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In the present paper, we obtain some new results, and we generalize some known results for the Hausdorff operators. We have
studied the generalized Hausdorff operators Hα,φ on the Dunkl-type homogeneous weighted Herz spaces _K

β,p
α,qðℝÞ and Dunkl

Herz-type Hardy spaces H _K
β,p,N
α,q ðℝÞ. We have determined simple sufficient conditions for these operators to be bounded on

these spaces. As applications, we provide necessary and sufficient conditions for generalized Cesàro operator to be bounded on
_K
β,p
α,qðℝÞ and Hardy inequality for _K

β,p
α,qðℝÞ.

1. Introduction and Preliminaries

We recall that the Fourier transform f̂ of a (complex-valued)
function f in L1ðℝÞ is defined as

f̂ tð Þ≔
ð
ℝ
f xð Þe−itxdx, t ∈ℝ: ð1Þ

The Hausdorff operator H generated by a function φ in
L1ðℝÞ as introduced in [1] can be defined both directly and
via the Fourier transform. The latter reads as follows:

Hφ f
� �∧ tð Þ≔

ð
ℝ
f̂ txð Þφ xð Þdx, t ∈ℝ, ð2Þ

where f is also in L1ðℝÞ. The existence of such a functionH f
in L1ðℝÞ is established in [1]. The theory of Hausdorff oper-
ators, while dating in a sense back to Hurwitz and Silverman
[2] in 1917 with summability of number series, now becomes
a notable ingredient in modern harmonic analysis and has
received an extensive attention in recent years. To save the
length of this article, we refer the reader to the survey article
[3] for its background and historical developments.

Dunkl’s theory generalizes classical Fourier analysis on
ℝd . This theory began twenty years ago with Dunkl’s seminal
work in [4]. It was later developed by many mathematicians.
On the real line, the Dunkl operators Dα are differential-
difference operators associated with the reflection group ℤ2
on ℝ. An important motivation to study Dunkl operators
originates from their relevance for the analysis of quantum
many-body systems of the Calogero-Moser-Sutherland type.
These describe algebraically integrable systems in one dimen-
sion and have gained considerable interest in mathematical
physics (see [5]).

Let μα be the measure on ℝ, given by

dμα xð Þ = xj j2α+1dx: ð3Þ

We denote by LpαðℝÞ, 1 ≤ p ≤∞, the space of measurable
functions on ℝ such that

∥f ∥Lpα ≔
ð
ℝ

f xð Þj jpdμα xð Þ
� �1/p

<∞, if 1 ≤ p <∞, ð4Þ

∥f ∥L∞α ≔ ess sup
x∈ℝ

∣f xð Þ∣ <∞: ð5Þ
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The Dunkl-Hausdorff operator Hα (see [6–9]) acting on
L1αðℝÞ generated by a function φ belonging to L1ðℝÞ is
defined directly as:

Hα,φ f xð Þ≔
ð∞
0

φ tð Þ
t2α+2

f
x
t

� �
dt, f ∈ L1α ℝð Þ, x ∈ℝ, ð6Þ

and for all function f in L1αðℝÞ, the Dunkl-Hausdorff opera-
tor Hα verifies

Fα Hα fð Þ tð Þ =
ð
ℝ
Fα fð Þ txð Þφ xð Þdx, t ∈ℝ, ð7Þ

where Fα is the Dunkl transform. When α = −1/2, the oper-
ator Hα,φ is the direct definition of the Hausdorff operator
associated with Fourier transform defined in (2)

Hφ f xð Þ =
ð∞
0

φ tð Þ
t

f
x
t

� �
dt, ð8Þ

from which several well-known operators can be deduced
for suitable choices of φ, e.g., for φðtÞ = ð1/tÞχð1,∞ÞðtÞ,
the operator Hφ reduces to the standard Hardy averaging
operator

H f xð Þ = 1
x

ðx
0
f tð Þ dt, ð9Þ

while for φðtÞ = χ½0,1�ðtÞ, it reduces to the adjoint of Hardy
averaging operator

