
Research Article
Estimates for Commutators of Bilinear Fractional p-Adic Hardy
Operator on Herz-Type Spaces

Amjad Hussain ,1 Naqash Sarfraz,2 Ilyas Khan ,3 and Aisha M. Alqahtani 4

1Department of Mathematics, Quaid-I-Azam University, 45320, Islamabad 44000, Pakistan
2Department of Mathematics, University of Kotli Azad Jammu and Kashmir, Pakistan
3Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, P.O Box 66,
Majmaah 11952, Saudi Arabia
4Department of Mathematical Sciences, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia

Correspondence should be addressed to Amjad Hussain; ahabbasi123@yahoo.com, Ilyas Khan; ilyaskhan@tdtu.edu.vn,
and Aisha M. Alqahtani; alqahtani@pnu.edu.sa

Received 30 November 2020; Revised 5 January 2021; Accepted 11 January 2021; Published 4 February 2021

Academic Editor: Ravi Chokkalingam

Copyright © 2021 Amjad Hussain et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the current article, we investigate the boundedness of commutators of the bilinear fractional p-adic Hardy operator on p-adic
Herz spaces and p-adic Morrey-Herz spaces by considering the symbol function from central bounded mean oscillations and
Lipschitz spaces.

1. Introduction

For every x ≠ 0, there is a unique γ = γðxÞ ∈ℤ such that x =
pγm/n, where p ≥ 2 is a fixed prime number which is coprime
tom, n ∈ℤ: The mapping j·jp : ℚ→ℝ+ defines a norm onℚ
with a range

0f g ∪ pγ : γ ∈ℤf g: ð1Þ

It follows from Ostrowski’s theorem (see [1]) that each
nontrivial absolute value on ℚ is either the p-adic absolute
value j·jp or usual absolute value j·j. The p-adic norm j·jp is
an ultrametric on ℚ, that is

x + yj jp ≤max xj jp, yj jp
n o

: ð2Þ

The field of p-adic numbers is represented by ℚp and is
the completion of rational numbers with respect to the p
-adic norm j·jp: Any p-adic number is written in series form
(see [2]) as

⋯+d4p4 + d3p
3 + d2p

2 + d1p + d0 +
d−1
p

+⋯+
d−j+1
pj−1

+
d−j
pj

,

ð3Þ

where dk ∈ℤ/pℤ. Hence, each member ofℚp is written in the
form

⋯dkdk−1 ⋯ d1d0:d−1d−2 ⋯ d−j: ð4Þ

The higher dimensional vector space ℚn
p consists of

tuples x = ðx1,⋯, xnÞ, where xk ∈ℚp,k = 1,⋯, n, with the
following norm

xj jp = max
1≤k≤n

xkj jp: ð5Þ

For γ ∈ℤ and a = ða1, a2,⋯, anÞ ∈ℚn
p , we represent by

Bγ að Þ = x ∈ℚn
p : x − aj jp ≤ pγ

n o
, ð6Þ
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the closed ball with the center a and radius pγ and by

Sγ að Þ = x ∈ℚn
p : ∣ x − aj jp = pγ

n o
, ð7Þ

the corresponding sphere. For a = 0, we write Bγð0Þ = Bγ and
Sγð0Þ = Sγ. It is easy to see that the equalities

a0 + Bγ = Bγ a0ð Þ, a0 + Sγ = Sγ a0ð Þ, Sγ a0ð Þ = Bγ a0ð Þ \ Bγ−1 a0ð Þ,
ð8Þ

hold for all a0 ∈ℚn
p and γ ∈ℤ.

Since the spaceℚn
p is locally compact commutative group

under addition, so it leads to a translation-invariant Haar
measure dx which is normalized as followsð

B0

dx = B0j jH = 1, ð9Þ

where jEjH denotes the Haar measure of a measurable subset
E of ℚn

p : In addition, it is not hard to see that jBγðaÞj = pnγ,
jSγðaÞj = pnγð1 − p−nÞ, for any a ∈ℚn

p .
Recently, p-adic analysis has taken considerable attention

in harmonic analysis defined on the p-adic field [3–9] and
mathematical physics [10, 11]. Furthermore, applications of
p-adic analysis have been found in quantum gravity [12,
13], string theory [14], spring glass theory [15], and quantum
mechanics [11].

