
<Csp+O|7 - Z|.
(23)
Which we have
|7 - Z|| <Csp+O|W - Z|. (24)
From (24), we can write as
Cso
— < d . 2
-7 < (24 )e (25)

Thus, from the (25), we conclude that the solution of
(10) is UH stable and therefore the proposed model (1) solu-
tion is UH stable. O

4. Numerical Scheme

In this part of the paper, we are constructing the numerical
algorithm for the considered model to perform numerical
simulation. Here, for numerical method, the construction
of equation (10) of the considered model goes to the
following form
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Ficure 1: Graphical representation of potential smokers (P(t)) having two different initial values of P, =100, 80 in the model under
investigation (1) at different arbitrary fractal dimension and fractional orders.

P(t)=P(0) + 1"(68) ;xe_l (t- x)‘s’lG1 (P, L, S, Q,x)dx,
L(t)=L(0) + %J ;xel(t - x)‘HGz(P, L, S, Q, x)dx,
S(t) = $(0) + 1"(66) ‘o (£ x)1Gy (P, L, S, Q x)dx,

t
Q(t)=Q(0) + iJ (- x)°7'G(P, L, S, Q x)dx.

(26)

Now, we are presenting the numerical solution to the

(26) and using the new approach t;,,. The first equation of
the above system becomes

9 tk+1
P =Py + J %01 (teor — x)°'G, (P, L, S, Q, x)dx.

() Jo
(27)

We obtained the approximate integral from the above
equation as

0

I(5)

k L1
P =Py+ J J y@"l(thrl - x)‘HG1 (P, L, S, Q, x)dx.
=0Jt;

t

(28)
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F1GURE 2: Graphical representation of light smokers (L(¢)) having two different initial values of L, = 30, 40 in the model under investigation
(1) at different arbitrary fractal dimension and fractional orders.

Within the infinite interval [t;, ¢;,,] in term of Lagrange Simplifying the right side integrals of (30), we obtain the
interpolation polynomials the function G,(P,L,S,Q,t) numerical iterative results for the P, class in (1) by using the
along with ~ = [t]. - tj—l]) such that FF derivatives in the Caputo form as:

S (= 12)87 G (P LS, Q1) Oh 7o

k=g 1) TS pEpOp Kt (29) P, =P+ F(8+2)Z(;[tf G, (P, L;, S, Q) t))
i

(=) Gy (P Ly S Qo ) |

x ((k+ 1-j)0(k—j+2+6) - (k—j)g(k—j+2+26))
putting (29) into (28), then, we can write (28) as

0-1
— G (P Lt S50 Qi )

) 0 &, . (k1= 41 (k=) (k=j+1+0)) .
Pk+1—Po+mj;L X (e —X)° Prdx. (30 (1)
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FiGURE 3: Graphical representation of smokers (S(¢)) having two different initial values of L, = 10, 20 in the model under investigation (1) at
different arbitrary fractal dimension and fractional orders.

Similarly, the remaining terms can be written as

68

L =Lo+ I@+

k
Z[t" 'G, (P,

=0

-

x ((k+l—j)e(k—j+2+0)—(k—j)e(k—j+2+29)>
Q-
x((k+1—j)9+1—(k—j)9

-G, (P

LS

1> 91>

6h6 k
See1 =So
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m; 676Gy (PL,

> L]) S]) Q: t])
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1> tj—l)

(k—j+1+6))},

$;Qpt))

x ((k+1—j)e(k—j+2+0)—(k—j)g(k—j+2+26)>

S

~ 171Gy (P 10 Qo 1)

11’11’

X <(k+1—j)9+l—(k—j)e(k—j+1+9))],

6

k
0-1
Z[t G,(PiL;S;,
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6-1
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(32)
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F1GURE 4: Graphical representation of quit smokers (Q(¢)) having two different initial values of L, = 20, 30 in the model under investigation

(1) at different arbitrary fractal dimension and fractional orders.

