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In the present paper, we obtain some new results, and we generalize some known results for the Hausdorff operators. We have
studied the generalized Hausdo;ff operators %, on the Dunkl-type homogeneous weighted Herz spaces ng(]R) and Dunkl
Herz-type Hardy spaces HKfZ (R). We have determined simple sufficient conditions for these operators to be bounded on
these spaces. As applications, we provide necessary and sufficient conditions for generalized Cesaro operator to be bounded on

Kf‘;(]R) and Hardy inequality for Kf‘;(]R)

1. Introduction and Preliminaries

We recall that the Fourier transform f of a (complex-valued)
function f in L'(R) is defined as

f(t) = J]Rf(x)e’itxdx, teR. (1)

The Hausdorft operator % generated by a function ¢ in
L'(R) as introduced in [1] can be defined both directly and
via the Fourier transform. The latter reads as follows:

(%’q,f)/\(t) :=J f(t)p(x)dx, teR, (2)

R

where f is also in L' (R). The existence of such a function Z'f
in L'(R) is established in [1]. The theory of Hausdorff oper-
ators, while dating in a sense back to Hurwitz and Silverman
[2] in 1917 with summability of number series, now becomes
a notable ingredient in modern harmonic analysis and has
received an extensive attention in recent years. To save the
length of this article, we refer the reader to the survey article
[3] for its background and historical developments.

Dunkl’s theory generalizes classical Fourier analysis on
RY. This theory began twenty years ago with Dunkl’s seminal
work in [4]. It was later developed by many mathematicians.
On the real line, the Dunkl operators &, are differential-
difference operators associated with the reflection group Z,
on R. An important motivation to study Dunkl operators
originates from their relevance for the analysis of quantum
many-body systems of the Calogero-Moser-Sutherland type.
These describe algebraically integrable systems in one dimen-
sion and have gained considerable interest in mathematical
physics (see [5]).

Let p, be the measure on R, given by

dpty(x) = |x " . 3)

We denote by L2(R), 1 < p < 00, the space of measurable
functions on R such that

IWm=Q;ﬂ@Wm@0W<w’ﬁmp«n (4)

11l = ess suplf ()] < co. (5)

xeR
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The Dunkl-Hausdorft operator 77, (see [6-9]) acting on
L!(R) generated by a function ¢ belonging to L'(R) is
defined directly as:

H of (%) = Eo ;’;(t)z f(?) dt, feL'(R),xeR, (6)

and for all function f in L} (R), the Dunkl-Hausdorff opera-
tor # , verifies

F TS0 teR,  (7)

Fol ) (1)),

R

where &, is the Dunkl transform. When a = -1/2, the oper-
ator Z,, is the direct definition of the Hausdorff operator

associated with Fourier transform defined in (2)

#ofw)= [ g (5) e )

o t

from which several well-known operators can be deduced
for suitable choices of ¢, eg., for ¢(t)=(1/t)x( (1),

the operator 7, reduces to the standard Hardy averaging
operator

HF(x)= - rf(t) i, (9)

while for ¢(t) = x(,;1(£), it reduces to the adjoint of Hardy
averaging operator

%*f(x)=J ) 4y, (10)

Chen et al. [10] established boundedness of the classi-
cal Hausdorft operators in Herz type spaces, which are a
natural generalization of the Lebesgue spaces L?. Gasmi
et al. [11] introduced a new weighted Herz space associ-
ated with the Dunkl operators on R. They also character-
ize the corresponding Herz-type Hardy spaces by atomic
decomposition. Motivated by this result concerning Herz
spaces (see also [12-14] and reference therein), this paper
is aimed at extending these results to the context of Dunkl
theory. We investigate the Dunkl-Hausdorff operators on
the Dunkl-type homogeneous weighted Herz spaces Kf:Z
(R) and Dunkl Herz-type Hardy space HKf:‘;’N(R) in the
spirit of those in [10]. As applications, we provide necessary
and sufficient conditions for Dunkl-Cesaro operator and suffi-
cient conditions for Dunkl-Hardy operator to be bounded on
the homogeneous weighted Herz space Kfs (R).

This paper is organized as follows: in Section 1, we have
presented some definitions and fundamental results from
Dunkl’s analysis. In Sections 2 and 3, we have presented
and proven our main results.
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For a>—1/2, the Dunkl differential-difference operator
is defined as (see [4])

_df +20c+1 .f(x)—f(—x)

D)) = 5+ = L0, fecm).

(11)

For A € C, the initial problem

Do(f)(x) = A (x), £(0) = 1,

has a unique solution E,(A.) (called the Dunkl kernel)
given by:

x€R, (12)

Ey(2) =jo(iz) + )ja+1(iz)’ zeC, (13)

z
2(a+1

where j is the normalized Bessel function of the first kind
(with order «) defined on C by

&= Tr )Y (e )

The integral representation of E, is given by

I'(a+1)

i) = o ar (1))

1
J (1-1)(1- )™y,
-1
(15)
The Dunkl transform %, is defined for f € Ll (R) by:

24

o) = - | Eulci)f )t (), e, =2 Tla+ 1),
(16)
This transform satisfies the following properties:
(i) For all f € L!(R) such that F,(f) € L} (R), we have

the inversion formula

flx)= iJ]R E (iAx)F,(f)(M)du,(A),a.e.xe R, (17)

«

(ii) For all f € §(R) (the usual Schwartz space)

Fo(Duof ) (%) = ixF o (f) (%)- (18)

For any x, y, z € R, we consider:

o) - — D)
R 270 /al (e + (1/2))
: (1 - Gx,y,z + az,x,y + Gz,y,x)qa(‘x|’ |y|’ |Z|)’

(19)
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where
2,22
. X-I-y—Z N if xy + 0)
Opyp == 2xy (20)
0 otherwise,
and for x, y,z>0,
a-1/2
([(x+p)?=2][Z - (x=»)"])
4% y,2) = (o= L e yleay) (2)-
(21)

We further have (see [15])

jm .00, ), (2) = Tand [y (3,2t (22 VE

0 R
(22)

In the sequel, we consider the signed measure y, , on R

given by
w, (%, y,2)du,(2), ifx,y€R",
dy,,(2) =1 d6,(z), ifx=0, (23)
dé,(z), ify=0.

For x,y € R and a continuous function f on R, we put

() = J]Rﬂz)dyx,y(z), (24)

which is called the Dunkl translation operator. The Dunkl
translation operator has the following properties:

(i) For x,y € R and a continuous function f on R, we
have

T (H) =7,(f)(%)- (25)

(ii) (Product formula) For all x, y,z € R

7x(Ea(17))(2) = Eq(ixy) Eq (iy2)- (26)

(iii) For all x,y € R and f € L}(R), we have

Fa(1x(F)) ) = Ea(ixy) Fo () )- (27)

The Dunkl convolution of two functions f, g on R is
defined by the relation

Frag(x) j T f ()90 i), (28)

Let f € §'(R) and ¢ € S(R) such that Jr #(x)dp,(x) =1,

we have
lim f+ 4, = ,inS" (R) (29)

where ¢, is the dilation of ¢ given by

X

¢,(x) = t’2<‘”1)¢>(?), x€eR. (30)

For all N € N, we denote by F), the subset of §(R) con-
stituted by all those ¢ € S(R) such that supp (¢) c [-1,1],
and for all m, n € IN such that m, n < N, we have

Pua(®) = sup(1+lx | )"| g0 <1 (3)

Moreover, the system of seminorms {p,, }
ates the topology of S(R) (see [16]).

Let f € 8'(R) and N € N. The a-grand maximal func-
tion of N-order G, (f) of f is defined by

Gan(f)(x) = sup [ *of (x)];

t>0,peFy

mneN gener-

xeR.  (32)

The a-grand maximal function G, y is a bounded contin-
uous operator from Lf(IR) into itself, for every p €]1,00],
provided thatN > 2(a + 1) (see [11]).

2. Boundedness of 7, , on the

Homogeneous Weighted Herz Space kP

a.q
Let feR, 0<p<+00, and 1< g < +00. The homogeneous

weighted Herz space Kflq) is the space constituted by all the
functions f € LI(R),,.» such that

+00 lp
— 2(a+1) Bk; 4
1 lso iy = ( Y, 2 IIkaIIL3<R>> <+oo, (33)

k=-00

where y, is the characteristic function of the set
A= {x eR; 25! < x| < zk}, forkez, — (34)

and LI(R),, is the space L{ (R, |x[**"dx).

loc
Note that Kf:(lR) =L1(R). The main result of this sub-
section is the following theorem.

Theorem 1. Let a> (-1/2), BeR, 1<p<+00, I <q<+00,
and ¢ a measurable function on R such that

C

i = J (O DE D g 0o (35)
0



4
Then, the Dunkl-Hausdorff operator %, is bounded
from Kﬁp(lR) to itself, i.e.,
I o Visrmy Canpollese (36)

Proof. Note that for any t > 0, there exists an integer number
1=1(t) satistying 2! < t < 2!. The Minkowski inequality for

1p
19 ol g g, (Z 2 VPDNTE o Xl )
Wi

k=-00
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LI(RR) guarantees that for any k € Z,

17 o f Xill1o () §J (8] aD (”ka s +||ka-l+1||Lz(1R))dt-
0

(37)

By applying the Minkowski inequality for ¥, we obtain

+00 0 P lp
< ( z 2(ac+1)Bkp (J | ( ) | (et 1)(1/g-1) (”ka l"Lq +|Ika-l+1"L§(]R))dt) >> (38)
0

k=—00

« @) (1g-1) ) N 2(ar])Bhp U )y Up
<| oot Y 2 (Il Y 2 (U lgw)
k

Since 2! <t < 2! and the definition of the Herz space

K f Z , we estimate

1S 2(a+1)Bkp Up
Z 2 (||ka—l—1"Lg(1R))

0 2(ar)kp Up
+ Z 2 (”ka—l”Lg(]R))

k=—0c0

<
< (22(1— )ar1)B | H2l(a+1)p )"f"K‘*P(]R t2(d+1)ﬁ||f||KB'P(]R)'
~ ®q

(39)

Therefore, we obtain

< oo
2(a+1)(B-1+1/q)
07 g . J lp(t)lt Dt llgso g,

(40)

which implies that %, is bounded from ng(IR) to
itself. 0

Remark 2. When o« =-1/2, Theorem 1 reduce to ([10],
Theorem 2.4).

2.1. Hardy Inequality for K

P(R). T 9(£) = (X100
(6) is of the following form

)(t))/t’ then

T ()= | SO (a1)

k=—c0

In this case, #,, reduces to the Hardy-type averaging
operator for which we deduce the following result.

Corollary 3. Let a > (-1/2), 1<p<+00, 1<q<+00, 0<f3
<1-(1/q), and ¢(t) = (X(;,0)1))/t- Then, the Dunkl-Hardy

operator # ,, is bounded from KfZ (R) to itself and we have

I o s ey (42)

<
R)™ 2(a+1)(B-1+1/q)

Proof. From Theorem 1, we have

t|2(a+1)(ﬁ—1+1/q)dt’

00
Cq,(x,ﬁ,(p = JO |(P(t)
00
— J t2<“+1)(ﬁ_1+1/q)_ldt, (43)
1

1
- 2+ 1)(f-1+1/q)

O

2.2. Generalized Cesaro Operator. If ¢ is supported in the
interval [0; 1], then 7, reduces to the generalized Cesaro

operator €, defined by

@)= | S ()

(see [6, 17]).

x€R, (44)

Corollary 4. Let > (—1/2), B e R, 1 <p < +00, I £q < +00,
and ¢ a nonnegative measurable function defined on [0, 1].
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Then, the generalized Cesaro operator €, is bounded from

> Bp . . .
K, (R) to itself if and only if

1
Cyap = JO p() DB gp < oo, (45)

Proof. By Theorem 1, we need just to prove the necessity
part. For any € € (0, 1), we set

where

c 2Q(at+1)B+e)q _
=2— 48
=G p+ o 48)

Hence, it yields

|x|7(2[3(a+1)+s+2(a+1)/q)’ if |x| >1,
fe(x)= (46) o0 ‘ 1 freo ' 1p
0 otherwise, > 2R ] = (Y 2RI 1
j=—00 j=1
i — : © Y .
then for j=0,-1,-2, - [If X;ll1(r) =0, and for j€ N\ {0}, e +Z - p o 5 |
we have € & e 4(1 BT
- (49)
Vol = | e Combeetertingy, )
“ 2i1<|x|<2)
i
— ZJ x—(2(a+1)ﬁ+s)q—1dx (47) L
27! thus f, € Hg:q.
= C, 27/t pre) Now, it is easy to see that
Il | x| =(2(a+1) Be+2(a+1)/q)
H pf e(x) = L ﬂ Y 2e ) o) dr
— |x|—(2ﬁ((x+1)+s+2(tx+l)/q)Jx t2ﬁ(a+1)+s—2(¢x+1)(1—1/q}(P(t)dt'
0
+00
2(a+1)Bj P
Z 22 )Bip (7 gf o) X311
j=—0c0
X 4 Ix| q plq
— Z 22(o¢+1)/3]p J (|x|—(2ﬁ(a+1)+s+2(a+l)/q)J t2ﬁ(oc+1)+52(oc+1)(1I/q)go(t)dt) dya(x) (50)
j=—00 Aj 0

P +oco

[\

1
(J t2/3(zx+1)+82(zx+1)(1I/q)(P(t)dt)
0

J=1

It follows from (49) that

+o0 1
(‘ Y 2Xernbiey (o, £, lelig(m))

J=-eo (51)
2 ! at+l)+e-2(a -
> Ci/q (1 - Ziqs)llp <J0 tZﬁ( +1)+e=2(a+1)(1 1lq)§0(t)dt> ,
which implies when ¢ — 0,
1
J t2/3(a+1)—2(a+1)(l—llq)(P(t)dt < 00. (52)
0
This completes the proof. O

rlq
zzz(ml)ﬁjp(J |x|‘(25<“+1)+€+2(“+1>/‘1)qd[4“(x)> .

A

3. Boundedness of 7, , on the Dunkl Herz-

Type Hardy Space H Kfﬁ’N (R)

Definition 5. Let a > (—-1/2), Ne N, fe R, 0<p < +00, and
1 <g<+0co. The Herz-type Hardy space HKfﬁ’N(IR) is
the space of distributions f € §'(R) such that G, y(f) €

Kff;(]R) Moreover, we have
"f"HngN(]R) = "Ga,N(f) "ng(]R) (53)

. . PPN
In the sequel, we are interested in the spaces HKf‘;



(R), when f8>1 - 1/g. Now, we turn to the atomic charac-
terization of the space HKf:Z’N(]R).

Definition 6. Let a>(-1/2), 1<q<oo, and f>1-1/q. A
measurable function a on R is called a (central) (f; q) -atom
if it satisfies:

(1) supp a C [-r, 7], for a certain r >0

(2) llallyq < r2e+tf,

(3) [palx
where s is the integer part of (¢ +1)(8—1+1/q).

x)xfdu (x)=0,k=0,1,-,2s+ 1

Theorem 7. Let a>(-1/2), 0<p<+00, 1<g<+00, $2>1
—1/q, and N €IN; N >2(2s+ 3+ «). Then, f € HKf:Z’N(]R)
if and only if there exist, for all je N\ {0}, an (8;q) atom
a; and A;€C, such that 372, |A; P<oo and f=Y°
Moreover,

JIJJ

o 1lp
W ligse ) = inf (Z |’\f|P> ’ (54)

J=1

where the infimum is taken over all atomic decompositions

of f.
The main result of this subsection is the following theorem.

Theorem 8. Let a>(-1/2), 0<p<I<qg<oo, f=1-1/q,
and NeIN; N >2(2s+ 3 +a).

(i) For 0<p <1, let

Cpo = j PO 1) (1 + log,|f])°dz. (55)

If for some o > ((1 < 00, then

_p)/P)> Cp = Cp,a

<
17 g )L Wl (56)
(ii) For p=1, let
C, = J‘X’ tz(zx+1)(ﬁf1+1/q)¢(t)dt. (57)
0
If C; < 0o, then
H% HHKB’N ”f"HKf;V (58)
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. . = Bp.N
Proof. By the central atomic decomposition, for f € HKf)Z

(R), we write

f= Z Aay (59)
k=1
where
\ P p
2 I =W o (60)
=1 .
Then, we have
T ag() = 2 N oy (a)- (61)
=
Let us show that
a) = Z Ch,jk,j> (62)
j€Z

where each a; ; again is a central (f3;q)-atom and

Z |k, 0. (63)
keZ.
We write
X\ - (2a+
bk,j(x):J‘ o (Dregman (o)
2i<t<2i*!
So,
X) =) by (). (65)
JjeZ

Now, we check that each by ; satisfies the same cancella-

tion condition as ay.
For i=0,1,---,2s+ 1, where s is the integer part of
(a+1)(B-1+1/q), we have

i i X\ — (2«
|, byedn=] 6] a(f)etpma
R 2i<t<2it!
t~(2042) dtJ a,(: xdu (x
L e(dt| a(5)vdu(x)

...
Ls I O G
I

o)t | (i 1) =0.

t<2]+1

Also, the size of by; is

“(3)

2DV yde,  (67)

L

bl sj

2J<t<2i*!
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then

il <7y (“*”ﬁj ey,
2i<t<2i

If |x|>2/*'r,, we have

? >271 x| > 7

which means a(x/t)=0 for all 2/ <t<2/*.
us that

supp (bk)j) C B(O, 2j+1rk).

Now, we write

[ee]
a) = Z Ch,j >
ke

where

Ck,j — 22(j+1)(tx+l)ﬂJ t—2(a+1)(1/q—1)¢(t)dt)

2Ji<t<2i*!

_ -1
ak)j = Ck,jbk,j'

(69)

This tells

(70)

(71)

(72)

(73)

It is easy to check that a;; is a central (&, q) atom

and we have

Ck,j=22(a+l)l3 o g2 ar)(1/g=1)2j(at1) ﬁ‘P( t)dt
J2ist<2i*t
< p2arn)p (2 D) 20D 1) dr (2 < |t
2/<t<2it!
— p2(e+1)B tz(”l)(ﬁ’“l’@q)(t)dt.
2i<t<2it!
(74)
Let
c'ka e e b t, (75)
2i<t<2it!

using Holder inequality yields the following

Y (4) =X (&) a+lima+ i)

jezZ jez

p 1-p
< (Z C’k,j(l + |]|)‘7> <Z (1 + |j|)op/1p>

JjEZ JEZ

p
< (], oDt s pogerae)
1-p
. (Z (1+ |j|)‘”’“”> ’

j€Z
(76)

since 0> ((1-p)/p), then ¥, (1+j] )PP oo, Tt
follows from (75) that

Ylel © Y (4

JjEZ ~ jeZ
< 00 p
([ e g+ pogseat) = (o).
(77)
This shows
(o) o0
Zo(f)= Z M () = Z Z Ktk (78)
Pt ol jez

By the atomic decomposition, we obtain

< [® <
ol (& Zel)

k=1 jeZ.
1/p < (79)
Ry 11l o
keZ ~ 1
and this end the proof of (i). O

The argument of part (ii) can be proved in an analo-
gous way.

Remark 9. When «=-1/2, Theorem 8 reduce to ([10],
Theorem 2.5).

We now return to the example of the generalized Cesaro
operator €, ,

Corollary 10. Let a>(-1/2), 0<p<1<q<oo, f>1-1/g,
and N e IN; N > 2(2s + 3+ ).

(i) For 0<p <1, let

C

1
o= j PEDEL 1000 (1 4 [log |f)°dz. (80)
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If for some o > ((1-p)Ip),C,=C,, <00, then
<
"%“)‘P(f>‘|HKfj§’” B ||f||HI-<£:5,N. (81)
(i) For p=1, let
1
= |, e gt )
0
If C, < 00, then
<
H%‘“P(waKf;V B "f"HKf;N (83)
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