The Hardy operator was taken into consideration in [16]
and is given as below:

Hf xð Þ = 1
x

ðx
0
f tð Þdt, x > 0, ð10Þ

satisfying the following inequality:

Hfk kLp ℝ+ð Þ ≤
p

p − 1 fk kLp ℝ+ð Þ, 1 < p <∞: ð11Þ

The generalization of (10) to n-dimensional Euclidian
space was made in [17], which is given by:

Hf xð Þ = 1
xj jn
ð

tj j≤ xj j
f tð Þdt, ð12Þ

where f ∈ L1locðℝnÞ and x = ðx1,⋯, xnÞ. The boundedness of
Hardy operator on LpðℝnÞ was investigated in [18]. Without
going into the detailed history regarding the boundedness of
Hardy-type operators and their commutators on function
spaces, we refer the readers to see [19–25] and the references
therein.

Fractional calculus is one of the major fields in the mod-
ern ages due to its numerous applications in science and
engineering, see for instance [26–29]. Also, fractional integral
operators are an integral part of the mathematical analysis. In
this sense, Wu [30] defined the p-adic fractional Hardy
operator as:

Hp
β f xð Þ = 1

xj jn−βp

ð
tj jp≤ xj jp

f tð Þdt, x ∈ℚn
p \ 0f g, ð13Þ

where f ∈ Llocðℚn
pÞ and 0 ≤ β < n: Also, he gave the following

definition of its commutators:

Hp
β,b = bHp

β f −Hp
β bfð Þ: ð14Þ

If β = 0, the fractional p-adic Hardy type operator is thep
-adic Hardy operator [31, 32]. The commutator estimates of
fractional Hardy-type operators on Herz spaces were
obtained in [30, 32]. The articles [33, 34] are also important
with regard to the study of p-adic Hardy operators on func-
tion spaces.

Multilinear operators are studied in the analysis because
of their natural appearance in numerous physical phenome-
nons and their purpose is not merely to generalize the theory
of linear operators. We refer articles [35–37] for better
comprehension of multilinear operators. Them-linear Hardy
operator was defined by Fu et al. [19] and is given by:

Hm f1,⋯,f mð Þ xð Þ = 1
xj jmn

ð
t1,⋯,tmð Þj j< xj j

f1 t1ð Þ⋯ f m tmð Þdt1 ⋯ dtm, x ∈ℝn \ 0f g,

ð15Þ

for f1,⋯, f m in L1locðℝnÞ: In the same paper, they worked out
the precise norm of the very operator on Lebesgue spaces
with power weights.

Now, we introduce the definition of m-linear fractional p
-adic Hardy operator as

Hp,m
β f1,⋯,f mð Þ xð Þ = 1

xj jmn−β
p

ð
t1,⋯,tmð Þj jp≤ xj jp

f1 t1ð Þ⋯ f m tmð Þdt1 ⋯ dtm,

ð16Þ

x ∈ℚn
p \ f0g, for f1,⋯, fm in L1locðℚn

pÞ: The 2-linear frac-
tional p-adic Hardy operator will be referred to as a bilinear
fractional p-adic Hardy operator. If β = 0, we get the m-lin-
ear p-adic Hardy operator, see [38], where the authors
obtained the sharp bounds of the m-linear p-adic Hardy
operator and Hardy-Littlewood-Pólya operator on Lebesgue
spaces with power weights. In [33], sharp bounds for the m
-linear p-adic Hardy operator on the product of p-adic Lebes-
gue spaces have been obtained in an efficient way. Next, we
define the commutator generated by the m-linear fractional
p-adic Hardy operator as follows. Let bi ∈ L1locðℚn

pÞ for i = 1,
⋯,m, then

Hp,m
β,b

! f1,⋯,f mð Þ xð Þ = 〠
m

i=1
Hp,m

β,bi f1,⋯,f mð Þ xð Þ, ð17Þ
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where