4.1. Graphical Representations. In this section, we provide
the numerical solution of our proposed model (1) using dif-
ferent values of parameters given in Table 1 for verification
of the obtained scheme. We have taken two different sets
of initial values of all the compartments in problem (1) for
two different fractal dimension 6 and fractional order 6.

Figures 1(a) and 1(b) show the dynamical behavior of
potential smoker population P(¢) at various fractal dimen-
sion 0 and fractional order & at two different initial values.
On different six fractal-fractional values, the class increases
and becomes stable which converges to the same point
having two initial values. The increase occurs quickly at high
order and slowly at low order and converges to the integer
order as we increase the fractional order.

Figures 2(a) and 2(b) are the representation of the
dynamical behavior of light smokers L(#) at different fractal
dimension 0 and fractional order of § at two different initial
values. On different six fractal-fractional values, the potential
smoker class becomes stable and converges to the same
point having two initial values.

Figures 3(a) and 3(b) show the dynamical behavior of
smokers S(t) at various fractal dimension 8 and fractional
order & at two different initial values. At six different frac-
tional values, the class decreases and becomes stable which
converges to the same converging point for two different
initial approximations.

Figures 4(a) and 4(b) show the dynamical behavior of
quit smoker Q(#) at various fractal dimension 6 and
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fractional order § at two different starting values. On six
different fractional values, the class declines quickly nearly
at all fractional orders but then becomes stable which
converges to the same point having two initial guesses.

5. Conclusion

In this manuscript, we have analyzed a giving up smoking
model under the concept of fractal-fractional order deriva-
tive in Caputo sense. The considered model has been inves-
tigated for some theatrical analysis including existence
theory and stability results. In this regard, sufficient results
have been established for existence and uniqueness of solu-
tion by using Banach-contraction and Schauder’s theorems
of nonlinear functional analysis. The Ulam-Hyers stability
analysis has been developed by using the usual nonlinear
analysis tools. Further, we have used fractional Adam Bash-
forth method and developed an algorithm to compute
numerical results. We have used various values of fractal
dimensions and fractional orders to present the results
graphically. From graphical presentation, one can observe
that fractal and fractional calculus have the ability to present
the dynamics of real-world problems more comprehensively.

Data Availability

Data sharing is not applicable to this article as no data sets
were generated or analyzed during the current study.

Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

All authors read and approved the final manuscript.

Acknowledgments

This research was funded by the Deanship of Scientific
Research at Princess Nourah bint Abdulrahman University
through the Fast-track Research Funding Program to sup-
port publication in the top journal (Grant no. 42-FT'TJ-70).

References

[1] S. Ruan and W. Wang, “Dynamical behavior of an epidemic
model with a nonlinear incidence rate,” Journal of Differential
Equations, vol. 188, no. 1, pp. 135-163, 2003.

[2] A. Korobeinikov, “Global properties of infectious disease
models with nonlinear incidence,” Bulletin of Mathematical
Biology, vol. 69, no. 6, pp. 1871-1886, 2007.

[3] M. De la Sen and S. Alonso-Quesada, “Vaccination strategies
based on feedback control techniques for a general SEIR-
epidemic model,” Applied Mathematics and Computation,
vol. 218, no. 7, pp. 3888-3904, 2011.

[4] M. De la Sen, R. P. Agarwal, A. Ibeas, and S. Alonso-Quesada,
“On a generalized time-varying SEIR epidemic model with
mixed point and distributed time-varying delays and com-
bined regular and impulsive vaccination controls,” Advances
in Difference Equations, vol. 2010, 42 pages, 2010.

[5] A. Korobeinikov, “Global properties of basic virus dynamics
models,” Bulletin of Mathematical Biology, vol. 66, no. 4,
pp. 879-883, 2004.

[6] M. O. Souza and J. P. Zubelli, “Global stability for a class of
virus models with cytotoxic T lymphocyte immune response
and antigenic variation,” Bulletin of Mathematical Biology,
vol. 73, no. 3, article 609625, 2011.

