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In the current article, we investigate the boundedness of commutators of the bilinear fractional p-adic Hardy operator on p-adic
Herz spaces and p-adic Morrey-Herz spaces by considering the symbol function from central bounded mean oscillations and

Lipschitz spaces.

1. Introduction

For every x # 0, there is a unique y = y(x) € Z such that x =
pYmin, where p > 2 is a fixed prime number which is coprime
to m, n € Z. The mapping ||, : Q — R, defines a norm on Q

with a range
{0}u{p’:yeZ}. (1)

It follows from Ostrowski’s theorem (see [1]) that each
nontrivial absolute value on Q is either the p-adic absolute
value ||, or usual absolute value ||. The p-adic norm |-, is

an ultrametric on Q, that is
b+ 71, < max {Jx|, |y, }- (2)

The field of p-adic numbers is represented by Q, and is
the completion of rational numbers with respect to the p
-adic norm || ,- Any p-adic number is written in series form
(see [2]) as

d d_,, d_;
cordypt + dip® + dop? +dp+dy + 71+m+p+*11 + p—]’

(3)

where d € Z/pZ. Hence, each member of Q, is written in the
form

codidy o dydydyd_y e d. (4)

The higher dimensional vector space Q, consists of
tuples x = (x;, -+, x,), where x; € Q,k=1,---,n, with the
following norm

[x[, = max fx . (5)

ForyeZand a=(a,,a,, -, a,) € Q}, we represent by

By(a):{er; : |x—a|PSp”}, (6)
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the closed ball with the center a and radius p and by
Sy(a)z{erZ : ||x-a|p=pY}, (7)

the corresponding sphere. For a = 0, we write B,(0)
§,(0) =S,. It is easy to see that the equalities

= By and

ay+B, =B (ay),a,+S,=5,(a),S,(ay) =B, (a) \ B,_ ()

(8)

hold for all a, € Q; and y € Z.
Since the space Q; is locally compact commutative group

under addition, so it leads to a translation-invariant Haar
measure dx which is normalized as follows

J;dx=waH=1, (9)

where |E|,; denotes the Haar measure of a measurable subset
E of Q;. In addition, it is not hard to see that B, (a)| = p",
S, (@) =p"™ (1 -p™), for any a € Q.

Recently, p-adic analysis has taken considerable attention
in harmonic analysis defined on the p-adic field [3-9] and
mathematical physics [10, 11]. Furthermore, applications of
p-adic analysis have been found in quantum gravity [12,
13], string theory [14], spring glass theory [15], and quantum
mechanics [11].

The Hardy operator was taken into consideration in [16]
and is given as below:

Hf(x) = —rf(t)dt,x>0, (10)

0

satistying the following inequality:

p
ey < 5 =7 W ey L <p <00 (11)

The generalization of (10) to #n-dimensional Euclidian
space was made in [17], which is given by:

1

—ﬁwfm@ (12)

Hf(x)=

f(x) ™
where f € Lj (R") and x = (x, -+, x,). The boundedness of
Hardy operator on LP(IR") was investigated in [18]. Without
going into the detailed history regarding the boundedness of
Hardy-type operators and their commutators on function
spaces, we refer the readers to see [19-25] and the references
therein.

Fractional calculus is one of the major fields in the mod-
ern ages due to its numerous applications in science and
engineering, see for instance [26-29]. Also, fractional integral
operators are an integral part of the mathematical analysis. In
this sense, Wu [30] defined the p-adic fractional Hardy
operator as:
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xy

Hpf (x) = J*tl | ‘f(t)dt,er;\{o}, (13)

where f € L;,(Q}) and 0 < 8 < n. Also, he gave the following
definition of its commutators:

Hp, = bHLf — Hi(bf). (14)

If 8 =0, the fractional p-adic Hardy type operator is thep
-adic Hardy operator [31, 32]. The commutator estimates of
fractional Hardy-type operators on Herz spaces were
obtained in [30, 32]. The articles [33, 34] are also important
with regard to the study of p-adic Hardy operators on func-
tion spaces.