Hp,m
β,bi f1,⋯,f mð Þ xð Þ = bi xð ÞHp,m

β f1,⋯,f mð Þ xð Þ
−Hp,m

β f1,⋯,f i−1, f ibi, f i+1,⋯,f mð Þ xð Þ:
ð18Þ

If β = 0, we get the commutator operator defined in [39]
with ℝn as underlying space.

The aim of this article is to establish the CMO (central
bounded mean oscillation) and Lipschitz estimates for com-
mutators of a bilinear fractional p-adic Hardy operator on p
-adic function spaces such as p-adic Herz spaces and
Morrey-Herz spaces. Before moving to our main results, let
us specify that χk is the characteristic function of a sphere
Sk, and C is a constant free from essential variables and its
value may change at its multiple occurrences. It is imperative
to recall the definition of homogeneous p-adic Herz spaces
and homogeneous p-adic Morrey-Herz spaces, p-adic CMO
spaces, and p-adic Lipschitz spaces.

Definition 1 [31]. Suppose 0 < q, r <∞ and α ∈ℝ: The
homogeneous p-adic Herz space _K

α,r
q ðℚn

pÞ is defined by

Kα,r
q ℚn

p

� �
= f ∈ Lq ℚn

p

� �
: fk kKα,r

q ℚn
pð Þ <∞

n o
, ð19Þ

where

fk kKα,r
q ℚn

pð Þ = 〠
∞

k=−∞
pkαr fχkk krLq ℚn

pð Þ
 !1/q

: ð20Þ

Obviously, _K
0,q
q ðℚn

pÞ = Lqðℚn
pÞ and _K

α/q,q
q ðℚn

pÞ = LqðjxjαpÞ:

Definition 2 [40]. Suppose 0 < q, r <∞,λ ≥ 0, and α ∈ℝ: The
homogeneous p-adic Morrey-Herz space is defined as:

M _K
α,λ
r,q ℚn

p

� �
= f ∈ Lqloc ℚn

p \ 0f g
� �

: fk kM _K
α,λ
r,q ℚn

pð Þ <∞
� �

,

ð21Þ

where

fk kM _K
α,λ
r,q ℚn

pð Þ = sup
k0∈ℤ

p−k0λ 〠
k0

k=−∞
pkαr fχkk krLq ℚn

pð Þ
 !1/r

: ð22Þ

It is eminent that M _K
α,0
r,q ðℚn

pÞ = _K
α,r
q ðℚn

pÞ and M _K
α/q,0
q,q

ðℚn
pÞ = LqðjxjαpÞ:

Definition 3 [31]. Let 1 ≤ q <∞: The space CMOqðℚn
pÞ is

defined to be the space of all measurable function f ∈
Lqlocðℚn

pÞ if

fk kCMOq ℚn
pð Þ = sup

γ∈ℤ

1
Bγ

�� ��
H

ð
Bγ

f xð Þ − f Bγ

��� ���qdx
 !1/q

<∞,

ð23Þ

where f Bγ = ð1/jBγjHÞ
Ð
Bγ
f ðxÞdx:

Definition 4 (see [40]). Suppose δ is a positive real number.
The Lipschitz space Λδðℚn

pÞ is defined to be the space of all
measurable function f on ℚn

p such that

fk kΛδ ℚn
pð Þ = sup

x,h∈ℚn
p ,h≠0

f x + hð Þ − f xð Þj j
hj jδp

<∞: ð24Þ

2. CMO Estimates for Hp,2
β,b

!

In the following section, we acquire the boundedness of com-
mutators of bilinear fractional p-adic Hardy operator on
homogeneous p-adic Herz spaces and Morrey-Herz spaces
by considering the symbol function from CMO spaces. We
start the section with few lemmas that are helpful to prove
the main results.