[7] H. F. Huo, S. J. Dang, and Y. N. Li, “Stability of a two-strain
tuberculosis model with general contact rate,” Abstract and
Applied Analysis, vol. 2010, 31 pages, 2010.

[8] C. Castillo-Chavez and B. Song, “Dynamical models of tuber-
culosis and their applications,” Mathematical Biosciences and
Engineering, vol. 1, no. 2, pp. 361-404, 2004.

[9] H. F. Huo and L. X. Feng, “Global stability for an HIV/AIDS
epidemic model with different latent stages and treatment,”
Applied Mathematical Modelling, vol. 37, no. 3, pp. 1480-
1489, 2013.

[10] R. Xu, “Global stability of an HIV-1 infection model with
saturation infection and intracellular delay,” Journal of
Mathematical Analysis and Applications, vol. 375, no. 1,
pp. 75-81, 2011.

[11] A. Yusuf, B. Acay, U. T. Mustapha, M. Inc, and D. Baleanu,
“Mathematical modeling of pine wilt disease with Caputo frac-
tional operator,” Chaos, Solitons ¢ Fractals, vol. 143, article
110569, 2021.

[12] M. Arfan, H. Alrabaiah, M. Ur Rahman et al., “Investigation of
fractal-fractional order model of COVID-19 in Pakistan under
Atangana-Baleanu Caputo (ABC) derivative,” Results in Phys-
ics, vol. 24, article 104046, 2021.

[13] C. Castillo-Garsow, G. Jordan-Salivia, and A. Rodriguez-
Herrera, Mathematical Models for the Dynamics of Tobacco
Use, Recovery and Relapse, 1997.

[14] G. Zaman, “Optimal campaign in the smoking dynamics,”
Computational and Mathematical Methods in Medicine,
vol. 2011, 9 pages, 2011.

[15] G.Rahman, R. P. Agarwal, and Q. Din, “Mathematical analysis
of giving up smoking model via harmonic mean type incidence
rate,” Applied Mathematics and Computation, vol. 354,
pp. 128-148, 2019.

[16] M. Goyal, H. M. Baskonus, and A. Prakash, “An efficient tech-
nique for a time fractional model of Lassa hemorrhagic fever
spreading in pregnant women,” European Physical Journal
Plus, vol. 134, no. 10, pp. 1-10, 2019.

[17] W. Gao, P. Veeresha, D. G. Prakasha, H. M. Baskonus,
and G. Yel, “New approach for the model describing the
deathly disease in pregnant women using Mittag-Leffler
function,” Chaos, Solitons & Fractals, vol. 134, article
109696, 2020.

[18] R. Magin, Fractional Calculus in Bioengineering, Begell House
Publishers, 2004.

[19] K. Shah, M. A. Alqudah, F. Jarad, and T. Abdeljawad, “Semi-
analytical study of Pine Wilt Disease model with convex rate
under Caputo-Febrizio fractional order derivative,” Chaos,
Solitons & Fractals, vol. 135, p. 109754, 2020.

[20] A.M.S. Mahdy, N. H. Sweilam, and M. Higazy, “Approximate
solution for solving nonlinear fractional order smoking
model,” Alexandria Engineering Journal, vol. 59, no. 2,
pp. 739-752, 2020.

[21] J. Singh, D. Kumar, M. Al Qurashi, and D. Baleanu, “A new
fractional model for giving up smoking dynamics,” Advances
in Difference Equations, vol. 2017, no. 1, p. 16, 2017.



10

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

S. A. Khan, K. Shah, G. Zaman, and F. Jarad, “Existence theory
and numerical solutions to smoking model under Caputo-
Fabrizio fractional derivative,” Chaos, vol. 29, no. 1, article
013128, 2019.

A. M. S. Mahdy, M. S. Mohamed, K. A. Gepreel, A. AL-Amiri,
and M. Higazy, “Dynamical characteristics and signal flow
graph of nonlinear fractional smoking mathematical model,”
Chaos, Solitons ¢ Fractals, vol. 141, article 110308, 2020.