Multilinear operators are studied in the analysis because
of their natural appearance in numerous physical phenome-
nons and their purpose is not merely to generalize the theory
of linear operators. We refer articles [35-37] for better
comprehension of multilinear operators. The m-linear Hardy
operator was defined by Fu et al. [19] and is given by:

1

WJ fi(ty) - f(ty)dt, - dt,, x e R"\ {0},
[(tyeost,, ) [ <[x]

Hm(fl’“"fm)(x) = ‘X‘
(15)

for f,, -+, f,, in L, (R"). In the same paper, they worked out
the precise norm of the very operator on Lebesgue spaces
with power weights.

Now, we introduce the definition of m-linear fractional p
-adic Hardy operator as

HE™ (v f) () = Hjnﬁj filtr)

<x|,

fm(tm)dtl dtm>

(16)

)l

xe Q) \ {0}, for f, -, f,, in Lj,.(Qp). The 2-linear frac-
tional p-adic Hardy operator will be referred to as a bilinear
fractional p-adic Hardy operator. If 8 =0, we get the m-lin-
ear p-adic Hardy operator, see [38], where the authors
obtained the sharp bounds of the m-linear p-adic Hardy
operator and Hardy-Littlewood-Pélya operator on Lebesgue
spaces with power weights. In [33], sharp bounds for the m
-linear p-adic Hardy operator on the product of p-adic Lebes-
gue spaces have been obtained in an efficient way. Next, we
define the commutator generated by the m-linear fractional
p-adic Hardy operator as follows. Let b; € L}OC(Q;‘) fori=1,
.-+, m, then

~
3

HY

I
NGE

HP’C"( e

S fw)()

5o ) (), (17)

=
N@‘

Il
—
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where

Higy (oo ) (9) = B G (fror++f,,) ()
—H%m(fl’ S i fibi i af ) (%)-
(18)

If B =0, we get the commutator operator defined in [39]
with R” as underlying space.

The aim of this article is to establish the CMO (central
bounded mean oscillation) and Lipschitz estimates for com-
mutators of a bilinear fractional p-adic Hardy operator on p
-adic function spaces such as p-adic Herz spaces and
Morrey-Herz spaces. Before moving to our main results, let
us specify that x, is the characteristic function of a sphere
Sy and C is a constant free from essential variables and its
value may change at its multiple occurrences. It is imperative
to recall the definition of homogeneous p-adic Herz spaces
and homogeneous p-adic Morrey-Herz spaces, p-adic CMO
spaces, and p-adic Lipschitz spaces.

Definition 1 [31]. Suppose 0<g,r<oco and a€R. The
homogeneous p-adic Herz space K:’r(Q;) is defined by

(@) e (@ e <o) 09

where

1/q
1 llker () = ( > P"“’Ilkallm(@n)> - (20

Obviously, K,*(Q?) = LU(Q) and K (Q1) = L4(|x[5).

Definition 2 [40]. Suppose 0 < g, 7 < 00,4 >0, and « € R. The
homogeneous p-adic Morrey-Herz space is defined as:

MK (@) = {7 (@GN O} ey <01
@)

where

1/r
||fHMKa;(QP) =:;12P ( Z PkaerXk”L‘i(Q")) - (22)

k=-00

. . - 0,0 . 19,0
It is eminent that MK:iq(Q;’) =K “q

(@) = L1(|x[p)-

4 (Qy) and MK

Definition 3 [31]. Let 1<q<oco. The space CMO*(Q;) is
defined to be the space of all measurable function f €

loc(Qn) if

||f||CMo’I(Q;) :s;:g <|B

where fB (1/|B x)dx.

AR

Definition 4 (see [40]). Suppose § is a positive real number.
The Lipschitz space A;(Q;) is defined to be the space of all

measurable function f on Qj such that

[f(x+h) - f(x)|

< 00. (24)
xheQ),h#0 |h|§

Hf”A(;(QP) =

2. CMO Estimates for HI; ZE

In the following section, we acquire the boundedness of com-
mutators of bilinear fractional p-adic Hardy operator on
homogeneous p-adic Herz spaces and Morrey-Herz spaces
by considering the symbol function from CMO spaces. We
start the section with few lemmas that are helpful to prove
the main results.

Lemma 5 (see [30]). Let b be a CMO function and 1< q<r
< 00, then

cMO' (@) € CMO*(Qp) and |[bllcagon g < I1Pllcaror -
(25)

Lemma 6 (see [30]). Let b be a CMO function, i, k € Z, then

[6(t) = by, | < [b(6) = by, | + 9"l = Kbl eyior () (26)

Now, we proceed to state our key results for this section.

Theorem 7. Let a, «,, o, be arbitrary real numbers, 1 <p, p,,

P29 qp 9, <000 B<ma; +ay=a(1lp;) + (1/p,) = (1/p),
and Bin=1/q, + 1/q, - 1/q. If for i = 1,2 with nlq, > a, then

2. AP n 0P, n 0P
HZ»Z is bounded from K, I(Qp) XK, Z(QP) to K, (Q;),

where Z = (b, b,),b;, b, € CM O™ {ga,}

Theorem 8. Let o, o}, a, be arbitrary real numbers, 1 <p,p,,
Py qp gy <000 B<nma; +a,=ad; +A,=10<A,4,<
00,(1/p,) + (1/p,) = (1/p), and BIn=1/q, + 1/q, — 1/q. If for
i=1,2 with n/q, + A;> a;, then H;’i is bounded from M

aphy n a3, n " —
L (Q )XMK (Q ) to MK (Q ), where b = (b,, b,)

b, b, € CMO™™ foa) :

Note that Theorem 7 is a special case of Theorem 8. So,
we only prove Theorem 8.
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Proof. Let (b;) B denotes the average of b; on the ball B, for nal o) | Lo\ o\
i=1,2 and k € Z. By definition, we have th=cr 2 (L/ ) dtl) (L})bl(tl) = (B, dt‘)

j=—0
P X Vg, /. 1/g," ) 4
) <|V\fz<tz)|qzdtz> (]dt) }

\ : :

1
q(QP) < Cpknq ~1/g,'~1/q,’ { Z Hle, pjn/q1 ( 5 }
q ilH

dx k R

) Hfzx,-ummp‘"’%}

k

Kynlg,

<Cllby |2, o 0"){ Y plihma
e

HHBb (foo )Xk

- x|4Cn-P)
Jsk\ ;

. . Ug)'
a
J |171(t1) - (bl)Bj dt1>
Bl

J (1 () (6) (b (%) — by (8,) i, dt,

[(tty)] <[],

q
SJ praCrPh <J( | [(f1(t)f>(t2)) (by (x) - bl(tl))|dtldt2> dx
Sk t.t, pgpl‘

< Cphaerp) L <J(‘ o ) - b1)y|dts dt2> dx

. Cpfkq(Zn*ﬁ)J ( J
S \J(toto) ], <p*

|f Xj

k q
(i-kynig,’
(@) ,:Zmp ”fZX:HL"Z(Q;)} :

(30)

To estimate II,, we use Lemma 6 along with the Holder’s
(Fi(t)fa()) by () - (boBk]dtldtz) D equality to have

=I+1I
27 k a
(27) 11 < G by (Z( —j)L el x 3 [ |fz<tz>\dtz)
[ 5 .
k 1/g, 1/q,'
, , < cprale )y, |NOI(Q>{ Y (k=) (J‘\L(tl)w'dtl) x (j_dtl)
To evaluate I, we use 1/q, +1/q, =11/g, +1/q, =1, e S K
and f/n=1/q, + 1/q, — 1/q. Applying Hélder’s inequality to k

/g, 1/g," ) 1
et i (J |fz<tz>\%dtz) (j dtz> }

k q
<C|lb, HCMO‘ (@) { z (k J)P Kyniq,' Hf‘XJ iy Z plikinta, HfZXIHLq,(QH)} .

1= Cprhaten <j b,(x) - \dx) <j jB|<f1<t1>fz<tz))dtldt2>q (31)
q

kg(2n-p) !
<GP Bl (\Bk\HLK 1= (b ‘ dx) Since a=a; +a,,A=A; +A,, and 1/p=1/p, +1/p,, by
k k e the definition of p-adic Morrey-Herz space along with
: (Z J fit)ldt x Y J \fz(tz)\dtz) Lemma 5 and Hélder’s inequality, we are down to
j=—c0JS; i=—co

. i Vg, /. g’
<Cpk"q( 1g,'-1/gy )||b H Z J Ifi(t)[ " dt, J dt,
CMO1(Q}) o \Us, s; P 2 _ kap || i
Vg, g, ) 1 H oo f2) H MK} (Q)) 7:?2)1) Z F
) (j it \%de) <j de) }

f1 fZ)Xk

1p
o)

SCHbIHCMOm {Mr}( supp { Z pkap x < Z )P(J K)niq,

i=—00

k qa
<CHb HCMo'J(Q ){ Z pj ol HfIXJHIM (Q i}mp(kk)n/qz HfZXiHqu(Q;)} .

j=—00
py P
. (i—k)niq,’
(28) Lz Z P ol o )> }
< CHbl HCMOmax {201} (Q;) X ful%pko)h{ Z pkotlpl
Now, we turn our attention towards estimating II : 1 L

lej

k
( Z (k- j)po‘—k)n/ql"
j=—00

2y U,
) |

. q
1= ¢ (j J, [ (o) - @0, |dt1dtz> dx

Py 1P
\ x supp ot Z pra: Z ptihme:’ Hsz;Huz( Q)
SCPknq(*l/qZL”ql’) ( Z I ’(fl(tl))( 1(t) - 1)3)“1‘1 i J |f2(t2>‘dt2> o o T
K s, i =00 JS; = C”bl ”(jMo“"ax {”’*QI'}(Q;)EI X Ey,
k K !
+ gpfmal(-ia —wq,)<2 L |(f1(t1))(( D, 1)BJ)|dtl .,Z L \fz(t2)|dt2> (32)

=10, +11,.

(29) where

ky k
= —kohy Ko py n
An easy application of Holder’s inequality simplifies the ~ F1=SupP {k_z P ( 2 —p Hf Xi
expression of I1;, that is: ' - d

2y Up)
ww) |
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koeZ

ko k §23 1/p,

E2 — Suppko/\z{ Z pktxzpz < Z P(Z*k)fl/qz ||f2Xi||qu (Q;)) } .
k=-c0 i=—00

(33)

To proceed further, we consider:

p,
qu (Q") )

) 1/p, (34)
(@)

Since n/q," + A, > @, and A, > 0, ultimately, we have the
following representation of E;.

HleJ

o

<p —j ( Z plo‘lpl
<P Fil g (-
HIMEG ) (Q)

qu Q“)

fx,

kq k P\ Y
—koA k) A-
e (£ (£ ) )
]:— 191

koez k= 00

k P\ Ve
— (k=j)(a,—niq,"=A,
< supp m,( Z pkm( — jypl e )) ) Hfl”mkg;;j;(og)
] —00

koez k=—00

= Ol llasics ()

(35)
In a similar fashion, E, can be estimated as
By < Cllfall et (o) (36)
Making use of above inequalities in (32), we get
H (f
H go, (1 fZ)HMK;‘jj(Q;) (37)
< CH b, HCMOmax {ea1'} (Q;) Hfl HMKZ;:; (@) Hfz HMK;Z;‘ZZ (@)

Similarly, we have

|, )

MG, (Q))
= CHszCMomax {aa1'} (@) /1 ||MK;‘;211 (@)

oz (op)-
(38)

Therefore, we complete the proof of Theorem 8.

3. Lipschitz Estimates for H””. on p-Adic Herz
Type Spaces p.b

In the present section, we establish Lipschitz estimates for
commutators of the bilinear fractional Hardy operator on
homogeneous p-adic Herz spaces and Morrey-Herz spaces.
The main results of the section are as follows.

Theorem 9. Let «, o), «, be arbitrary real numbers, 1 <p,p,,
P29 qp 9, <000 B<ma; +ay=a(1/p;) + (1/p,) = (1/p),

and (B+y)/n=1/q, +1iq, - 1/q. I for i = 1,2 with nlq,> a;,
then H‘;”ZE is bounded from KZj’p‘ (Qy) XKZ;PZ(Q;) to Kg’p

(@), where b= (b, b,).b;, by € A,(QL).

Theorem 10. Let o, o}, &0, be any arbitrary real numbers, 1
<PPpPrPdpd, <0< B<ma; +a,=ad; +1,=1,0<
Ap A, <oo,(1/p,) + (1/p,) = (1/p), and (B+y)in=1/q,+ 1/
q,—11q. If for i=1,2 with n/qi’+)t->0c<, then H;’i is

bounded from MKI I(Q”) MKm2 2((Q") to MK (Q")
(b}, b,).b;, b5 € Ay(Q;)'

where Z =

Since Theorem 9 can easily be deduced from Theorem
10, so we opt for proof of later theorem.

Proof . Since b, € A, (Qj), therefore, we have
|b1(x)_b1(t1)|5|X_t1|g||b1||(Q;)' (39)

Next, consider

HHﬁb (f1s fz)Xk

12 ()

j x4 6) j (1 (6)f(6)) (5, ()~ by (&), dt,
s I(tt:)], I,

k

q
dx

q

< [ p e ([ [(f1 (t)f>(t2)) (by (%) _bl(tl))ldtldt2> dx
J S [(tty)],<p*
q
< CHbll‘A,(Q”)pikq(zniﬁ) [x =t 71/, (t)f2(t)|de dt, | dx
e 5 \J Ittt =p* !

- q
< CHbl”Ay(Q;)Pikq(zniﬁ)Js (J o) <Pk|xg|f1(t1)fz(t2)dt,dt2> dx
k 182 p=

q
_ —kg(2n—p—
= Clle 5 (g™ ”Lk (j( . <Pk|f1(t1)fz(tz)dt1dtz> dx
vl |pS)
=1

(40)

To evaluate I, we use 1/q, + 1/q1' =1L,1/q, + 1/q2' =1,
and (B+vy)/n=1/q, +1/q,—-1/q. Applying Holder’s
inequality to get

q
I=C|b, ||AY(Q;)P7kq npyykn <L JB [(fi(t)f5( tz))dtldtz>

k k

q
:C|\b1||AV(Q,) fkq (2n-p- V+kn< Z J If,(t)|dt,. _Z L |f2(t2)dtz>
k I/Yq,
<Cllb, ||A},(Q;)p""‘f<‘”‘h i ){ > (J Ify (tl)q'dn)

j:,

A a, l/qu i 1f, (6], " dt, "
.L] 2\, )

a
<Clblla, Z pUmaN £y Z PN foill o ) -
(@)
J =00

(41)

q

’Lll



|15, )

By the definition of p-adic Morrey-Herz space, we have
MK (@)

1ip
A koap
([ )

k
sC||b1||Ay( supp { Z p (Z p((]—k)n)/(ql)
j=—00

k py P
/qz' .
‘ L1 Q” X 7Zoop ||f2X1||qu(Q;)> }

=sup p_kl’
ko€Z

[ (o fo)

le]‘

(42)

The rest of the proof follows from Theorem 8. So, we con-
clude the theorem.

4., Conclusion

Here, we obtained the CMO and Lipschitz estimates for the
commutators of the bilinear fractional p-adic Hardy operator
on p-adic Herz-type spaces.
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