H∗ f xð Þ =
ð∞
x

f tð Þ
t

dt: ð10Þ

Chen et al. [10] established boundedness of the classi-
cal Hausdorff operators in Herz type spaces, which are a
natural generalization of the Lebesgue spaces Lp. Gasmi
et al. [11] introduced a new weighted Herz space associ-
ated with the Dunkl operators on ℝ. They also character-
ize the corresponding Herz-type Hardy spaces by atomic
decomposition. Motivated by this result concerning Herz
spaces (see also [12–14] and reference therein), this paper
is aimed at extending these results to the context of Dunkl
theory. We investigate the Dunkl-Hausdorff operators on

the Dunkl-type homogeneous weighted Herz spaces _K
β,p
α,q

ðℝÞ and Dunkl Herz-type Hardy space H _K
β,p,N
α,q ðℝÞ in the

spirit of those in [10]. As applications, we provide necessary
and sufficient conditions for Dunkl-Cesàro operator and suffi-
cient conditions for Dunkl-Hardy operator to be bounded on

the homogeneous weighted Herz space _K
β,p
α,qðℝÞ.

This paper is organized as follows: in Section 1, we have
presented some definitions and fundamental results from
Dunkl’s analysis. In Sections 2 and 3, we have presented
and proven our main results.

For α ≥ −1/2, the Dunkl differential-difference operator
is defined as (see [4])

Dα fð Þ xð Þ = df
dx

xð Þ + 2α + 1
x

· f xð Þ − f −xð Þ
2 , f ∈ C1 ℝð Þ:

ð11Þ

For λ ∈ℂ, the initial problem

Dα fð Þ xð Þ = λf xð Þ, f 0ð Þ = 1, x ∈ℝ, ð12Þ

has a unique solution Eαðλ:Þ (called the Dunkl kernel)
given by:

Eα zð Þ = jα izð Þ + z
2 α + 1ð Þ jα+1 izð Þ, z ∈ℂ, ð13Þ

where jα is the normalized Bessel function of the first kind
(with order α) defined on ℂ by

jα zð Þ = Γ α + 1ð Þ〠
∞

n=0
−1ð Þn z/2ð Þ2n

n!Γ n + α + 1ð Þ : ð14Þ

The integral representation of Eα is given by

Eα iλxð Þ = Γ α + 1ð Þffiffiffi
π

p
Γ α + 1/2ð Þð Þ

ð1
−1

1 − tð Þ 1 − t2
� �α−1/2

e−iλxtdt:

ð15Þ

The Dunkl transform Fα is defined for f ∈ L1αðℝÞ by:

Fα fð Þ xð Þ = 1
cα

ð
ℝ
Eα −ixyð Þf yð Þdμα yð Þ, cα = 2α+1Γ α + 1ð Þ:

ð16Þ

This transform satisfies the following properties:

(i) For all f ∈ L1αðℝÞ such that Fαð f Þ ∈ L1αðℝÞ, we have
the inversion formula

f xð Þ = 1
cα

ð
ℝ
Eα iλxð ÞFα fð Þ λð Þdμα λð Þ, a:e:,x ∈ℝ: ð17Þ

(ii) For all f ∈ SðℝÞ (the usual Schwartz space)

Fα Dα fð Þ xð Þ = ixFα fð Þ xð Þ: ð18Þ

For any x, y, z ∈ℝ, we consider:

wα x, y, zð Þ = Γ α + 1ð Þð Þ2
2α−1 ffiffiffi

π
p

Γ α + 1/2ð Þð Þ
� 1 − σx,y,z + σz,x,y + σz,y,x
� �

qα xj j, yj j, zj jð Þ,
ð19Þ
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where

σx,y,z ==
x2 + y2 − z2

2xy , if xy ≠ 0,

0 otherwise,

8><
>: ð20Þ

and for x, y, z > 0,

qα x, y, zð Þ = x + yð Þ2 − z2
	 


z2 − x − yð Þ2	 
� �α−1/2
xyzð Þ2α X ∣x−y∣,x+y½ � zð Þ:

ð21Þ

We further have (see [15])

ð+∞
0

qα x, y, zð Þdμα zð Þ = 1 and
ð
ℝ
∣wα x, y, zð Þ∣dμα zð Þ ≤

ffiffiffi
2

p
:

ð22Þ

In the sequel, we consider the signed measure γx,y on ℝ
given by

dγx,y zð Þ =
wα x, y, zð Þdμα zð Þ, if x, y ∈ℝ∗,
dδy zð Þ, if x = 0,
dδx zð Þ, if y = 0:

8>><
>>: ð23Þ

For x, y ∈ℝ and a continuous function f on ℝ, we put

τx fð Þ yð Þ =
ð
ℝ
f zð Þdγx,y zð Þ, ð24Þ

which is called the Dunkl translation operator. The Dunkl
translation operator has the following properties:

(i) For x, y ∈ℝ and a continuous function f on ℝ, we
have

τx fð Þ yð Þ = τy fð Þ xð Þ: ð25Þ

(ii) (Product formula) For all x, y, z ∈ℝ

τx Eα iyð Þð Þ zð Þ = Eα ixyð ÞEα iyzð Þ: ð26Þ

(iii) For all x, y ∈ℝ and f ∈ L1αðℝÞ, we have

Fα τx fð Þð Þ yð Þ = Eα ixyð ÞFα fð Þ yð Þ: ð27Þ

The Dunkl convolution of two functions f , g on ℝ is
defined by the relation

f∗αg xð Þ =
ð
ℝ
τx f −yð Þg yð Þdμα yð Þ: ð28Þ

Let f ∈ S ′ðℝÞ and ϕ ∈ SðℝÞ such that Ðℝ ϕðxÞdμαðxÞ = 1,
we have

lim
t⟶0

f∗αϕt = f , inS ′ ℝð Þ ð29Þ

where ϕt is the dilation of ϕ given by

ϕt xð Þ≔ t−2 α+1ð Þϕ
x
t

� �
, x ∈ℝ: ð30Þ

For all N ∈ℕ, we denote by FN the subset of SðℝÞ con-
stituted by all those ϕ ∈ SðℝÞ such that supp ðϕÞ ⊂ ½−1, 1�,
and for all m, n ∈ℕ such that m, n ≤N , we have

ρm,n ϕð Þ≔ sup
x∈ℝ

1+∣x ∣ð Þm Dn
αϕ xð Þj j ≤ 1: ð31Þ

Moreover, the system of seminorms fρm,ngm,n∈N gener-

ates the topology of SðℝÞ (see [16]).
Let f ∈ S ′ðℝÞ and N ∈ℕ. The α-grand maximal func-

tion of N-order Gα,Nð f Þ of f is defined by

Gα,N fð Þ xð Þ≔ sup
t>0,ϕ∈FN

ϕt∗α f xð Þj j, x ∈ℝ: ð32Þ

The α-grand maximal function Gα,N is a bounded contin-
uous operator from LpαðℝÞ into itself, for every p ∈ �1,∞�,
provided thatN > 2ðα + 1Þ (see [11]).

2. Boundedness of Hα,φ on the

Homogeneous Weighted Herz Space _K
β,p
α,q

Let β ∈ℝ, 0 < p < +∞, and 1 ≤ q < +∞. The homogeneous

weighted Herz space _K
β,p
α,q is the space constituted by all the

functions f ∈ LqαðℝÞloc, such that

∥f ∥ _K
β,p
α,q ℝð Þ ≔ 〠

+∞

k=−∞
22 α+1ð Þβkp∥fχk∥

p
Lqα ℝð Þ

 !1/p

< +∞, ð33Þ

where χk is the characteristic function of the set

Ak = x ∈ℝ ; 2k−1 ≤ xj j ≤ 2k
n o

, for k ∈ℤ, ð34Þ

and LqαðℝÞloc is the space Lqlocðℝ, jxj2α+1dxÞ:
Note that _K

β,0
α,qðℝÞ = LqαðℝÞ. The main result of this sub-

section is the following theorem.

Theorem 1. Let α ≥ ð−1/2Þ, β ∈ℝ, 1 < p < +∞, 1 ≤ q < +∞,
and φ a measurable function on ℝ such that

Cq,α,β,φ =
ð∞
0
∣φ tð Þ∣t2 α+1ð Þ β−1+ 1/qð Þð Þdt <∞: ð35Þ
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Then, the Dunkl-Hausdorff operator Hα,φ is bounded

from _K
β,p
α,qðℝÞ to itself, i.e.,

∥Hα,φ f ∥ _Kβ,p
α,q ℝð Þ

<
~
Cq,α,β,φ∥f ∥ _K

β,p
α,q ℝð Þ: ð36Þ

Proof. Note that for any t > 0, there exists an integer number
l = lðtÞ satisfying 2l−1 < t ≤ 2l. The Minkowski inequality for

LqαðℝÞ guarantees that for any k ∈ℤ,

∥Hα,φ fχk∥Lqα ℝð Þ ≤
ð∞
0

φ tð Þj jt2 α+1ð Þ 1/q−1ð Þ ∥fχk−l∥Lqα ℝð Þ+∥fχk−l+1∥Lqα ℝð Þ
� �

dt:

ð37Þ

By applying the Minkowski inequality for lp, we obtain

Since 2l−1 < t ≤ 2l and the definition of the Herz space
_K
β,p
α,q , we estimate

〠
+∞

k=−∞
22 α+1ð Þβkp ∥fχk−l−1∥Lqα ℝð Þ

� �1/p

+ 〠
+∞

k=−∞
22 α+1ð Þβkp ∥fχk−l∥Lqα ℝð Þ

� �1/p

≤ 22 l−1ð Þ α+1ð Þβ + 22l α+1ð Þβ
� �

∥f ∥ _K
β,p
α,q ℝð Þ

<

~
t2 α+1ð Þβ∥f ∥ _K

β,p
α,q ℝð Þ:

ð39Þ

Therefore, we obtain

∥Hα,φ f ∥ _Kβ,p
α,q ℝð Þ

<
~

ð∞
0
∣φ tð Þ∣t2 α+1ð Þ β−1+1/qð Þdt∥f ∥ _Kβ,p

α,q ℝð Þ,

ð40Þ

which implies that Hα,φ is bounded from _K
β,p
α,qðℝÞ to

itself. ☐

Remark 2. When α = −1/2, Theorem 1 reduce to ([10],
Theorem 2.4).

2.1. Hardy Inequality for _K
β,p
α,qðℝÞ. If φðtÞ = ðχð1,∞ÞðtÞÞ/t, then

(6) is of the following form:

Hα f xð Þ = 1
x2α+1

ðx
0
f ξð Þdμα ξð Þ: ð41Þ

In this case, Hα,φ reduces to the Hardy-type averaging
operator for which we deduce the following result.

Corollary 3. Let α ≥ ð−1/2Þ, 1 < p < +∞, 1 ≤ q < +∞, 0 < β
< 1 − ð1/qÞ, and φðtÞ = ðχð1,∞ÞðtÞÞ/t. Then, the Dunkl-Hardy
operator Hα,φ is bounded from _K

β,p
α,qðℝÞ to itself and we have

∥Hα,φ f ∥ _Kβ,p
α,q ℝð Þ ≤

1
2 α + 1ð Þ β − 1 + 1/qð Þ ∥f ∥ _K

β,p
α,q ℝð Þ: ð42Þ

Proof. From Theorem 1, we have

Cq,α,β,φ =
ð∞
0
∣φ tð Þ tj2 α+1ð Þ β−1+1/qð Þdt

��� ,

=
ð∞
1
t2 α+1ð Þ β−1+1/qð Þ−1dt,

= 1
2 α + 1ð Þ β − 1 + 1/qð Þ :

ð43Þ

☐

2.2. Generalized Cesàro Operator. If φ is supported in the
interval ½0 ; 1�, then Hα,φ reduces to the generalized Cesàro
operator Cα,φ defined by

Cφ f xð Þ≔
ð1
0

φ tð Þ
t2α+2

f
x
t

� �
dt, x ∈ℝ, ð44Þ

(see [6, 17]).

Corollary 4. Let α ≥ ð−1/2Þ, β ∈ℝ×, 1 < p < +∞, 1 ≤ q < +∞,
and φ a nonnegative measurable function defined on ½0, 1�.

∥Hα,φ f ∥ _K
β,p
α,q ℝð Þ = 〠

+∞

k=−∞
22 α+1ð Þβkp∥Hα,φ fχk∥

p
Lqα ℝð Þ

 !1/p

≤ 〠
+∞

k=−∞
22 α+1ð Þβkp

ð∞
0

∣ φ tð Þ ∣ t2 α+1ð Þ 1/q−1ð Þ ∥fχk−l∥Lqα ℝð Þ+∥fχk−l+1∥Lqα ℝð Þ
� �

dt
� �p� !1/p

≤
ð∞
0

φ tð Þj jt2 α+1ð Þ 1/q−1ð Þ 〠
+∞

k=−∞
22 α+1ð Þβkp ∥fχk−l∥Lqα ℝð Þ

� �1/p
+ 〠

+∞

k=−∞
22 α+1ð Þβkp ∥fχk−l+1∥Lqα ℝð Þ

� �1/p( )
dt:

ð38Þ
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Then, the generalized Cesàro operator Cα,φ is bounded from

_K
β,p
α,qðℝÞ to itself if and only if

Cq,α,φ =
ð1
0
φ tð Þt2 α+1ð Þ β+1/q−1ð Þdt <∞: ð45Þ

Proof. By Theorem 1, we need just to prove the necessity
part. For any ε ∈ ð0, 1Þ, we set

f ε xð Þ = xj j− 2β α+1ð Þ+ε+2 α+1ð Þ/qð Þ, if ∣x∣ > 1,
0 otherwise,

(
ð46Þ

then for j = 0, −1,−2,⋯,∥f εχj∥LqαðℝÞ = 0, and for j ∈ℕ \ f0g,
we have

∥f εχj∥
q
Lqα ℝð Þ =

ð
2 j−1≤∣x∣≤2 j

xj j− 2 α+1ð Þβ+ε+2 α+1ð Þ/qð Þqdμα xð Þ

= 2
ð2 j
2 j−1

x− 2 α+1ð Þβ+εð Þq−1dx

= Cε 2−j 2 α+1ð Þβ+εð Þq:

ð47Þ

where

Cε = 2 2 2 α+1ð Þβ+εð Þq − 1
2 α + 1ð Þβ + εð Þq : ð48Þ

Hence, it yields

〠
+∞

j=−∞
22 α+1ð Þβjp∥f εχj∥

p
Lqα ℝð Þ

 !1/p

= 〠
+∞

j=1
22 α+1ð Þβjp∥f εχj∥

p
Lqα ℝð Þ

 !1/p

= C1/q
ε 〠

+∞

j=1
2−jεp

 !1/p

= C1/q
ε

2−ε
1 − 2−pεð Þ1/p

,

ð49Þ

thus f ε ∈H
β,k
p,q .

Now, it is easy to see that

It follows from (49) that

〠
+∞

j=−∞
22 α+1ð Þβjp∥ Hα,φ f ε

� �
χj∥

p
Lqα ℝð Þ

 !1/p

≥ C1/q
ε

2−ε
1 − 2−qεð Þ1/p

ð1
0
t2β α+1ð Þ+ε−2 α+1ð Þ 1−1/qð Þφ tð Þdt

� �
,
ð51Þ

which implies when ε⟶ 0,

ð1
0
t2β α+1ð Þ−2 α+1ð Þ 1−1/qð Þφ tð Þdt <∞: ð52Þ

This completes the proof. ☐

3. Boundedness of Hα,φ on the Dunkl Herz-

Type Hardy Space H _K
β,p,N
α,q ðℝÞ

Definition 5. Let α ≥ ð−1/2Þ, N ∈ℕ, β ∈ℝ, 0 < p < +∞, and

1 ≤ q < +∞. The Herz-type Hardy space H _K
β,p,N
α,q ðℝÞ is

the space of distributions f ∈ S ′ðℝÞ such that Gα,Nð f Þ ∈
_K
β,p
α,qðℝÞ. Moreover, we have

∥f ∥
H _K

β,p,N
α,q ℝð Þ = ∥Gα,N fð Þ∥ _K

β,p
α,q ℝð Þ: ð53Þ

In the sequel, we are interested in the spaces H _K
β,p,N
α,q

Hα,φ f ε xð Þ =
ð∣x∣
0

x
t

��� ���− 2 α+1ð Þβ+ε+2 α+1ð Þ/qð Þ
t−2 α+1ð Þφ tð Þdt

= xj j− 2β α+1ð Þ+ε+2 α+1ð Þ/qð Þ
ð xj j

0
t2β α+1ð Þ+ε−2 α+1ð Þ 1−1/qð Þφ tð Þdt:

〠
+∞

j=−∞
22 α+1ð Þβjp∥ Hα,φ f ε

� �
χj∥

p
Lqα ℝð Þ

= 〠
+∞

j=−∞
22 α+1ð Þβjp

ð
Aj

xj j− 2β α+1ð Þ+ε+2 α+1ð Þ/qð Þ
ð xj j

0
t2β α+1ð Þ+ε−2 α+1ð Þ 1−1/qð Þφ tð Þdt

� �q

dμα xð Þ
" #p/q

≥
ð1
0
t2β α+1ð Þ+ε−2 α+1ð Þ 1−1/qð Þφ tð Þdt

� �p

〠
+∞

j=1
22 α+1ð Þβjp

ð
Aj

xj j− 2β α+1ð Þ+ε+2 α+1ð Þ/qð Þqdμα xð Þ
 !p/q

:

ð50Þ
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ðℝÞ, when β ≥ 1 − 1/q. Now, we turn to the atomic charac-

terization of the space H _K
β,p,N
α,q ðℝÞ.

Definition 6. Let α ≥ ð−1/2Þ, 1 ≤ q ≤∞, and β ≥ 1 − 1/q. A
measurable function a on ℝ is called a (central) ðβ ; qÞ -atom
if it satisfies:

(1) supp a ⊂ ½−r, r�, for a certain r > 0

(2) ∥a∥q,α ≤ r−2ðα+1Þβ,

(3)
Ð
ℝ aðxÞxkdμαðxÞ = 0, k = 0, 1,⋯, 2s + 1

where s is the integer part of ðα + 1Þðβ − 1 + 1/qÞ.

Theorem 7. Let α ≥ ð−1/2Þ, 0 < p < +∞, 1 ≤ q < +∞, β ≥ 1

− 1/q, and N ∈ℕ; N > 2ð2s + 3 + αÞ. Then, f ∈H _K
β,p,N
α,q ðℝÞ

if and only if there exist, for all j ∈ℕ \ f0g, an ðβ ; qÞ -atom
aj and λj ∈ℂ, such that ∑∞

j=1 jλjjp <∞ and f =∑∞
j=1 λjaj.

Moreover,

∥f ∥
H _K

β,p,N
α,q ℝð Þ = inf 〠

∞

j=1
λj

�� ��p !1/p

, ð54Þ

where the infimum is taken over all atomic decompositions
of f .

The main result of this subsection is the following theorem.

Theorem 8. Let α ≥ ð−1/2Þ, 0 < p ⩽ 1 < q <∞, β ≥ 1 − 1/q,
and N ∈ℕ; N > 2ð2s + 3 + αÞ.

(i) For 0 < p < 1, let

Cp,σ =
ð∞
0
t2 α+1ð Þ β−1+1/qð Þφ tð Þ 1 + log2 tj jj jð Þσdt: ð55Þ

If for some σ > ðð1 − pÞ/pÞ, Cp ≔ Cp,σ <∞, then

Hα,φ fð Þ�� ��
H _K

β,p,N
α,q

<
~
∥f ∥

H _K
β,p,N
α,q

: ð56Þ

(ii) For p = 1, let

C1 =
ð∞
0
t2 α+1ð Þ β−1+1/qð Þφ tð Þdt: ð57Þ

If C1 <∞, then

Hα,φ fð Þ�� ��
H _K

β,1,N
α,q

<
~
∥f ∥

H _K
β,1,N
α,q

: ð58Þ

Proof. By the central atomic decomposition, for f ∈H _K
β,p,N
α,q

ðℝÞ, we write

f = 〠
∞

k=1
λkak, ð59Þ

where

〠
∞

j=1
λj

�� ��p ≃ ∥f ∥p
H _K

β,p,N
α,q

: ð60Þ

Then, we have

Hα,φ fð Þ = 〠
∞

j=1
λjHα,φ aj

� �
: ð61Þ

Let us show that

Hα,φ akð Þ = 〠
j∈ℤ

ck,jak,j, ð62Þ

where each ak,j again is a central ðβ ; qÞ-atom and

〠
k∈ℤ

ck,j
�� ��p°∞: ð63Þ

We write

bk,j xð Þ =
ð
2 j≤t≤2 j+1

ak
x
t

� �
t− 2α+2ð Þφ tð Þdt: ð64Þ

So,

Hα,φ akð Þ xð Þ = 〠
j∈ℤ

bk,j xð Þ: ð65Þ

Now, we check that each bk,j satisfies the same cancella-
tion condition as ak.

For i = 0, 1,⋯, 2s + 1, where s is the integer part of
ðα + 1Þðβ − 1 + 1/qÞ, we have

ð
ℝ
bk,j xð Þxidμα xð Þ =

ð
ℝ
xi
ð
2 j≤t≤2 j+1

ak
x
t

� �
t− 2α+2ð Þφ tð Þdt

=
ð
2 j≤t≤2 j+1

t− 2α+2ð Þφ tð Þdt
ð
ℝ
ak

x
t

� �
xidμα xð Þ

=
ð
2 j≤t≤2 j+1

t− 2α+2ð Þφ tð Þdt
ð
ℝ
ak

x
t

� �
xidμα xð Þ

=
ð
2 j≤t≤2 j+1

tiφ tð Þdt
ð
ℝ
ak uð Þuidμα uð Þ = 0:

ð66Þ

Also, the size of bk,j is

∥bk,j∥Lqα ≤
ð
2 j≤t≤2 j+1

ak
·
t

� ���� ���
Lqα
t−2 α+1ð Þ 1/q−1ð Þφ tð Þdt, ð67Þ
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then

∥bk,j∥Lqα ≤ r−2 α+1ð Þβ
k

ð
2 j≤t≤2 j+1

t−2 α+1ð Þ 1/q−1ð Þφ tð Þdt: ð68Þ

If ∣x ∣ >2j+1rk, we have

∣x ∣
t

≥ 2−j−1 xj j > rk, ð69Þ

which means akðx/tÞ = 0 for all 2j ≤ t ≤ 2 j+1: This tells
us that

supp bk,j
� �

⊂ B 0, 2j+1rk
� �

: ð70Þ

Now, we write

Hα,φ akð Þ = 〠
∞

k∈
ck,jak,j, ð71Þ

where

ck,j = 22 j+1ð Þ α+1ð Þβ
ð
2 j≤t≤2 j+1

t−2 α+1ð Þ 1/q−1ð Þφ tð Þdt, ð72Þ

ak,j = c−1k,jbk,j: ð73Þ

It is easy to check that ak,j is a central ðα, qÞ atom
and we have

ck,j = 22 α+1ð Þβ
ð
2 j≤t≤2 j+1

t−2 α+1ð Þ 1/q−1ð Þ22j α+1ð Þβφ tð Þdt

≤ 22 α+1ð Þβ
ð
2 j≤t≤2 j+1

t−2 α+1ð Þ 1/q−1ð Þt2 α+1ð Þβφ tð Þdt 2j ≤ tj j� �
= 22 α+1ð Þβ

ð
2 j≤t≤2 j+1

t2 α+1ð Þ β−1+1/qð Þφ tð Þdt:

ð74Þ

Let

ck,j′ =
ð
2 j≤t≤2 j+1

t2 α+1ð Þ β−1+1/qð Þφ tð Þdt, ð75Þ

using Holder inequality yields the following

〠
j∈ℤ

ck,j′
� �p

= 〠
j∈ℤ

ck,j′
� �p

1 + jj jð Þσp 1 + jj jð Þ−σp
� �

≤ 〠
j∈ℤ

ck,j′ 1 + jj jð Þσ
 !p

〠
j∈ℤ

1 + jj jð Þ−σp/1−p
 !1−p

≤
ð
ℝ
t2 α+1ð Þ β−1+1

qð Þφ tð Þ 1 + log2tj jð Þσdt
� �p

� 〠
j∈ℤ

1 + jj jð Þ−σp/1−p
 !1−p

,

ð76Þ

since σ > ðð1 − pÞ/pÞ, then ∑j∈ℤ ð1+∣j ∣ Þ−σðp/ð1−pÞÞ <∞. It
follows from (75) that

〠
j∈ℤ

ck,j
�� ��p <

~
〠
j∈ℤ

ck,j′
� �p

<
~

ð∞
0
t2 α+1ð Þ β−1+1/qð Þφ tð Þ 1 + log2 tj jj jð Þσdt

� �p

= Cp,σ
� �p

:

ð77Þ

This shows

HΦ fð Þ = 〠
∞

k=1
λkHΦ akð Þ = 〠

∞

k=1
〠
j∈ℤ

λkck,jak,j: ð78Þ

By the atomic decomposition, we obtain

Hφ,α fð Þ�� ��
H _K

α,p
q ℝnð Þ

<

~
〠
∞

k=1
〠
j∈ℤ

λkck,j
�� ��p !1/p <

~

� 〠
k∈ℤ

λkj jp
 !1/p <

~
∥f ∥

H _K
β,p,N
α,q

,
ð79Þ

and this end the proof of ðiÞ. ☐

The argument of part ðiiÞ can be proved in an analo-
gous way.

Remark 9. When α = −1/2, Theorem 8 reduce to ([10],
Theorem 2.5).

We now return to the example of the generalized Cesàro
operator Cα,φ.

Corollary 10. Let α ≥ ð−1/2Þ, 0 < p ⩽ 1 < q <∞, β ≥ 1 − 1/q,
and N ∈ℕ; N > 2ð2s + 3 + αÞ.

(i) For 0 < p < 1, let

Cp,σ =
ð1
0
t2 α+1ð Þ β−1+1/qð Þφ tð Þ 1 + log2 tj jj jð Þσdt: ð80Þ
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If for some σ > ðð1 − pÞ/pÞ, Cp ≔ Cp,σ <∞, then

Cα,φ fð Þ�� ��
H _K

β,p,N
α,q

<
~
∥f ∥

H _K
β,p,N
α,q

: ð81Þ

(ii) For p = 1, let

C1 =
ð1
0
t2 α+1ð Þ β−1+1/qð Þφ tð Þdt: ð82Þ

If C1 <∞, then

Cα,φ fð Þ�� ��
H _K

β,1,N
α,q

<
~
∥f ∥

H _K
β,1,N
α,q

: ð83Þ
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