H. Alrabaiah, A. Zeb, E. Alzahrani, and K. Shah, “Dynamical
analysis of fractional-order tobacco smoking model containing
snuffing class,” Alexandria Engineering Journal, vol. 60, no. 4,
pp. 3669-3678, 2021.

A. A. Kilbas, O. I. Marichev, and S. G. Samko, Fractional Inte-
grals and Derivatives: Theory and Applications, Gordon and
Breach Switzerland, 1993.

K. S. Miller and B. Ross, An Introduction to the Fractional Cal-
culus and Fractional Differential Equations, Wiley, New York,
1993.

A. A.Kilbas, H. Srivastava, and J. Trujillo, Theory and Applica-
tion of Fractional Dierential Equations, vol. 204, Elseveir,
North Holand, 2006.

P. Kumar, V. S. Erturk, and M. Murillo-Arcila, “A complex
fractional mathematical modeling for the love story of Layla
and Majnun,” Chaos, Solitons & Fractals, vol. 150, article
111091, 2021.

R. A. Khan and K. Shah, “Existence and uniqueness of solu-
tions to fractional order multi-point boundary value prob-
lems,” Communications in Applied Analysis, vol. 19,
pp. 515-526, 2015.

F. Awawdeh, A. Adawi, and Z. Mustafa, “Solutions of the SIR
models of epidemics using HAM,” Chaos, Solitons & Fractals,
vol. 42, no. 5, pp. 3047-3052, 2009.

J. Biazar, “Solution of the epidemic model by Adomian decom-
position method,” Applied Mathematics and Computation,
vol. 173, no. 2, pp. 1101-1106, 2006.

A. Abdilraze, Admoian Decomposition Method: Convergence
Analysis and Numerical Approximations, M.sc. Dissertation,
McMaster University Hamilton, Canada, 2008.

I. Ullah, S. Ahmad, M. Rahman, and M. Arfan, “Investiga-
tion of fractional order tuberculosis (TB) model via Caputo
derivative,” Chaos, Solitons & Fractals, vol. 142, article
110479, 2021.

F. Haq, K. Shah, G. Rahman, and M. Shahzad, “Numerical
solution of fractional order smoking model via Laplace
Adomian decomposition method,” Alexandria Engineering
Journal, vol. 57, no. 2, pp. 1061-1069, 2018.

M. u. Rahman, M. Arfan, Z. Shah, P. Kumam, and
M. Shutaywi, “Nonlinear fractional mathematical model of
tuberculosis (TB) disease with incomplete treatment under
Atangana-Baleanu derivative,” Alexandria Engineering Jour-
nal, vol. 60, no. 3, pp. 2845-2856, 2021.

A. Khan, T. S. Khan, M. I. Syam, and H. Khan, “Analytical
solutions of time-fractional wave equation by double Laplace
transform method,” The European Physical Journal Plus,
vol. 134, no. 4, p. 163, 2019.

A. Kumar, S. Kumar, and S. Yan, “Residual power series
method for fractional diffusion equations,” Fundamenta Infor-
maticae, vol. 151, no. 1-4, pp. 213-230, 2017.

M. Kaplan and B. Ahmet, “A novel analytical method for time-
fractional differential equations,” Optik, vol. 127, no. 20,
pp. 8209-8214, 2016.

(39]

(40]

(41]

(42]

[43]

(44]

[45]

[46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

(54]

(55]

Journal of Function Spaces

M. Caputo and M. Fabrizio, “A new definition of fractional
derivative without singular kernel,” Progress in Fractional Dif-
ferentiation and Applications, vol. 1, no. 2, pp. 1-13, 2015.

A. Atangana and D. Baleanu, “New fractional derivatives with
nonlocal and non-singular kernel: theory and application to
heat transfer model,” Thermal Science, vol. 20, no. 2,
pp. 763-769, 2016.

M. Toufik and A. Atangana, “New numerical approximation
of fractional derivative with non-local and non-singular ker-
nel: application to chaotic models,” The European Physical
Journal Plus, vol. 132, no. 10, p. 444, 2017.