Lemma 5 (see [30]). Let b be a CMO function and 1 ≤ q < r
<∞, then

CMOr ℚn
p

� �
⊂ CMOq ℚn

p

� �
and bk kCMOq ℚn

pð Þ ≤ bk kCMOr ℚn
pð Þ:

ð25Þ

Lemma 6 (see [30]). Let b be a CMO function, i, k ∈ℤ, then

b tð Þ − bBk

�� �� ≤ b tð Þ − bbi
�� �� + pn i − kj j bk kCMO1 ℚn

pð Þ: ð26Þ

Now, we proceed to state our key results for this section.

Theorem 7. Let α, α1, α2 be arbitrary real numbers, 1 < p, p1,
p2, q, q1, q2 <∞,0 ≤ β < n,α1 + α2 = α,ð1/p1Þ + ð1/p2Þ = ð1/pÞ,
and β/n = 1/q1 + 1/q2 − 1/q: If for i = 1, 2 with n/qi′> αi, then
Hp,2

β,b
! is bounded from _K

α1 ,p1
q1

ðℚn
pÞ × _K

α2 ,p2
q2

ðℚn
pÞ to _K

α,p
q ðℚn

pÞ,

where b
!
= ðb1, b2Þ,b1, b2 ∈ CM Omax fq,q1g:

Theorem 8. Let α, α1, α2 be arbitrary real numbers, 1 < p, p1,
p2, q, q1, q2 <∞,0 ≤ β < n,α1 + α2 = α,λ1 + λ2 = λ,0 ≤ λ1, λ2 <
∞,ð1/p1Þ + ð1/p2Þ = ð1/pÞ, and β/n = 1/q1 + 1/q2 − 1/q: If for
i = 1, 2 with n/qi ′ + λi > αi, then Hp,2

β,b
! is bounded from M

_K
α1 ,λ1
p1 ,q1 ðℚn

pÞ ×M _K
α2 ,λ2
p2 ,q2 ðℚn

pÞ to M _K
α,λ
p,q ðℚn

pÞ, where b
!
= ðb1, b2Þ

,b1, b2 ∈ CMOmax fq,q1g:

Note that Theorem 7 is a special case of Theorem 8. So,
we only prove Theorem 8.
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Proof. Let ðbiÞBk
denotes the average of bi on the ball Bk for

i = 1, 2 and k ∈ℤ: By definition, we have

Hp,2
β,b1 f1, f2ð Þχk

��� ���q
Lq ℚn

pð Þ

=
ð
Sk

xj j−q 2n−βð Þ
p

ð
t1,t2ð Þj jp≤ xj jp

f1 t1ð Þf2 t2ð Þð Þ b1 xð Þ − b1 t1ð Þð Þdt1dt2
�����

�����
q

dx

≤
ð
Sk

p−kq 2n−βð Þ
ð

t1,t2ð Þj jp≤pk
f1 t1ð Þf2 t2ð Þð Þ b1 xð Þ − b1 t1ð Þð Þj jdt1dt2

 !q

dx

≤ Cp−kq 2n−βð Þ
ð
Sk

ð
t1,t2ð Þj jp≤pk

f1 t1ð Þf2 t2ð Þð Þ b1ð xð Þ − b1ð ÞBk

��� ���dt1dt2
 !q

dx

+ Cp−kq 2n−βð Þ
ð
Sk

ð
t1,t2ð Þj jp≤pk

f1 t1ð Þf2 t2ð Þð Þ b1ð t1ð Þ − b1ð ÞBk

��� ���dt1dt2
 !q

dx

= I + II:

ð27Þ

To evaluate I, we use 1/q1 + 1/q1 ′ = 1,1/q2 + 1/q2 ′ = 1,
and β/n = 1/q1 + 1/q2 − 1/q: Applying Hölder’s inequality to
get

I = Cp−kq 2n−βð Þ
ð
Sk

b1 xð Þ − b1ð ÞBk
��� ���qdx

 ! ð
Bk

ð
Bk

f1 t1ð Þf2 t2ð Þð Þj jdt1dt2
 !q

≤ Cp−kq 2n−βð Þ Bkj jH
1

Bkj jH

ð
Bk

b1 xð Þ − b1ð ÞBk

��� ���qdx
 !

� 〠
k

j=−∞

ð
Sj

f1 t1ð Þj jdt1 × 〠
k

i=−∞

ð
Si

f2 t2ð Þj jdt2
 !q

≤ Cpknq −1/q2′−1/q1′ð Þ b1k kqCMOq ℚn
pð Þ 〠

k

j=−∞

ð
Sj

f1 t1ð Þj jq1dt1
 !1/q1 ð

Sj

dt1

 !1/q1′
8<
:

× 〠
k

i=−∞

ð
Si

f2 t2ð Þj jq2dt2
 !1/q2 ð

Si

dt2

 !1/q2′
9=
;

q

≤ C b1k kqCMOq ℚn
pð Þ 〠

k

j=−∞
p j−kð Þn/q1′ f1χj

��� ���
Lq1 ℚn

pð Þ: 〠
k

i=−∞
p i−kð Þn/q2′ f2χik kLq2 ℚn

pð Þ
( )q

:

ð28Þ

Now, we turn our attention towards estimating II :

II = Cp−kq 2n−βð Þ
ð
Sk

ð
Bk

ð
Bk

f1 t1ð Þf2 t2ð Þð Þ b1 t1ð Þ − b1ð ÞBk
� ���� ���dt1dt2

 !q

dx

≤ Cpknq −1/q2′−1/q1′ð Þ 〠
k

j=−∞

ð
Sj

f1 t1ð Þð Þ b1 t1ð Þ − b1ð ÞBj

� ���� ���dt1 〠
k

i=−∞

ð
Si

f2 t2ð Þj jdt2
 !q

+ Cpknq −1/q2′−1/q1′ð Þ 〠
k

j=−∞

ð
Sj

f1 t1ð Þð Þ b1ð ÞBk
− b1ð ÞBj

� ���� ���dt1 〠
k

i=−∞

ð
Si

f2 t2ð Þj jdt2
 !q

= II1 + II2:

ð29Þ

An easy application of Hölder’s inequality simplifies the
expression of II1, that is:

II1 ≤ Cpknq −1/q2′−1/q1′ð Þ 〠
k

j=−∞

ð
Sj

f1 t1ð Þj jq1dt1
 !1/q1 ð

Sj

b1 t1ð Þ − b1ð ÞBj

��� ���q1′dt1
 !1/q1′

8<
:

× 〠
k

i=−∞

ð
Si

f2 t2ð Þj jq2dt2
 !1/q2 ð

Si

dt2

 !1/q2′
9=
;

q

≤ Cpknq −1/q2′−1/q1′ð Þ 〠
k

j=−∞
f1χj

��� ���
Lq1 ℚn

pð Þp
jn/q1′ 1

Bj

�� ��
H

ð
Bj

b1 t1ð Þ − b1ð ÞBj

��� ���q1′dt1
 !1/q1′

8<
:

× 〠
k

i=−∞
f2χik kLq2 ℚn

pð Þp
in/q2′

)q

≤ C b1k kqCMOq1 ′ ℚn
pð Þ 〠

k

j=−∞
p j−kð Þn/q1′ f1χj

��� ���
Lq1 ℚn

pð Þ: 〠
k

i=−∞
p i−kð Þn/q2′ f2χik kLq2 ℚn

pð Þ
( )q

:

ð30Þ

To estimate II2, we use Lemma 6 along with the Hölder’s
inequality to have

II2 ≤ Cpknq −1/q2′−1/q1′ð Þ b1k kq2CMO1 ℚn
pð Þ 〠

k

j=−∞
k − jð Þ

ð
Sj

f1 t1ð Þj jdt1 × 〠
k

i=−∞

ð
Si

f2 t2ð Þj jdt2
 !q

≤ Cpknq −1/q2′−1/q1′ð Þ b1k kqCMO1 ℚn
pð Þ 〠

k

j=−∞
k − jð Þ

ð
Sj

f1 t1ð Þj jq1dt1
 !1/q1

×
ð
Sj

dt1

 !1/q1′
8<
:

� 〠
k

i=−∞

ð
Si

f2 t2ð Þj jq2dt2
 !1/q2 ð

Si

dt2

 !1/q2′
9=
;

q

≤ C b1k kqCMO1 ℚn
pð Þ × 〠

k

j=−∞
k − jð Þp j−kð Þn/q1′ f1χj

��� ���
Lq1 ℚn

pð Þ: 〠
k

i=−∞
p i−kð Þn/q2′ f2χik kLq2 ℚn

pð Þ
( )q

:

ð31Þ

Since α = α1 + α2,λ = λ1 + λ2, and 1/p = 1/p1 + 1/p2, by
the definition of p-adic Morrey-Herz space along with
Lemma 5 and Hölder’s inequality, we are down to

Hp,2
β,b1 f1, f2ð Þ

��� ���
M _K

α,λ
p,q ℚn

pð Þ = sup
k0∈ℤ

p−k0λ 〠
k0

k=−∞
pkαp Hp,2

β,b f1, f2ð Þχk

��� ���p
Lq ℚn

pð Þ

 !1/p

≤ C b1k kCMOmax q,q1 ′f g ℚn
pð Þ supk0∈ℤ

p−k0λ 〠
k0

k=−∞
pkαp × 〠

k

j=−∞
k − jð Þp j−kð Þn/q1′

 (

· f1χj

��� ���
Lq1 ℚn

pð Þ 〠
k

i=−∞
p i−kð Þn/q2′ f2χik kLq2 ℚn

pð Þ
!p)1/p

≤ C b1k kCMOmax q,q1 ′f g ℚn
pð Þ × sup

k0∈ℤ
p−k0λ1 〠

k0

k=−∞
pkα1p1

(

· 〠
k

j=−∞
k − jð Þp j−kð Þn/q1′ f1χj

��� ���
Lq1 ℚn

pð Þ

 !p1
)1/p1

× sup
k0∈ℤ

p−k0λ2 〠
k0

k=−∞
pkα2p2 〠

k

i=−∞
p i−kð Þn/q2′ f2χik kLq2 ℚn

pð Þ
 !p2

( )1/p2

= C b1k kCMOmax q,q1 ′f g ℚn
pð ÞE1 × E2,

ð32Þ

where

E1 = sup
k0∈ℤ

p−k0λ1 〠
k0

k=−∞
pkα1p1 〠

k

j=−∞
k − jð Þp j−kð Þn/q1′ f1χj

��� ���
Lq1 ℚn

pð Þ

 !p1
( )1/p1

,
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E2 = sup
k0∈ℤ

p−k0λ2 〠
k0

k=−∞
pkα2p2 〠

k

i=−∞
p i−kð Þn/q2′ f2χik kLq2 ℚn

pð Þ
 !p2

( )1/p2

:

ð33Þ

To proceed further, we consider:

f1χj

��� ���
Lq1 ℚn

pð Þ = pjα1p−jα1 f1χj

��� ���p1
Lq1 ℚn

pð Þ

� 	1/p1

≤ p−jα1 〠
j

l=−∞
plα1p1 f1χj

��� ���p1
Lq1 ℚn

pð Þ

 !1/p1

≤ pj λ1−α1ð Þ f1k kM _K
α1,λ1
p1 ,q1 ℚn

pð Þ:

ð34Þ

Since n/q1 ′ + λ1 > α1 and λ1 > 0, ultimately, we have the
following representation of E1:

E1 ≤ sup
k0∈ℤ

p−k0λ1 〠
k0

k=−∞
pkα1p1 〠

k

j=−∞
k − jð Þp j−kð Þn/q1′pj λ1−α1ð Þ

 !p1
 !1/p1

f1k kM _K
α1,λ1
p1,q1 ℚn

pð Þ

≤ sup
k0∈ℤ

p−k0λ1 〠
k0

k=−∞
pkλ1p1 〠

k

j=−∞
k − jð Þp k−jð Þ α1−n/q1′−λ1ð Þ

 !p1
 !1/p1

f1k kM _K
α1,λ1
p1,q1 ℚn

pð Þ
= C f1k kM _K

α1,λ1
p1,q1 ℚn

pð Þ:

ð35Þ

In a similar fashion, E2 can be estimated as

E2 ≤ C f2k kM _K
α2,λ2
p2,q2 ℚn

pð Þ: ð36Þ

Making use of above inequalities in (32), we get

Hp,2
β,b1 f1, f2ð Þ

��� ���
M _K

α,λ
p,q ℚn

pð Þ
≤ C b1k kCMOmax q,q1 ′f g ℚn

pð Þ f1k kM _K
α1,λ1
p1,q1 ℚn

pð Þ f2k kM _K
α2,λ2
p2,q2 ℚn

pð Þ:
ð37Þ

Similarly, we have

Hp,2
β,b2 f1, f2ð Þ

��� ���
M _K

α,λ
p,q ℚn

pð Þ
≤ C b2k kCMOmax q,q1 ′f g ℚn

pð Þ f1k kM _K
α1,λ1
p1,q1 ℚn

pð Þ f2k kM _K
α2,λ2
p2,q2 ℚn

pð Þ:
ð38Þ

Therefore, we complete the proof of Theorem 8.

3. Lipschitz Estimates for Hp,2
β,b

! on p-Adic Herz
Type Spaces

In the present section, we establish Lipschitz estimates for
commutators of the bilinear fractional Hardy operator on
homogeneous p-adic Herz spaces and Morrey-Herz spaces.
The main results of the section are as follows.

Theorem 9. Let α, α1, α2 be arbitrary real numbers, 1 < p, p1,
p2, q, q1, q2 <∞,0 ≤ β < n,α1 + α2 = α,ð1/p1Þ + ð1/p2Þ = ð1/pÞ,

and ðβ + γÞ/n = 1/q1 + 1/q2 − 1/q: If for i = 1, 2 with n/qi′> αi,
then Hp,2

β,b
! is bounded from _K

α1 ,p1
q1

ðℚn
pÞ × _K

α2 ,p2
q2

ðℚn
pÞ to _K

α,p
q

ðℚn
pÞ, where b

!
= ðb1, b2Þ,b1, b2 ∈Λγðℚn

pÞ:

Theorem 10. Let α, α1, α2 be any arbitrary real numbers, 1
< p, p1, p2, q, q1, q2 <∞,0 ≤ β < n,α1 + α2 = α,λ1 + λ2 = λ,0 ≤
λ1, λ2 <∞,ð1/p1Þ + ð1/p2Þ = ð1/pÞ, and ðβ + γÞ/n = 1/q1 + 1/
q2 − 1/q: If for i = 1, 2 with n/qi ′ + λi > αi, then Hp,2

β,b
! is

bounded from M _K
α1 ,λ1
p1 ,q1 ðℚn

pÞ ×M _K
α2 ,λ2
p2 ,q2 ðℚn

pÞ to M _K
α,λ
p,q ðℚn

pÞ,
where b

!
= ðb1, b2Þ,b1, b2 ∈Λγðℚn

pÞ:

Since Theorem 9 can easily be deduced from Theorem
10, so we opt for proof of later theorem.

Proof . Since b1 ∈Λγðℚn
pÞ, therefore, we have

b1 xð Þ − b1 t1ð Þj j ≤ x − t1j jγp b1k k ℚn
pð Þ: ð39Þ

Next, consider

Hp,2
β,b1 f1, f2ð Þχk

��� ���q
Lq2 ℚn

pð Þ

=
ð
Sk

xj j−q 2n−βð Þ
p

ð
t1,t2ð Þj jp≤ xj jp

f1 t1ð Þf2 t2ð Þð Þ b1 xð Þ − b1 t1ð Þð Þdt1dt2
�����

�����
q

dx

≤
ð
Sk

p−kq 2n−βð Þ
ð

t1,t2ð Þj jp≤pk
f1 t1ð Þf2 t2ð Þð Þ b1 xð Þ − b1 t1ð Þð Þj jdt1dt2

 !q

dx

≤ C b1k kΛγ ℚn
pð Þp−kq 2n−βð Þ

ð
Sk

ð
t1,t2ð Þj jp≤pk

x − t1j jγp f1 t1ð Þf2 t2ð Þj jdt1dt2
 !q

dx

≤ C b1k kΛγ ℚn
pð Þp−kq 2n−βð Þ

ð
Sk

ð
t1,t2ð Þj jp≤pk

xj jγp f1 t1ð Þf2 t2ð Þj jdt1dt2
 !q

dx

= C b1k kΛγ ℚn
pð Þp−kq 2n−β−γð Þ

ð
Sk

ð
t1,t2ð Þj jp≤pk

f1 t1ð Þf2 t2ð Þj jdt1dt2
 !q

dx

= I

ð40Þ

To evaluate I, we use 1/q1 + 1/q1 ′ = 1,1/q2 + 1/q2 ′ = 1,
and ðβ + γÞ/n = 1/q1 + 1/q2 − 1/q: Applying Hölder’s
inequality to get

I = C b1k kΛγ ℚn
pð Þp−kq 2n−β−γð Þ+kn

ð
Bk

ð
Bk

f1 t1ð Þf2 t2ð Þð Þj jdt1dt2
 !q

= C b1k kΛγ ℚn
pð Þp−kq 2n−β−γð Þ+kn 〠

k

j=−∞

ð
Sj

f1 t1ð Þj jdt1: 〠
k

i=−∞

ð
Si

f2 t2ð Þj jdt2
 !q

≤ C b1k kΛγ ℚn
pð Þp

knq −1/q2′−1/q1′ð Þ 〠
k

j=−∞

ð
Sj

f1 t1ð Þj jq1dt1
 !1/q1(

�
ð
Sj

dt1

 !1/q1′

× 〠
k

i=−∞

ð
Si

f2 t2ð Þj jq2dt2
 !1/q2 ð

Si

dt2

 !1/q2′
9=
;

q

≤ C b1k kΛγ ℚn
pð Þ 〠

k

j=−∞
p j−kð Þn/q1′ f1χj

��� ���
Lq1 ℚn

pð Þ: 〠
k

i=−∞
p i−kð Þn/q2′ f2χik kLq2 ℚn

pð Þ
( )q

:

ð41Þ
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By the definition of p-adic Morrey-Herz space, we have

Hp,2
β,b1 f1, f2ð Þ

��� ���
M _K

α,λ
p,q ℚn

pð Þ

= sup
k0∈ℤ

p−k0λ 〠
k0

k=−∞
pkαp Hp,2

β,b f1, f2ð Þχk

��� ���p
Lq ℚn

pð Þ

 !1/p

≤ C b1k kΛγ ℚn
pð Þ sup

k0∈ℤ
p−k0λ 〠

k0

k=−∞
pkαp 〠

k

j=−∞
p j−kð Þnð Þ/ q1′ð Þ

 (

f1χj

��� ���
Lq1 ℚn

pð Þ × 〠
k

i=−∞
p i−kð Þnð Þ/q2′ f2χik kLq2 ℚn

pð Þ
!p)1/p

:

ð42Þ

The rest of the proof follows from Theorem 8. So, we con-
clude the theorem.

4. Conclusion

Here, we obtained the CMO and Lipschitz estimates for the
commutators of the bilinear fractional p-adic Hardy operator
on p-adic Herz-type spaces.
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