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We propose and explore a new subclass of regular functions described by a new derivative operator in this paper. Some
coefficient estimations, growth and distortion aspects, extreme points, star-like radii, convexity, Fekete-Szego inequality, and
partial sums are derived.

1. Introduction

Let A represent the regular function class u defined on the
disk U = fw : jwj < 1g normalized by u (i.e., uð0Þ = 0 and u′
ð0Þ = 1). The origin of the form is about the Taylor series
expansion of such an equation

u wð Þ =w + 〠
∞

η=2
aηw

η: ð1Þ

S indicates a subclass of A consists entirely of mappings
that are the same as U .

For u ∈A presented by (2) and gðwÞ specified by

g wð Þ =w + 〠
∞

η=2
bηw

η, ð2Þ

their convolution, represented by ðu ∗ gÞ, is specified as

u ∗ gð Þ wð Þ =w + 〠
∞

n=2
anbnw

n = g ∗ uð Þ wð Þ w ∈Uð Þ: ð3Þ

The A subclass consisting of the u-type function is
specified by T as

u wð Þ =w − 〠
∞

η=2
aηw

η: ð4Þ

Silverman [1] extensively examined this subclass.
The study of operators plays an important role in geo-

metric function theory in complex analysis and its related
fields. Many derivative and integral operators can be written
in terms of convolution of certain analytic functions. It is
observed that this formalism brings an ease in further math-
ematical exploration and also helps to better understand the
geometric properties of such operators. The Mittag-Leffler
function [2, 3] is defined by the following power series,
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convergent in the whole complex plane:

Eυ wð Þ≔ 〠
∞

η=0

wη

Γ υη + 1ð Þ , υ > 0,w ∈ℂ: ð5Þ

We recognize that it is an entire function of order 1/υ
providing a simple generalization of the exponential func-
tion expðwÞ to which it reduces for υ = 1: For detailed infor-
mation on the Mittag-Leffler-type functions and their
laplace transforms, the reader may consult, e.g., [4–6] and
the recent treatise by Gorenflo et al. [7].

We also note that for the convergence of the power
series in (5), the parameter υ may be complex provided
that RðυÞ > 0: The most interesting properties of the
Mittag-Leffler function are associated with its asymptotic
expansions as w⟶∞ in various sectors of the complex
plane. A more general function Eυ,τ generalizing EυðwÞ
was introduced by Wiman [8] and defined by

Eυ,τ wð Þ = 〠
∞

η=0

wη

Γ υη + τð Þ w, υ, τ ∈ℂ,R υð Þ > 0,R τð Þ > 0ð Þ:

ð6Þ

Observe that the function Eυ,τ contains many well-
known functions as its special case, for example,
E1,1ðwÞ = ew, E1,2ðwÞ = ðew − 1Þ/w, E2,1ðw2Þ = cosh w, E2,1ð−
w2Þ = cos w, E2,2ðw2Þ = sinh w/w, E2,2ð−w2Þ = sinh w/w, E4
= 1/2½cos w1/4 + cosh w1/4�, and E3 = 1/2½ew1/3 + 2e−ð1/3Þ
cos ðð ffiffiffi

3
p

/2Þw1/3Þ�:
The Mittag-Leffler function arises naturally in the

solution of fractional-order differential and integral equa-
tions and especially in the investigations of fractional
generalization of kinetic equation, random walks, Levy
flights, and super diffusive transport and in the study of
complex systems. Several properties of Mittag-Leffler
function and generalized Mittag-Leffler function can be
found, e.g., in [9–16]. Observe that Mittag-Leffler func-
tion Eυ,τðwÞ does not belong to the family A: Thus, it
is natural to consider the following normalization of
Mittag-Leffler functions as below:

Eυ,τ =wΓτEυ,τ wð Þ =w + 〠
∞

η=2

Γ τð Þ
Γ υ η − 1ð Þ + τð Þw

η: ð7Þ

It holds for complex parameters υ, τ and w ∈ℂ:
The function Qυ,τðwÞ is specified by

Qυ,τ wð Þ =wΓ τð ÞEυ,τ wð Þ: ð8Þ

Now, for u ∈A , the derivative operator that follows is
defined by Dm

ℏ ðυ, τÞu : A ⟶A by

D0
ℏ υ, τð Þu wð Þ = u wð Þ ∗Qυ,τ wð Þ,

D1
ℏ υ, τð Þu wð Þ = 1 − ℏð Þ u wð Þ ∗Qυ,τ wð Þð Þ + ℏw u wð Þ ∗Qυ,τ wð Þð Þ′,

⋮

Dm
ℏ υ, τð Þu wð Þ =D1

ℏ Dm−1
ℏ υ, τð Þu wð Þ� �

:

ð9Þ

If u is specified by (1), then from the operator’s defini-
tion Dm

ℏ u, it is clear to see that

Dm
ℏ υ, τð Þu wð Þ =w + 〠

∞

η=2
ϕmη ℏ, υ, τð Þaηwη, ð10Þ

where

ϕmη ℏ, υ, τð Þ = Γ τð Þ
Γ υ η − 1ð Þ + τð Þ ℏ η − 1ð Þ + 1½ �m: ð11Þ

Keep in mind that

(1) the Al-Oboudi operator [17] is achieved when υ = 0
and τ = 1

(2) we get the Salagean operator [18] when υ = 0, τ = 1,
and ℏ = 1

(3) when m = 0, we get Eυ,τðwÞ, according to Srivastava
et al. [19]

If u ∈ T is represented by (4), then we have got it.

Dm
ℏ υ, τð Þu wð Þ =w − 〠

∞

η=2
ϕmη ℏ, υ, τð Þaηwη: ð12Þ

Now, by utilizing the differential operator, Dm
ℏ ðυ, τÞu, a

new subclass of functions belonging to the class A is
specified.

Definition 1. For 0 ≤ ν ≤ 1, ℓ ≥ 1, k ≥ 0, and 0 ≤ ℘<1, a
mapping in a class is referred to as u ∈ASmℏ,υ,τðν, ℓ, k,℘Þ, if
it satisfies the case

R ℓ
wℵ′ wð Þ
ℵ wð Þ − ℓ − 1ð Þ

( )
> k ℓ

wℵ′ wð Þ
ℵ wð Þ − ℓ

�����
�����+℘, ð13Þ

where

ℵ wð Þ = 1 − νð ÞDm
ℏ u wð Þ + νw Dm

ℏ u wð Þð Þ′: ð14Þ

We also define TSmℏ,υ,τðν, ℓ, k,℘Þ = Smℏ,υ,τðν, ℓ, k,℘Þ ∩ T:
For special situations of characteristics, Smℏ,υ,τðν, ℓ, k,℘Þ

and TSmℏ,υ,τðν, ℓ, k,℘Þ, it can be reduced to new or known cat-
egories of functions studied in recent research [20–25].

The objective of this review is to look into a variety of
properties for functions in the aforesaid class. For specific
parameter instances.
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2. Coefficient Estimates

To get our results, we will require the subsequent lemma.

Lemma 2 (see [26]). Let ℘ be a real and z be a complex
number. Then, RðzÞ ≥ ℘.

⟺ z + 1−℘ð Þj j − z − 1+℘ð Þj j ≥ 0: ð15Þ

For beginnings, we have a coefficient that is relevant for
functions in the classs Smℏ,υ,τðν, ℓ, k,℘Þ:

Theorem 3. Let u ∈A indicated by (1). If

〠
∞

η=2
1−℘+ℓ η − 1ð Þ 1 + kð Þ½ �χη ℏ, ν,m, υ, τð Þ aη

�� �� ≤ 1−℘, ð16Þ

where

χη ℏ, ν,m, υ, τð Þ = 1 + ν m − 1ð Þ½ �ϕmη ℏ, υ, τð Þ, ð17Þ

then u ∈ Smℏ,υ,τðν, ℓ, k,℘Þ:

Proof. In the definition by consequence of 1 and Lemma 2, it
is enough to demonstrate that

ℓ
wℵ′ wð Þ
ℵ wð Þ − ℓ − 1ð Þ − k ℓ

wℵ′ wð Þ
ℵ wð Þ − ℓ

�����
����� − 1+℘ð Þ

�����
�����

≤ ℓ
wℵ′ wð Þ
ℵ wð Þ − ℓ − 1ð Þ − k ℓ

wℵ′ wð Þ
ℵ wð Þ − ℓ

�����
����� + 1+℘ð Þ

�����
�����:
ð18Þ

For the R.H.S and L.H.S of (18), we may, respectively,
write

R = ℓ
wℵ′ wð Þ
ℵ wð Þ − ℓ − 1ð Þ − k ℓ

wℵ′ wð Þ
ℵ wð Þ − ℓ

�����
����� + 1−℘ð Þ

�����
�����

= 1
ℵ wð Þj j ℓwℵ′ wð Þ − ℓ − 1ð Þℵ wð Þ − keiθ ℓwℵ′ wð Þ − ℓℵ wð Þ�� �� + 1−℘ð Þℵ wð Þ

��� ���
> wj j

ℵ wð Þj j 2−℘−〠
∞

η=2
2−℘+ℓ η − 1ð Þ k + 1ð Þ½ �

" #
χη ℏ, ν,m, υ, τð Þ aη

�� ��,
ð19Þ

and similarly,

L = ℓ
wℵ′ wð Þ
ℵ wð Þ − ℓ − 1ð Þ − k ℓ

wℵ′ wð Þ
ℵ wð Þ − ℓ

�����
����� − 1+℘ð Þ

�����
�����

= 1
ℵ wð Þj j ℓwℵ′ wð Þ − ℓ − 1ð Þℵ wð Þ − keiθ ℓwℵ′ wð Þ − ℓℵ wð Þ�� �� − 1+℘ð Þℵ wð Þ

��� ���
< wj j

ℵ wð Þj j ℘+〠
∞

η=2
ℓ η − 1ð Þ 1 + kð Þ−℘½ �

" #
χη ℏ, ν,m, υ, τð Þ aη

�� ��:
ð20Þ

Then,

R − L > wj j
ℵ wð Þj j 2 1−℘ð Þ − 2〠

∞

η=2
1−℘+ℓ η − 1ð Þ 1 + kð Þ½ �χη ℏ, ν,m, υ, τð Þ aη

�� ��" #
≥ 0:

ð21Þ

The condition (16) required is fulfilled.

We have a necessary and adequate situation in the
next theorem for a function u ∈ T to be in the class T
Smℏ,υ,τðν, ℓ, k,℘Þ.

Theorem 4. Let u ∈ T indicated by (3). Then, u ∈ TSmℏ,υ,τ
ðν, ℓ, k,℘Þ.

⟺〠
∞

η=2
1−℘+ℓ η − 1ð Þ 1 + kð Þ½ �χη ℏ, ν,m, υ, τð Þaη ≤ 1−℘,

ð22Þ

where χηðℏ, ν,m, υ, τÞ is defined by (17).

Proof. We can only prove the requirement in view 3 of the
theorem. If u ∈ TSmℏ,υ,τðν, ℓ, k,℘Þ and w is real, then

1 −∑∞
η=2 1 + ℓ η − 1ð Þ½ �χη ℏ, ν,m, υ, τð Þaηwη−1

1 −∑∞
η=2 χη ℏ, ν,m, υ, τð Þaηwη−1 −℘

> k
∑∞

η=2 ℓ η − 1ð Þχη ℏ, ν,m, υ, τð Þaηwη−1

1 −∑∞
η=2 χη ℏ, ν,m, υ, τð Þaηwη−1

�����
�����:

ð23Þ

We get the desired inequality from letting w⟶ 1−:

Corollary 5. If u ∈ TSmℏ,υ,τðν, ℓ, k,℘Þ, then

aη ≤
1−℘

1−℘+ℓ η − 1ð Þ 1 + kð Þ½ �χη ℏ, ν,m, υ, τð Þ η ≥ 2ð Þ: ð24Þ

3. Growth and Distortion Theorem

Theorem 6. Let u ∈ TSmℏ,υ,τðν, ℓ, k,℘Þ: Then, for jwj = r < 1,

r −
1−℘ð Þ

B2 ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ r
2 ≤ u wð Þj j ≤ r + 1−℘ð Þ

B2 ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ r
2,

ð25Þ

1 −
2 1−℘ð Þ

B2 ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ r
2 ≤ u′ wð Þ�� �� ≤ 1 + 2 1−℘ð Þ

B2 ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ r,

ð26Þ
where

Bη ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ = 1−℘+ℓ η − 1ð Þ 1 + kð Þ½ �χη ℏ, ν,m, υ, τð Þ η ≥ 2ð Þ:
ð27Þ
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Equations (25) and (26) are sharp for the u given function

u wð Þ =w −
1−℘ð Þ

B2 ℏ, ν,m, υ, τ, ℓ, k,℘ð Þw
2: ð28Þ

Proof. Since u ∈ TSmℏ,υ,τðν, ℓ, k,℘Þ and it follows from 4 of the
theorem,

〠
∞

η=2
Bη ℏ, ν,m, υ, τ, ℓ, k,℘ð Þaη ≤ 1−℘ð Þ, ð29Þ

where Bηðℏ, ν,m, υ, τ, ℓ, k,℘Þ is given by (27), we have

B2 ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ〠
∞

η=2
aη = 〠

∞

η=2
B2 ℏ, ν,m, υ, τ, ℓ, k,℘ð Þaη

≤ 〠
∞

η=2
Bη ℏ, ν,m, υ, τ, ℓ, k,℘ð Þaη

≤ 1−℘,
ð30Þ

and therefore,

〠
∞

η=2
aη ≤

1−℘ð Þ
B2 ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ : ð31Þ

Since u is given by (3), we get

u wð Þj j ≤ wj j + wj j2 〠
∞

η=2
aη wj jη−2 ≤ r + r2 〠

∞

η=2
aη

≤ r + 1−℘ð Þ
B2 ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ r

2,

u wð Þj j ≥ wj j − wj j2 〠
∞

η=2
aη wj jη−2 ≥ r − r2 〠

∞

η=2
aη

≥ r −
1−℘ð Þ

B2 ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ r
2:

ð32Þ

In light of Theorem 4, we have

B2 ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ
2 〠

∞

η=2
ηaη = 〠

∞

η=2

B2 ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ
2 ηaη

≤ 〠
∞

η=2
Bη ℏ, ν,m, υ, τ, ℓ, k,℘ð Þaη ≤ 1−℘ð Þ,

ð33Þ

which yields

〠
∞

η=2
ηaη ≤

2 1−℘ð Þ
B2 ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ : ð34Þ

Thus,

u′ wð Þ�� �� ≤ 1 + 〠
∞

η=2
ηaη wj jη−1 ≤ 1 + r〠

∞

η=2
ηaη

≤ 1 + 2 1−℘ð Þ
B2 ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ r,

u′ wð Þ�� �� ≥ 1 − 〠
∞

η=2
ηaη wj jη−1 ≥ 1 − r〠

∞

η=2
ηaη

≥ 1 − 2 1−℘ð Þ
B2 ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ r:

ð35Þ

Hence, the proof is complete.

Consider that juðwÞj = jw − ðð1−℘Þ/ðB2ðℏ, ν,m, υ, τ, ℓ, k,℘ÞÞ
B2ðℏ, ν,m, υ, τ, ℓ, k,℘ÞÞw2j is sharp is to (25).

And ju′ðwÞj = j1 − ðð2ð1−℘ÞÞ2ð1−℘Þ/ðB2ðℏ, ν,m, υ, τ, ℓ,
k,℘ÞÞB2ðℏ, ν,m, υ, τ, ℓ, k,℘ÞÞwj is sharp is to (26).

4. Extreme Points

Now, for the function class, we look at the extreme points
TSmℏ,υ,τðν, ℓ, k,℘Þ.

Theorem 7. Let the functions u1ðwÞ =w and

uη wð Þ =w −
1−℘ð Þ

Bη ℏ, ν,m, υ, τ, ℓ, k,℘ð Þw
η η ≥ 2ð Þ: ð36Þ

Then, u ∈ TSmℏ,υ,τðν, ℓ, k,℘Þ.

⟺u wð Þ = 〠
∞

η=2
ℏηuη wð Þ w ∈Uð Þ, ð37Þ

where ℏη ≥ 0ðη ≥ 1Þ and ∑∞
η=1 ℏη = 1:

Proof. Assume that it is possible to write u as in (37). Then,

u wð Þ = ℏ1w + 〠
∞

η=2
ℏη w −

1−℘ð Þ
Bη ℏ, ν,m, υ, τ, ℓ, k,℘ð Þw

η

" #

=w − 〠
∞

η=2
ℏη

1−℘ð Þ
Bη ℏ, ν,m, ℓ, k,℘ð Þw

η,

ð38Þ

since

〠
∞

η=2
Bη ℏ, ν,m, υ, τ, ℓ, k,℘ð Þℏη

1−℘ð Þ
Bη ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ

= 1−℘ð Þ〠
∞

η=2
ℏη = 1−℘ð Þ 1 − ℏ1ð Þ ≤ 1−℘ð Þ:

ð39Þ

By virtue 4 of the theorem, it follows that u ∈ TSmℏ,υ,τ
ðν, ℓ, k,℘Þ:
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Conversely, suppose u ∈ TSmℏ,υ,τðν, ℓ, k,℘Þ and consider

ℏη =
Bη ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ

1−℘ð Þ aη, η ≥ 2,

ℏ1 = 1 − 〠
∞

η=2
ℏη:

ð40Þ

Then,uðwÞ =∑∞
η=1 ℏηunðwÞ, hence the theorem.

5. Radii of Starlikeness, Convexity, and Close-
to-Convexity

Theorem 8. Let u ∈ TSmℏ,υ,τðν, ℓ, k,℘Þ: Then, u is star-shaped
of order ρð0 ≤ ρ < 1Þ in jwj < r1ðℏ, ν,m, υ, τ, ℓ, k,℘Þ, where

r1 ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ = inf
η≥2

1 − ρð ÞBη ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ
η − ρð Þ 1−℘ð Þ

� �1/ η−1ð Þ
:

ð41Þ

Proof. To be able to prove the theorem, we have to demon-
strate that

wu′ wð Þ
u wð Þ − 1

�����
����� ≤ 1 − ρ, ð42Þ

0 ≤ ρ < 1 for w ∈U with jwj < r1ðℏ, ν,m, υ, τ, ℓ, k,℘Þ: We
have

wu′ wð Þ
u wð Þ − 1

�����
����� = −∑∞

η=2 η − 1ð Þaηwη−1

1 − ∑∞
η=2 aηw

η−1

�����
����� ≤ ∑∞

η=2 η − 1ð Þaη wj jη−1
1 − ∑∞

η=2 aη wj jη−1 :

ð43Þ

Thus,

wu′ wð Þ
u wð Þ − 1

�����
����� ≤ 1 − ρ if 〠

∞

η=2

η − ρð Þ
1 − ρð Þ aη wj jη−1 ≤ 1: ð44Þ

In virtue of (22), we have

∑∞
η=2 Bη ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ

1−℘ aη ≤ 1: ð45Þ

The inequality of (43) would then be valid if

η − ρð Þ
1 − ρð Þ wj jη−1 ≤ Bη ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ

1−℘ η ≥ 2ð Þ, ð46Þ

or if

wj j ≤ 1 − ρð ÞBη ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ
η − ρð Þ 1−℘ð Þ

� �1/ η−1ð Þ
η ≥ 2ð Þ: ð47Þ

Hence, the proof is complete.

The evidence 9 and 10 of the subsequent theorems is compa-
rable to 8 of the theorem, so the evidence is excluded.

Theorem 9. Let u ∈ TSmℏ,υ,τðν, ℓ, k,℘Þ: Then, u is convex of
order ρð0 ≤ ρ < 1Þ in jwj < r2ðℏ, ν,m, υ, τ, ℓ, k,℘Þ, where

r2 ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ = inf
η≥2

1 − ρð ÞBη ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ
η η − ρð Þ 1−℘ð Þ

� �1/ η−1ð Þ
:

ð48Þ

Theorem 10. Let the function u given by (3) be in the class
TSmℏ,υ,τðν, ℓ, k,℘Þ. Then, u in close-to-convex of order ρð0 ≤ ρ
< 1Þ in jwj < r3ðℏ, ν,m, υ, τ, ℓ, k,℘Þ, where

r3 ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ = inf
η≥2

1 − ρð ÞBη ℏ, ν,m, υ, τ, ℓ, k,℘ð Þ
η 1−℘ð Þ

� �1/ η−1ð Þ
:

ð49Þ

6. Fekete-Szego Inequality

In this section, for the mapping in the class, we get the
Fekete-Szego inequality Smℏ,υ,τðν, ℓ, k,℘Þ. To illustrate our fun-
damental result, we will identify the appropriate lemma.

Lemma 11 (see [27]). If pðwÞ = 1 + c1w + c2w + c3w
2 +⋯ is

an analytic mapping with positive real part in U , then

c2 − ȷc21
�� �� =

−4ȷ + 2, ȷ ≤ 0,
2, 0 ≤ ȷ ≤ 1,
4ȷ − 2, ȷ ≥ 1:

8>><
>>: ð50Þ

When ȷ < 0 or ȷ > 1, the inequality holds iff pðwÞ = ð1 +
wÞ/ð1 −wÞ or one of its rotations. If 0 < ȷ < 1, then the equal-
ity holds iff

p wð Þ = 1 +w2

1 −w2
ð51Þ

or one of its rotations. If ȷ = 0, the equality holds iff

p wð Þ = 1 + δ

2

� 	
1 +w
1 −w

+ 1 − δ

2

� 	
1 −w
1 +w

0 ≤ δ ≤ 1ð Þ ð52Þ

or one of its rotations:
If ȷ = 1, the equality holds iff pðwÞ is the reciprocal of one

of the mapping such that the equality holds when it comes to
ȷ = 0:
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Theorem 12. Let ℓ ≥ 1, 0 ≤ k ≤ ℘<1: If u ∈ Smℏ,υ,τðν, ℓ, k,℘Þ is
given by (1), then

where

σ1 =
χ2
2 ℏ, ν,m, υ, τð Þ

2χ3 ℏ, ν,m, υ, τð Þ ,

σ2 =
χ2
2 ℏ, ν,m, υ, τð Þ 1−℘+ℓ 1 − kð Þ½ �
2χ3 ℏ, ν,m, υ, τð Þ 1−℘ð Þ :

ð54Þ

The outcome is sharp.

Proof. Since, for complex numbers, RðzÞ ≤ jzj, u ∈ Smℏ,υ,τ
ðν, ℓ, k,℘Þ implies that

R ℓ
wℵ′ wð Þ
ℵ wð Þ − ℓ − 1ð Þ

" #
> kR ℓ

wℵ′ wð Þ
ℵ wð Þ − ℓ

" #
+℘ ð55Þ

or that

R
wℵ′ wð Þ
ℵ wð Þ

" #
> ℘−1 + ℓ 1 − kð Þ

ℓ 1 − kð Þ : ð56Þ

Hence,

ℵ ∈ S∗
℘−1 + ℓ 1 − kð Þ

ℓ 1 − kð Þ
� 	

: ð57Þ

Let

p wð Þ = wℵ′ wð Þ/ℵ wð Þ− ℘−1 + ℓ 1 − kð Þ/ℓ 1 − kð Þðð Þ
1−℘ð Þ/ ℓ 1 − kð Þð Þ = 1 + c1w + c2w

2+⋯:

ð58Þ

We then have, by way of (10) and (14),

a2 =
1−℘ð Þ

ℓ 1 − kð Þχ2 ℏ, ν,m, υ, τð Þ c1,

a3 =
1−℘ð Þ

2ℓ 1 − kð Þχ2 ℏ, ν,m, υ, τð Þ c2 +
1−℘

ℓ 1 − kð Þ c
2
1

� �
:

ð59Þ

Therefore, we obtain

a3 − μa22 =
1−℘ð Þ

2ℓ 1 − kð Þχ3 ℏ, ν,m, υ, τð Þ c2 +
1−℘

ℓ 1 − kð Þ c
2
1

� �

− μ
1−℘ð Þ2

ℓ2 1 − kð Þ2χ2
2 ℏ, ν,m, υ, τð Þ c

2
1

= 1−℘ð Þ
2ℓ 1 − kð Þχ3 ℏ, ν,m, υ, τð Þ
� c2 −

1−℘
ℓ 1 − kð Þ c

2
1 2μ χ3 ℏ, ν,m, υ, τð Þ

A2
1 ℏ, ν,m, υ, τð Þ − 1

� 	� �
:

ð60Þ

We write

a3 − μa22 =
1−℘ð Þ

2ℓ 1 − kð Þχ3 ℏ, ν,m, υ, τð Þ c2 − ρc21
� �

, ð61Þ

where

ρ = 1−℘ð Þ
ℓ 1 − kð Þ 2μχ3 ℏ, ν,m, υ, τð Þ

χ2
2 ℏ, ν,m, υ, τð Þ − 1

� �
: ð62Þ

The implementation of the lemma above follows
our conclusion. Denote

ξ = ℘−1 + ℓ 1 − kð Þ
ℓ 1 − kð Þ : ð63Þ

If μ < σ1 or μ > σ2, it is true that equality exists.

⟺ℵ wð Þ = w

1 − eiθw
� �2 1−ξð Þ θ ∈ℝð Þ: ð64Þ

When σ1 < μ < σ2, it is true that equality exists, iff

ℵ wð Þ = w

1 − eiθw2� � 1−ξð Þ θ ∈ℝð Þ: ð65Þ

a3 − μa22
�� �� =

1−℘ð Þ
ℓ2 1 − kð Þ2χ3 ℏ, ν,m, υ, τð Þ ℓ 1 − kð Þ + 2 1−℘ð Þ − 4μ 1−℘ð Þχ3 ℏ, ν,m, υ, τð Þ

χ2
2 ℏ, ν,m, υ, τð Þ

� �
, μ ≤ σ1,

1−℘ð Þ
ℓ 1 − kð Þχ3 ℏ, ν,m, υ, τð Þ , σ1 ≤ μ ≤ σ2,

− 1−℘ð Þ
ℓ2 1 − kð Þ2χ3 ℏ, ν,m, υ, τð Þ ℓ 1 − kð Þ + 2 1−℘ð Þ − 4μ 1−℘ð Þχ3 ℏ, ν,m, υ, τð Þ

χ2
2 ℏ, ν,m, υ, τð Þ

� �
, μ ≥ σ2,

8>>>>>>>>><
>>>>>>>>>:

ð53Þ
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If μ = σ1, then it is true that equality exists, iff

ℵ wð Þ = w

1 − eiθw
� �2 1−ξð Þ

" # 1+δð Þ/2
w

1 + eiθw
� �2 1−ξð Þ

" # 1−δð Þ/2

= w

1 − eiθw
� �1+δ 1 + eiθw

� �1−δh i1−ξ , 0 ≤ δ ≤ 1, θ ∈ℝ:

ð66Þ

Finally, if it is true that equality exists ⟺pðwÞμ
= σ2, it is the inverse of one of the equality functions
and holds true in the case of μ = σ2

7. Partial Sums

Consider the recent works on partial analytic function sums
by Silverman [28] and Silvia [29]. Partial function in this
class is considered in this section to be TSmℏ,υ,τðν, ℓ, k,℘Þ
giving sharp lower boundaries to the reap part ratios of
uðwÞ to uqðwÞ and u′ðwÞ to u′qðwÞ:

Theorem 13. Let u ∈ TSmℏ,υ,τðν, ℓ, k,℘Þ and indicate u1ðwÞ
and uqðwÞ as partial sums

u1 wð Þ =w,

uq wð Þ =w + 〠
q

η=2
aηw

η q ∈ℕ \ 1f gð Þ:
ð67Þ

Suppose that

〠
∞

η=2
dη∣aη∣ ≤ 1, ð68Þ

where

dη =
1−℘+ℓ η − 1ð Þ 1 + kð Þ½ �Aη ℏ, ν,m, υ, τð Þ

1−℘ : ð69Þ

Then, u ∈ TSmℏ,υ,τðν, ℓ, k,℘Þ:
Furthermore,

R
u wð Þ
uq wð Þ

" #
> 1 −

1
dq+1

w ∈U , q ∈ℕð Þ, ð70Þ

R
uq wð Þ
u wð Þ
� �

>
dq+1

1 + dq+1
: ð71Þ

Proof. It is not crucial to verify that the dη coefficients
supplied by (69) are correct.

dη+1 > dη > 1: ð72Þ

So we have

〠
q

η=2
aη
�� �� + dq+1 〠

∞

η=q+1
aη
�� �� ≤ 〠

∞

η=2
dη aη
�� �� ≤ 1: ð73Þ

The hypothesis used (69), by setting

g1 wð Þ = dq+1
u wð Þ
uq wð Þ − 1 − 1

dq+1

 !" #
= 1 +

dq+1∑
∞
η=q+1 aηw

η−1

1 +∑q
η=2 aηwη−1 :

ð74Þ

If we use and apply (73), we find that

g2 wð Þ − 1
g2 wð Þ + 1

����
���� ≤ dq+1∑

∞
η=q+1 aη

�� ��
2 − 2∑q

η=2 aη
�� �� − dq+1∑

∞
η=q+1 aη

�� �� ≤ 1: ð75Þ

That immediately leads in a conclusion (70) of Theorem
13. To find out that

u wð Þ =w + wq+1

dq+1
ð76Þ

gives sharp result, we observe that forw = reiπ/q,

u wð Þ
uq wð Þ = 1 + wq

dq+1
⟶ 1 − 1

dq+1
 asw⟶ 1−: ð77Þ

Similarly, if we take

g2 wð Þ = 1 + dq+1
� � uq wð Þ

u wð Þ −
dq+1

1 + dq+1

 !

= 1 −
1 + dη+1
� �

∑∞
η=q+1 aηw

η−1

1 +∑∞
η=2 aηw

η−1 ,
ð78Þ

we can deduce, and make use of (73), that

g2 wð Þ − 1
g2 wð Þ + 1

����
���� ≤ 1 + dq+1

� �
∑∞

η=q+1 aη
�� ��

2 − 2∑q
η=2 ∣ aη∣− 1 − dq+1

� �
∑∞

η=q+1 aη
�� �� : ð79Þ

This leads directly to the statement (71) of Theorem 13.
For each q ∈ℕ with the external mapping uðwÞ, the

bound in (71) is sharp indicated by (76).
Thus, the evidence of the Theorem 13 is complete.

Theorem 14. Let u ∈ TSmℏ,υ,τðν, ℓ, k,℘Þ and fulfill (16). Then,

R
u′ wð Þ
uq′ wð Þ

" #
≥ 1 −

q + 1
dq+1

: ð80Þ
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Proof. By setting

g wð Þ = dq+1
u′ wð Þ
uq′ wð Þ

" #
− 1 − q + 1

dq+1

 !

=
1 + dq+1/ q + 1ð Þq + 1
� �

∑∞
η=q+1 naηw

η−1 +∑∞
η=2 ηaηw

η−1

1 +∑∞
η=2 ηaηw

η−1

= 1 +
dq+1/ q + 1ð Þq + 1
� �

∑∞
η=q+1 ηaηw

η−1

1 +∑∞
η=2 ηaηw

η−1 :

ð81Þ

Now,

g wð Þ − 1
g wð Þ + 1

����
���� ≤ dq+1/ q + 1ð Þq + 1

� �
∑∞

η=q+1 η aη
�� ��

2 − 2∑q
η=2 η aη

�� �� − dq+1/ q + 1ð Þq + 1
� �

∑∞
η=q+1 η aη

�� �� :
ð82Þ

Now,

g wð Þ − 1
g wð Þ + 1

����
���� ≤ 1 if 〠

q

η=2
η aη
�� �� + dq+1

q + 1 〠
∞

η=q+1
η aη
�� �� ≤ 1, ð83Þ

since the L.H.S. of (83) is bounded above by ∑q
η=2 dηjaηj if

〠
q

η=2
dη − η
� �

aη
�� �� + 〠

∞

η=q+1
dη −

dq+1
q + 1 η aη

�� �� ≥ 0, ð84Þ

and the proof is complete.

The consequence of the extreme function is sharp uðwÞ
=w +wq+1/dq+1:

Theorem 15. Let u ∈ TSmℏ,υ,τðν, ℓ, k,℘Þ and fulfill (16). Then,

R
u′q wð Þ
u′ wð Þ

" #
≥

dq+1
q + 1 + dq+1

: ð85Þ

Proof. By setting

g wð Þ = q + 1 + dq+1

 � uq′ wð Þ

u′ wð Þ
−

dq+1
q + 1 + dq+1

" #

= 1 −
1 + dq+1/ q + 1ð Þq + 1
� �� �

∑∞
η=q+1 ηaηw

η−1

1 +∑q
η=2 ηaηwη−1 :

ð86Þ

Using (84) and making use of it, we deduce that

g wð Þ − 1
g wð Þ + 1

����
���� ≤ 1 + dq+1/ q + 1ð Þq + 1

� �� �
∑∞

η=q+1 η aη
�� ��

2 − 2∑q
η=2 η aη

�� �� − 1 + dq+1/ q + 1ð Þq + 1
� �� �

∑∞
η=q+1 η aη

�� �� ≤ 1

ð87Þ

that immediately leads us to the statement 15 of the
theorem.

8. Conclusions

This research has introduced study a new differential opera-
tor related to analytic function and studied some basic prop-
erties of geometric function theory. Accordingly, some results
to coefficient estimates, grouth and distortion theorem,
Fekete-Szego inequalityy, and partial sums have also been
considered, inviting future research for this field of study.
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