J. Wang, L. Lv, and W. Zhou, “Ulam stability and data depen-
dence for fractional differential equations with Caputo deriva-
tive,” Electronic Journal of Qualitative Theory of Differential
Equations, vol. 63, no. 63, pp. 1-10, 2011.

D. Baleanu, J. T. Machado, and A. C. J. Luo, Fractional
Dynamics and Control, Springer Science & Business Media,
2011.

D. Baleanu, D. Kai, and S. Enrico, Fractional Calculus: Models
and Numerical Methods, World Scientific, 2012.

S. Z. Rida, A. S. Abdel Rady, A. A. M. Arafa, and M. Khalil,
“Approximate analytical solution of the fractional epidemic
model,” International Journal of Applied Mathematical
Research, vol. 1, no. 1, pp. 17-19, 2012.

F. B. M. Duarte and J. A. Tenreiro Machado, “Chaotic phe-
nomena and fractional-order dynamics in the trajectory con-
trol of redundant manipulators,” Nonlinear Dynamics,
vol. 29, pp. 342-362, 2002.

A. Atangana, “Fractal-fractional differentiation and integra-
tion: connecting fractal calculus and fractional calculus to pre-
dict complex system,” Chaos, Solitons & Fractals, vol. 102,
pp. 396-406, 2017.

A.S. Salem and B. S. T. Alkahtani, “Asymptotic analysis of a
giving up smoking model with relapse and harmonic mean
type incidence rate,” Results in Physics, vol. 21, article
104437, 2021.

K. A. Abro, “Role of fractal-fractional derivative on ferromag-
netic fluid via fractal Laplace transform: a first problem via
fractal-fractional differential operator,” European Journal of
Mechanics - B/Fluids, vol. 85, pp. 76-81, 2021.

W. Chen, X. D. Zhang, and D. Korosak, “Investigation on frac-
tional and fractal derivative relaxation- oscillation models,”
International Journal of Nonlinear Sciences and Numerical
Simulation, vol. 11, no. 1, pp. 3-10, 2010.

M. H. Heydari, “Numerical solution of nonlinear 2D optimal
control problems generated by Atangana-Riemann-Liouville
fractal-fractional derivative,” Applied Numerical Mathematics,
vol. 150, pp. 507518, 2020.

H. F. Huo and C. C. Zhu, “Influence of relapse in a giving up
smoking model,” Abstract and Applied Analysis, vol. 2013, 11
pages, 2013.

R. Qesmi, J. Wu, J. Wu, and J. M. Heffernan, “Influence of
backward bifurcation in a model of hepatitis B and C
viruses,” Mathematical Biosciences, vol. 224, no. 2,
pp. 118-125, 2010.

A. Granas and J. Dugundji, Fixed Point Theory, Springer, New
York, 2005.

Y. Bagc, S. Ogrekgi, and A. Misir, “On Hyers-Ulam stability
for fractional differential equations including the new
Caputo-Fabrizio fractional derivative,” Mediterranean Journal
of Mathematics, vol. 16, no. 5, pp. 1-14, 2019.



Journal of Function Spaces

(56]

(57]

J. Wang, K. Shah, and A. Ali, “Existence and Hyers-Ulam
stability of fractional nonlinear impulsive switched coupled
evolution equations,” Mathematical Methods in the Applied
Sciences, vol. 41, no. 6, pp. 2392-2402, 2018.

K. Shah, A. Ali, and S. Bushnagq, “Hyers-Ulam stability analysis
to implicit Cauchy problem of fractional differential equations

with impulsive conditions,” Mathematical Methods in the
Applied Sciences, vol. 41, no. 17, pp. 8329-8343, 2018.

11



	Study of a Fractal-Fractional Smoking Models with Relapse and Harmonic Mean Type Incidence Rate
	1. Introduction
	2. Basic Results
	3. Theoretical Results of Model (1)
	4. Numerical Scheme
	4.1. Graphical Representations

	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments

