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Some sharp trapezoid and midpoint type inequalities for Lipschitzian bifunctions defined on a closed disk in Euclidean sense are
obtained by the use of polar coordinates. Also, bifunctions whose partial derivative is Lipschitzian are considered. A new
presentation of Hermite-Hadamard inequality for convex function defined on a closed disk and its reverse are given.
Furthermore, two mappings HðtÞ and hðtÞ are considered to give some generalized Hermite-Hadamard type inequalities in the
case that considered functions are Lipschitzian in Euclidean sense on a disk.

1. Introduction and Preliminaries

Consider that D ðC, RÞ is a closed disk in the plane centered
at the point C = ða, bÞ having the radius R > 0. In [1] (see also
[2]), the Hermite-Hadamard inequality for a convex function
defined on D ðC, RÞ has been obtained as follows:

Theorem 1. If the mapping F : D ðC, RÞ→ R is convex on
D ðC, RÞ, then one has the inequality

F Cð Þ ≤ 1

πR2

ð ð
D C ,Rð Þ

F x, yð Þdxdy ≤ 1
2πR

ð
∂ C ,Rð Þ

F ψð Þdl ψð Þ,

ð1Þ

where ∂ðC, RÞ is the circle centered at the point C = ða, bÞ with
radius R. The above inequalities are sharp.

First of all, we give the following result which is including
a new presentation of (1) and its reverse as well:

Theorem 2. For a continuous function F defined on a convex
subset A ⊂ℝ2,

(1) if F is convex on A , then for any DðC ,RÞ ⊂A , we
have

ð ð
D C ,Rð Þ

F x, yð ÞdA ≤
1
R

ð
∂ C ,Rð Þ

F x, yð Þ y − bð Þ2d∂, ð2Þ

where ∂ðC, RÞ is the boundary of D ðC, RÞ

(2) if (2) holds for all DðC ,RÞ ⊂A , then F is convex

Proof.

(1) Consider the change of coordinates M : ½a −R, a +
R� × ½0, 1�→DðC ,RÞ defined as

M x, sð Þ = x − a, 2s − 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x − að Þ2

q
+ b

� �
: ð3Þ
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It follows that

ð ð ð
D C ,Rð Þ

F x, yð ÞdA

= 2
ða+R
a−R

ð1
0
F s x,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x − að Þ2

q
+ b

� �
+ 1 − sð Þ x,−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x − að Þ2

q
+ b

� �� �

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x − að Þ2

q
dsdx ≤ 2

ða+R
a−R

ð1
0
sF

� x,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x − að Þ2

q
+ b

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x − að Þ2

q
dsdx + 2

ða+R
a−R

ð1
0
1 − sð ÞF

� x,−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x − að Þ2

q
+ b

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x − að Þ2

q
dsdx =

ða+R
a−R

F

� x,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x − að Þ2

q
+ b

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x − að Þ2

q
dx +

ða+R
a−R

F

� x,−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x − að Þ2

q
+ b

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x − að Þ2

q
dx:

ð4Þ

Now consider y = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðx − aÞ2

q
+ b in above inte-

grals with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ð∂y/∂xÞ2

q
=R/ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðx − aÞ2

q
Þ =R/ðy −

bÞ to obtain the desired result

(2) Suppose that there exist X1, X2 ∈A and s ∈ ð0, 1Þ
such that

F sX1 + 1 − sð Þx2ð Þ > sF X1ð Þ + 1 − sð ÞF X2ð Þ ð5Þ

SinceF is continuous onA , then there existsR > 0 and a
point C0 = ða0, b0Þ in convex combination of X1 and X2 such
that (5) holds on whole of DðC0,RÞ ⊂A . Now, if we follow
the proof of part (1) forF by the use of (5) onDðC0,RÞ and
∂ðC0,RÞ, then we have

ð ð
D C0,Rð Þ

F x, yð ÞdA > 1
R

ð
∂ C0,Rð Þ

F x, yð Þ y − bð Þ2d∂: ð6Þ

This contradiction proves the convexity of F on A .

We remind that the classic form of Hermite-Hadamard
inequality (see [3–5]) for a real valued convex function f
defined on ½a, b� is the following:

f
a + b
2

� �
b − að Þ ≤

ðb
a
f xð Þdx ≤ b − að Þ f að Þ + f bð Þ

2 : ð7Þ

Generally, in the literature associated to any Hermite-
Hadamard type inequality, there exist two inequalities which
we call them trapezoid and mid-point type inequalities. The
names “trapezoid” and “midpoint” comes from two classic
inequalities (due to their geometric interpretation) related
to the Hermite-Hadamard inequality obtained in [6, 7],
respectively:

∣
ðb
a
f xð Þdx − b − að Þ f að Þ + f bð Þ

2 ∣ ≤
1
8 b − að Þ2 ∣f ′ að Þ∣+∣f ′ bð Þ ∣

� �
,

ð8Þ

∣
ðb
a
f xð Þdx − b − að Þf a + b

2

� �
∣ ≤

1
8 b − að Þ2 ∣f ′ að Þ∣+∣f ′ bð Þ ∣

� �
,

ð9Þ
where f : I∘ ⊆ℝ→ℝ is a differentiable mapping on I∘, a, b
∈ I∘ with a < b and ∣f ′ ∣ is convex on ½a, b�. For more results
about convex functions, related inequalities, and generaliza-
tions of (7)–(9), see [8–23] and references therein.

Recently, in [17], the authors obtained the trapezoid and
midpoint type inequality related to (1) as follows,
respectively:

Theorem 3. Consider a set I ⊂ℝ2 with DðC ,RÞ ⊂ I∘. Sup-
pose that the mapping F : DðC ,RÞ→ℝ has continuous
partial derivatives in the diskDðC ,RÞwith respect to the var-
iables ρ and φ in polar coordinates. If for any constant φ ∈ ½
0, 2π�, the function ∣∂F/∂ρ ∣ is convex with respect to the var-
iable ρ on ½0,R� then

∣
1

2πR

ð
∂ C ,Rð Þ

F γð Þdl γð Þ − 1

πR2

ð ð
D C ,Rð Þ

F x, yð Þdxdy∣

≤
1
6π

ð
∂ C ,Rð Þ

∣
∂F
∂r

∣ γð Þdl γð Þ,

ð10Þ

∣
1

πR2

ð ð
D C ,Rð Þ

F x, yð Þdxdy − f Cð Þ∣ ≤ 2
3π

ð
∂ C ,Rð Þ

∣
∂F
∂r

∣ γð Þdl γð Þ:

ð11Þ
Note that inequality (10) is sharp.
As we can see in (8) and (9), the classic trapezoid and

midpoint type inequalities have been obtained for the func-
tions whose the first derivative absolute values are convex.
In [22, 24], the authors considered Lipschitzian mappings
instead of those whose the first derivative absolute values
are convex to obtain some midpoint and trapezoid type
inequalities:

Theorem 4 [24]. Let f : I∘ ⊆ℝ→ℝ be an M -Lipschitzian
mapping on I and a, b ∈ I with a < b. Then, we have the
inequalities

∣
ðb
a
f xð Þdx − b − að Þf a + b

2

� �
∣ ≤

M
4

b − að Þ,

∣
ðb
a
f xð Þdx − b − að Þ f að Þ + f bð Þ

2
∣ ≤

M
3

b − að Þ:
ð12Þ

Motivated by above works and results, we obtain some
trapezoid and midpoint type inequalities related to (1) for
Lipschitzian mappings (in Euclidean sense) defined on the
disk DðC ,RÞ in a plane. Also we investigate trapezoid and
mid-point type inequalities in the case that in polar coordi-
nates ðρ, φÞ, the derivative of considered function with
respect to the variable ρ is Lipschitzian. Furthermore, two
mappings HðtÞ and hðtÞ are considered to give some
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generalized Hermite-Hadamard type inequalities in the case
that the functions are Lipschitzian on a disk DðC ,RÞ.

Here, we should mention that in [25], we can find some
inequalities for the integral mean of Hölder continuous func-
tions defined on disks in a plane which in a special case leads
to trapezoid and midpoint type inequalities for a kind of
Lipschitzian mappings as the following:

Theorem 5. If f : DðC ,RÞ→ℝ satisfies the condition

∣f a, bð Þ − f x, yð Þ∣ ≤M1∣x − a∣ +M2 y − bj j, x, yð Þ ∈D C ,Rð Þ,
ð13Þ

where M1,M2 > 0, then we have the inequalities

∣
1

2πR

ð
∂ C ,Rð Þ

f γð Þdl γð Þ − 1

πR2

ð ð
D C ,Rð Þ

f x, yð Þdxdy∣ ≤ 2R
3π

M1 +M2ð Þ,

ð14Þ

∣
1

πR2

ð ð
D C ,Rð Þ

f x, yð Þdxdy − f Cð Þ∣ ≤ 4R
3π

M1 +M2ð Þ:

ð15Þ

The main point is that the Euclidean Lipschitz condition
used in this paper is a stronger condition than (13) in the case
that M1 =M2 and so our results obtained in (20) and (29)
will provide more accurate estimation compared to (14)
and (15). Furthermore, we obtain new trapezoid and mid-
point type inequalities of our function is Lipschitzian.

2. Main Results

In this section, first, we obtain some trapezoid and midpoint
type inequalities related to (1) for the case that our consid-
ered function is Lipschitzian (in Euclidean sense). Second,
we obtain some trapezoid and mid-point type inequalities
related to (1) for the case that the partial derivative of our
function with respect to the variable ρ in polar coordinates
ðρ, ϕÞ is Lipschitzian (in Euclidean sense).

Definition 6 [26]. A functionF : I ⊂ℝ2 →ℝ is said to satisfy
a Lipschitz condition (briefly K-Lipschitzian) on I with
respect to a norm k∙k, if there exists a constant K > 0 such
that

∣F X1ð Þ −F X2ð Þ∣ ≤K X1 − X2k k, ð16Þ

for any X1, X2 ∈ I.

If F : DðC ,RÞ→ℝ is Lipschitzian with respect to a
constant K > 0 and the Euclidean norm k∙k, then for any
X1 = ða + ρ1 cos φ1, b + ρ1 sin φ1Þ and X2 = ða + ρ2 cos φ2, b

+ ρ2 sin φ2Þ, we have

∣F X1ð Þ −F X2ð Þ∣ = ∣F a + ρ1 cos φ1, b + ρ1 sin φ1ð Þ
−F a + ρ2 cos φ2, b + ρ2 sin φ2ð Þ∣

≤K ρ1 cos φ1 − ρ2 cos φ2, ρ1 sin φ1 − ρ2 sin φ2ð Þk k
=K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ21 + ρ22 − 2ρ1ρ2 cos φ1 − φ2ð Þ

q
,

ð17Þ

for any ρ1, ρ2 ∈ ½0,R� and φ1, φ2 ∈ ½0, 2π�. Also, it is obvious
that if F : I ⊆ℝ2 →ℝ is Lipschitzian with respect to a con-
stant K > 0 on I, then, it is continuous and so integrable on
I.

2.1. F Is Lipschitzian. The first result of this section is the
trapezoid type inequality related to (1) for the case that our
considered function is Lipschitzian. We start with a lemma.

Lemma 7. Define a function F : DðC ,RÞ→ℝ as

F Xð Þ =F a + ρ cos φ, b + ρ sin φð Þ =K R − ρð Þ, ð18Þ

for fixedK > 0 and all 0 ≤ ρ ≤R, 0 ≤ φ ≤ 2π. Then, the func-
tion F is K-Lipschitzian.

Proof. Consider X1 = ða + ρ1 cos φ1, b + ρ1 sin φ1Þ and X2 =
ða + ρ2 cos φ2, b + ρ2 sin φ2Þ, for ρ1, ρ2 ∈ ½0,R� and φ1, φ2
∈ ½0, 2π�. So

∣F X1ð Þ −F X2ð Þ∣ = ∣F a + ρ1 cos φ1, b + ρ1 sin φ1ð Þ
−F a + ρ2 cos φ2, b + ρ2 sin φ2ð Þ∣

=K ∣ρ2 − ρ1∣ =K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ21 + ρ22 − 2ρ1ρ2

q
≤K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ21 + ρ22 − 2ρ1ρ2 cos φ1 − φ2ð Þ

q
=K a + ρ1 cos φ1, b + ρ1 sin φ1ð Þk

− a + ρ2 cos φ2, b + ρ2 sin φ2ð Þk
=K X1 − X2k k,

ð19Þ

for all X1, X2 ∈DðC ,RÞ.

Theorem 8. Suppose that the mapping F : DðC ,RÞ→ℝ is
Lipschitzian with respect to a constant K > 0 and the Euclid-
ean norm k∙k. Then,

∣
1

2πR

ð
∂ C ,Rð Þ

F ψð Þdl ψð Þ − 1

πR2

ð ð
D C ,Rð Þ

F x, yð Þdxdy∣ ≤ KR

3
,

ð20Þ

where ∂ðC ,RÞ is the boundary of DðC ,RÞ and ψ : ½0, 2π�
→ℝ2 is its corresponding curve. Also, inequality (20) is sharp.
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Proof. Since F is Lipschitzian with respect to K > 0 and the
Euclidean norm on DðC ,RÞ, then, we have

∣
ð2π
0

ðR
0
F a + ρ cos φ, b + ρ sin φð Þρdρdφ

−
ð2π
0

ðR
0
F a +R cos φ, b +R sin φð Þρdρdφ∣

≤
ð2π
0

ðR
0
∣F a + ρ cos φ, b + ρ sin φð Þ

−F a +Rcosφ, b +Rsinφð Þ∣ρdρdφ

≤K

ð2π
0

ðR
0

ρ −Rð Þ cos φ, ρ −Rð Þ sin φð Þk kρdρdφ

=K

ð2π
0

ðR
0
ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 +R2 − 2ρR

q
dρdφ

=K

ð2π
0

ðR
0
ρ R − ρð Þdρdφ = KπR3

3 :

ð21Þ

Now, consider the constant R and the curve ψ : ½0, 2π�
→ℝ2 defined by

ψ φð Þ:
x φð Þ = a +R cos φ,
y φð Þ = b +R sin φ,

(
φ ∈ 0, 2π½ �: ð22Þ

It is clear that ψð½0, 2π�Þ = ∂ðC ,RÞ, and then by integrat-
ing, we obtain that

ð
∂ C ,Rð Þ

F ψð Þdl ψð Þ =
ð2π
0
F x φð Þ, y φð Þð Þ ∂x φð Þ

∂φ

� �2
+ ∂y φð Þ

∂φ

� �2 !1/2

dφ

=R

ð2π
0
F a +Rcosφ, b +R sin φð Þdφ,

ð23Þ

where ½ð∂xðφÞÞ/∂φ�2 + ½ð∂yðφÞÞ/∂φ�2 = ðR2 sin2φ +R2

cos2φÞ1/2 =R, and ð∂xðφÞÞ/∂φ, ð∂yðφÞÞ/∂φ are derivatives
of “xðφÞ” and “yðφÞ” with respect to φ, respectively. So the
fact that

ð2π
0

ðR
0
F a +R cos φ, b +R sin φð Þρdρdφ

= R2

2

ð2π
0
F a +R cos φ, b +R sin φð Þdφ,

ð24Þ

implies that

ð2π
0

ðR
0
F a +R cos φ, b +R sin φð Þρdρdφ = R

2

ð
∂ C ,Rð Þ

F ψð Þdl ψð Þ:

ð25Þ

Also, by the use of polar coordinates, we get to

ð ð
D C ,Rð Þ

F x, yð Þdxdy =
ð2π
0

ðR
0
F a + ρ cos φ, b + ρ sin φð Þρdρdφ:

ð26Þ

Finally, by replacing (25) and (26) in (21) and then divid-
ing the result with “πR2,” we deduce the desired result. To
prove sharpness of (20), consider the function F : DðC ,R
Þ→ℝ defined by

F a + ρ cos φ, b + ρ sin φð Þ =K R − ρð Þ, ð27Þ

for fixed K > 0 and all 0 ≤ ρ ≤R, 0 ≤ φ ≤ 2π. The function f
is K-Lipschitzian by Lemma 7. It is not hard to see that Fð
a + ρ cos φ, b + ρsinφÞ ≥ 0 for all 0 ≤ ρ ≤R and also for the
case that ρ =R, we have Fða +R cos φ, b +R sin φÞ = 0.
Now applying these results in (21) implies that

∣
1

πR2

ð ð
D C ,Rð Þ

F x, yð Þdxdy − 1
2πR

ð
∂ C ,Rð Þ

F ψð Þdl ψð Þ∣

= 1
πR2

ð2π
0

ðR
0
F a + ρ cos φ, b + ρ sin φð Þρdρdφ

= 1
πR2

ð2π
0

ðR
0
K R − ρð Þρdρdφ = KR

3 :

ð28Þ

The following result is the midpoint type inequality
related to (1) for Lipschitzian functions defined on a closed
disk.

Theorem 9. Suppose that the mapping F : DðC ,RÞ→ℝ is
Lipschitzian with respect to a constant K > 0 and the Euclid-
ean norm k∙k. Then,

∣
1

πR2

ð ð
D C ,Rð Þ

F x, yð Þdxdy −F Cð Þ∣ ≤ 2KR

3
: ð29Þ

Furthermore, inequality (29) is sharp.

Proof. Since the mapping F satisfies a Lipschitz condition
with respect to a constant K > 0 and the Euclidean norm
on DðC ,RÞ, we have

∣F a + ρ cos φ, b + ρ sin φð Þ −F a, bð Þ∣ ≤K ρ cos φ, ρ sin φð Þk k =Kρ,
ð30Þ
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for all ρ ∈ ½0,R� and φ ∈ ½0, 2π�. It follows that

∣
ð2π
0

ðR
0
F a + ρ cos φ, b + ρ sin φð Þρdρdφ −

ð2π
0

ðR
0
F a, bð Þρdρdφ∣

≤
ð2π
0

ðR
0
∣F a + ρ cos φ, b + ρ sin φð Þ −F a, bð Þ∣ρdρdφ

≤K

ð2π
0

ðR
0
ρ2dρdφ = 2KπR3

3 :

ð31Þ

By the use of identity (26) in inequality (31), we obtain
that

∣
ð ð

D C ,Rð Þ
F x, yð Þdxdy − πR2 f Cð Þ∣ ≤ 2KπR3

3 : ð32Þ

Finally, it is enough to divide (32) with “πR2” to get the
result. For the sharpness of (29), consider the function F

: DðC ,RÞ→ℝ defined by

F a + ρ cos φ, b + ρ sin φð Þ =Kρ, ð33Þ

for K > 0, 0 ≤ ρ ≤R and 0 ≤ φ ≤ 2π. By a similar method
used in the proof of Lemma 7, the function F is K

-Lipschitzian. Also, it is obvious that Fða + ρ cos φ, b + ρ
sin φÞ ≥ 0 and Fða, bÞ = 0. So, we have

∣
1

πR2

ð ð
D C ,Rð Þ

F x, yð Þdxdy − f Cð Þ∣

= 1
πR2

ð2π
0

ðR
0
f a + ρ cos φ, b + ρ sin φð Þρdρdφ

= 1
πR2

ð2π
0

ðR
0
Kρ2dρdφ = 2KR

3 ,

ð34Þ

showing that inequality (29) is sharp.

Corollary 10. Suppose that U ⊂ℝ2 is an open set with DðC
,RÞ ⊂U. If F is a convex function defined on U, then Theo-
rem D of Section 41 in [26] implies that F satisfies a Lipschitz
condition on DðC ,RÞ with respect to a constant K > 0 and
so from inequalities (20) and (29) along with inequality (1),
we have the following results:

0 ≤
1

2πR

ð
∂ C ,Rð Þ

F ψð Þdl ψð Þ − 1

πR2

ð ð
D C ,Rð Þ

F x, yð Þdxdy ≤ KR

3
,

0 ≤
1

πR2

ð ð
D C ,Rð Þ

F x, yð Þdxdy −F Cð Þ ≤ 2KR

3
:

ð35Þ

In the following example, for a given function, it is illus-
trated how we can obtain a Lipschitz constant K for a real
valued bifunction defined on a disk.

Example 11. Consider Fðx, yÞ = ðx − aÞn + ðy − bÞn, ðx, yÞ ∈
DðC ,RÞ, n ∈ℕ. We find a Lipschitz constant for F as
follows:

For X1, X2 ∈DðC ,RÞ, consider the path η : ½0, 1�→Dð
C ,RÞ from X2 to X1 in DðC ,RÞ as

η sð Þ = sX1 + 1 − sð ÞX2, ð36Þ

for s ∈ ½0, 1�. The fundamental theorem of calculus implies
that

∣F X1ð Þ −F X2ð Þ∣ = ∣F η 1ð Þð Þ −F η 0ð Þð Þ∣ =
ð1
0

dF η sð Þð Þ
ds

ds
				

				:
ð37Þ

Also, the chain rule for differentiation implies that

dF η sð Þð Þ
ds

= ∇F η sð Þð Þ:η′ sð Þ = ∇F η sð Þð Þ X1 − X2ð Þ, ð38Þ

where ∇f is the gradient vector of F . So,

∣
ð1
0

dF η sð Þð Þ
ds

ds∣ = ∣
ð1
0
∇F η sð Þð Þ X1 − X2ð Þds∣

≤ X1 − X2k k
ð1
0
∇F η sð Þð Þk kds

≤ X1 − X2k k sup
w∈D C ,Rð Þ

∇F wð Þk k,

ð39Þ

which implies that

∣F X1ð Þ −F X2ð Þ∣ ≤ X1 − X2k k sup
w∈D C ,Rð Þ

∇F wð Þk k: ð40Þ

Now, we conclude that K = supw∈DðC ,RÞk∇FðwÞk (if
exists) is a Lipschitz constant for F . Therefore, for any ðx, y
Þ ∈DðC ,RÞ, we have

∇F x, yð Þ = n x − að Þn−1, n y − bð Þn−1
 �
, ð41Þ

and then by the use of polar transformation, we get

∇F wð Þk k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n x − að Þn−1
 �2 + n y − bð Þn−1
 �2q

= n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 cos2φð Þn−1 + ρ2 sin2φð Þn−1

q
≤ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 cos2φ + ρ2 sin2φð Þn−1

q
= nρn−1 ≤ nRn−1:

ð42Þ

So, we can chooseK = supw∈DðC ,RÞk∇FðwÞk = nRn−1 as
a Lipschitz constant for F on DðC ,RÞ.

Remark 12. According to the above example, if we have a
function F : DðC ,RÞ→ℝ such that K = supw∈DðC ,RÞk∇
FðwÞk <∞ with respect to the Euclidean norm k∙k, then
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we can consider K as a Lipschitz constant and then obtain
inequalities (20) and (29).

2.2. ∂F/∂ρ Is Lipschitzian. In this part, we investigate the
trapezoid and midpoint type inequalities in the case that in
polar coordinates ðρ, φÞ, the partial derivative of considered
function with respect to the variable ρ is Lipschitzian in the
Euclidean norm k∙k.

Theorem 13. Consider a set I ⊂ℝ2 with DðC ,RÞ ⊂ I∘ and a
mappingF : DðC ,RÞ→ℝ such that ∂F/∂ρ (partial deriva-
tive of F with respect to the variable ρ in polar coordinates) is
Lipschitzian with respect to a constant K > 0 and the Euclid-
ean norm k∙k. Then,

∣
1

2πR

ð
∂ C ,Rð Þ

F ψð Þdl ψð Þ − 1

πR2

ð ð
D C ,Rð Þ

F x, yð Þdxdy∣ ≤ KR2

4
:

ð43Þ

Proof. For any fixed φ ∈ ½0, 2π�, if we set

x ρð Þ = a + ρ cos φ,
y ρð Þ = b + ρ sin φ,

(
ð44Þ

then we obtain that ð½ð∂xðρÞÞ/∂ρ�2 + ½ð∂xðρÞÞ/∂ρ�2Þ1/2 =
ðsin2ðφÞ + cos2ðφÞÞ1/2 = 1, where ð∂xðρÞÞ/∂ρ, ð∂yðρÞÞ/∂ρ
are the derivatives of xðρÞ, yðρÞ, respectively, with respect
to the variable ρ in ½0,R�. By the above facts, using integra-
tion by parts and identities (25) and (26) obtained in Theo-
rem 8, we get

ð2π
0

ðR
0

∂F
∂ρ

a + ρ cos φ, b + ρ sin φð Þρ2dρdφ

=R2
ð2π
0
F a +R cos φ, b +R sin φð Þdφ

− 2
ð2π
0

ðR
0
F a + ρ cos φ, b + ρ sin φð Þρdρdφ

=R

ð
∂ C ,Rð Þ

F ψð Þdl ψð Þ − 2
ð ð

D C ,Rð Þ
F x, yð Þdxdy:

ð45Þ

On the other hand, we have

ð2π
0

ðR
0

∂F
∂ρ

a + ρ cos φ, b + ρ sin φð Þρ2dρdφ

=
ðπ
0

ðR
0

∂F
∂ρ

a + ρ cos φ, b + ρ sin φð Þρ2dρdφ

+
ð2π
π

ðR
0

∂F
∂ρ

a + ρ cos φ, b + ρ sin φð Þρ2dρdφ

=
ðπ
0

ðR
0

∂F
∂ρ

a + ρ cos φ, b + ρ sin φð Þρ2dρdφ

−
ðπ
0

ðR
0

∂F
∂ρ

a − ρ cos φ, b − ρ sin φð Þρ2dρdφ:

ð46Þ

So from (45) and (46), we obtain that

∣R
ð
∂ C ,Rð Þ

F ψð Þdl ψð Þ − 2
ð ð

D C ,Rð Þ
F x, yð Þdxdy∣

≤
ðπ
0

ðR
0
∣
∂F
∂ρ

a + ρ cos φ, b + ρ sin φð Þ

−
∂F
∂ρ

a − ρ cos φ, b − ρ sin φð Þ∣ρ2dρdφ

≤K

ðπ
0

ðR
0

2ρ cos φ, 2ρ sin φð Þk kρ2dρdφ = πKR4

2 :

ð47Þ

Finally, it is enough to divide (47) with “2πR2” to get the
desired result.

The following is a trapezoid type inequality for the case
that the partial derivative of considered function with respect
to the variable “ρ” is Lipschitzian with respect to the Euclid-
ean norm k∙k.

Theorem 14. Consider a set I ⊂ℝ2 with DðC ,RÞ ⊂ I∘ and a
mappingF : DðC ,RÞ→ℝ such that ∂F/∂ρ (partial deriva-
tive of f with respect to the variable ρ in polar coordinates) is
Lipschitzian with respect to a constant K > 0 and the Euclid-
ean norm k∙k. Then,

∣
1

πR2

ð ð
D C ,Rð Þ

F x, yð Þdxdy −F Cð Þ∣ ≤ 3KR2

4
: ð48Þ

Proof. Using the description provided in the beginning of
Theorem 13, it is not hard to see that

ð2π
0

ðR
0

∂F
∂ρ

a + ρ cos φ, b + ρ sin φð Þdρdφ

=
ð2π
0
F a +R cos φ, b +R sin φð Þdφ − 2πF Cð Þ:

ð49Þ

Also by the use of (23) in Theorem 8, we have

ð2π
0
F a +R cos φ, b +R sin φð Þdφ = 1

R

ð
∂ C ,Rð Þ

F ψð Þdl ψð Þ:

ð50Þ

On the other hand, we have

ð2π
0

ðR
0

∂F
∂ρ

a + ρ cos φ, b + ρ sin φð Þdρdφ

=
ðπ
0

ðR
0

∂F
∂ρ

a + ρ cos φ, b + ρ sin φð Þdρdφ

−
ðπ
0

ðR
0

∂F
∂ρ

a − ρ cos φ, b − ρ sin φð Þdρdφ:

ð51Þ
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Then,

1
R

ð
∂ C ,Rð Þ

F ψð Þdl ψð Þ − 2πF Cð Þ

=
ðπ
0

ðR
0

∂F
∂ρ

a + ρ cos φ, b + ρ sin φð Þ
�

−
∂F
∂ρ

a − ρ cos φ, b − ρ sin φð Þ
�
dρdφ:

ð52Þ

Since ∂F/∂ρ is K-Lipschitzian, we have that

∣
1

2πR

ð
∂ C ,Rð Þ

F ψð Þdl ψð Þ −F Cð Þ∣ ≤ KR2

2 : ð53Þ

Now triangle inequality and inequality (43) imply that

∣
1

πR2

ð ð
D C ,Rð Þ

F x, yð Þdxdy −F Cð Þ∣

≤ ∣
1

πR2

ð ð
D C ,Rð Þ

F x, yð Þdxdy − 1
2πR

�
ð
∂ C ,Rð Þ

F ψð Þdl ψð Þ∣ + ∣
1

2πR

ð
∂ C ,Rð Þ

F ψð Þdl ψð Þ −F Cð Þ∣

≤
KR2

4 + KR2

2 = 3KR2

4 :

ð54Þ

Here, we provide two examples in connection with
results obtained in this subsection.

Example 15. Define a function F : DðC ,RÞ→ℝ by

F a + ρ cos φ, b + ρ sin φð Þ =Mρ2, ð55Þ

for M > 0, 0 ≤ ρ ≤R, and 0 ≤ φ ≤ 2π. Since ∂F/∂ρ = 2Mρ,
then according to Remark 12, we can consider K =
supw∈DðC ,RÞk∇FðwÞk = 2M <∞ as a Lipschitz constant
with respect to the Euclidean norm k∙k. On the other hand,

F Cð Þ = F a, bð Þ = 0,ð ð
D C ,Rð Þ

F x, yð Þdxdy = MπR4

2 ,
ð
∂ C ,Rð Þ

F ψð Þdl ψð Þ = 2MπR3:

ð56Þ

So,

1
2πR

ð
∂ C ,Rð Þ

F ψð Þdl ψð Þ − 1
πR2

ð ð
D C ,Rð Þ

F x, yð Þdxdy = MR2

2 ,

ð57Þ

which shows that (43) is sharp. Also,

1
2πR

ð
∂ C ,Rð Þ

F ψð Þdl ψð Þ −F Cð Þ =MR2, ð58Þ

which implies that (53) is sharp.

Example 16. Consider a, b > 0, 0 <R ≤min fa, bg and 0 ≤ ρ
≤R. For n ∈ℕ and polar function Fðρ, φÞ = ða − ρÞn +
ðb − ρÞn which is defined on Dðða, bÞ,RÞ, by some calcula-
tions we can conclude that

∇
∂F
∂ρ

� �
ρ, φð Þ = n n − 1ð Þ a − ρð Þn−2 + b − ρð Þn−2, 0
 �

, ð59Þ

and then

K = sup
0≤ρ≤R,0≤φ≤2π

∇
∂F
∂ρ

� �
ρ, φð Þ

����
���� = n n − 1ð Þ an−2 + bn−2


 �
,

ð60Þ

is a Lipschitz constant for F . Then, from inequality (53), we
have that

∣A a −Rð Þn, b −Rð Þnð Þ − A an, bnð Þ∣ ≤ n n − 1ð ÞA an−2, bn−2

 �

R2

2 ,

ð61Þ

where Aða, bÞ = ða + bÞ/2 is arithmetic mean of a and b. Also
for the function F , by the use of (43) and (48), we can obtain
other arithmetic mean type inequalities.

3. Mappings H and h

In this section, by the use of two mappings HðtÞ: ½0, 1�→ℝ
and hðtÞ: ½0, 1�→ℝ defined in [1], we give some generalized
Hermite-Hadamard type inequalities in the case that consid-
ered functions are Lipschitzian with respect to Euclidean
norm k∙k on a disk DðC ,RÞ:

H tð Þ = 1
πR2

ð ð
D C ,Rð Þ

F tC + 1 − tð Þ x, yð Þð Þdxdy,

h tð Þ =
1

2πtR

ð
∂ C ,tRð Þ

, F γð Þdl γ tð Þð Þ, t ∈ 0, 1ð �,

F Cð Þ, t = 0:

8><
>:

ð62Þ

By the use of some properties for the mappings h and H,
we give some refinements for trapezoid and midpoint type
inequalities obtained in previous sections for K-Lipschit-
zian mappings F : DðC ,RÞ→ℝ.

Theorem 17. Suppose that the mappingF : DðC ,RÞ→ℝ is
Lipschitzian with respect to a constant K > 0 and the Euclid-
ean norm k∙k. Then, the mapping H is Lipschitzian with
respect to “ 2KR/3” and the mapping h is Lipschitzian with
respect to “KR.” The following inequalities also for all t ∈ ð
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0, 1Þ hold.

∣
1

πR2

ð ð
D C ,Rð Þ

F tC + 1 − tð Þ x, yð Þð Þdxdy − tF Cð Þ

−
1 − t

πR2

ð ð
D C ,Rð Þ

F x, yð Þdxdy∣ ≤ 4KRt 1 − tð Þ
3

,

ð63Þ

∣
1

2πtR

ð
∂ C ,tRð Þ

F γð Þdl γ tð Þð Þ − 1

πR2

ð ð
D C ,Rð Þ

F tC + 1 − tð Þ x, yð Þð Þdxdy∣

≤
2KRt

3
,

ð64Þ

∣
1

2πtR

ð
∂ C ,tRð Þ

F γð Þdl γ tð Þð Þ − t
2πR

ð
∂ C ,Rð Þ

F γð Þdl γð Þ − 1 − tð ÞF Cð Þ∣

≤ 2KRt 1 − tð Þ:
ð65Þ

Proof. Consider the following relations for t1, t2 ∈ ½0, 1�,
which prove the first part of this theorem:

∣H t1ð Þ −H t2ð Þ∣ ≤ 1
πR2

ð ð
D C ,Rð Þ

∣F t1C + 1 − t1ð Þ x, yð Þð Þ

−F t2C + 1 − t2ð Þ x, yð Þð Þ∣dxdy
≤
K ∣ t1 − t2 ∣

πR2

ð ð
D C ,Rð Þ

a − x, b − yð Þk kdxdy

= K ∣ t1 − t2 ∣
πR2

ð2π
0

ðR
0

ρcosφ, ρsinφð Þk kρdρdφ

= K ∣ t1 − t2 ∣
πR2

ð2π
0

ðR
0
ρ2dρdφ = 2KR

3 t1 − t2j j:

ð66Þ

Also,

∣h t1ð Þ − h t2ð Þ∣ = ∣
1

2πt1R

ð
∂ C ,t1Rð Þ

F γð Þdl γ t1ð Þð Þ − 1
2πt2R

�
ð
∂ C ,t2Rð Þ

F γð Þdl γ t2ð Þð Þ∣

= 1
πR2 ∣

ð2π
0

ðR
0
F a + t1R cos φ, b + t1R sin φð Þρdρdφ

−
ð2π
0

ðR
0
F a + t2R cos φ, b + t2R sin φð Þρdρdφ∣

≤
K ∣ t1 − t2 ∣

πR2

ð2π
0

ðR
0

R cos φ,R sin φð Þk kρdρdφ

=KR t1 − t2j j:
ð67Þ

For inequality (63), we use the definition of H and the
fact that F is K-Lipschitzian:

∣H tð Þ − tH 1ð Þ − 1 − tð ÞH 0ð Þ∣ ≤ t∣H tð Þ −H 1ð Þ∣ + 1 − tð Þ∣H tð Þ −H 0ð Þ∣
≤

t

πR2

ð ð
D C ,Rð Þ

∣F tC + 1 − tð Þ x, yð Þð Þ

−F Cð Þ∣dxdy + 1 − t

πR2

ð ð
D C ,Rð Þ

� ∣F tC + 1 − tð Þ x, yð Þð Þ −F x, yð Þ∣dxdy
≤
2Kt 1 − tð Þ

πR2

ð ð
D C ,Rð Þ

x − a, y − bð Þk kdxdy

= 2Kt 1 − tð Þ
πR2

ð2π
0

ðR
0
ρ2dρdφ = 4KRt 1 − tð Þ

3 :

ð68Þ

To prove (64), if t ∈ ð0, 1�, we consider the following iden-
tity presented in [1],

H tð Þ = 1
πR2t2

ð ð
D C ,tRð Þ

F x, yð Þdxdy: ð69Þ

Now, consider transformation

x ρð Þ = a + tρ cos φ ; ρ ∈ 0,R½ �, φ ∈ 0, 2π½ �, t ∈ 0, 1ð �,
y ρð Þ = b + tρ sin φ:

(

ð70Þ

This implies that

H tð Þ = 1
πR2

ð2π
0

ðR
0
F a + tρ cos φ, b + tρ sin φð Þρdρdφ:

ð71Þ

Also, we have

h tð Þ = 1
2πtR

ð
∂ C ,tRð Þ

F γð Þdl γ tð Þð Þ

= 1
2π

ð2π
0
F a + tR cos φ, b + tR sin φð Þdφ

= 1
πR2

ð2π
0

ðR
0
F a + tR cos φ, b + tR sin φð Þρdρdφ:

ð72Þ

So, we conclude that

∣h tð Þ −H tð Þ∣ ≤ 1
πR2

ð2π
0

ðR
0
∣F a + tR cos φ, b + tR sin φð Þ

−F a + tρ cos φ, b + tρ sin φð Þ∣ρdρdφ

≤
K

πR2

ð2π
0

ðR
0

t R − ρð Þ cos φ, t R − ρð Þ sin φð Þk kρdρdφ

= Kt

πR2

ð2π
0

ðR
0

R − ρð Þρdρdφ = KtR
3 :

ð73Þ
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Inequality (65) is a consequence of the fact that

∣h tð Þ − th 1ð Þ − 1 − tð Þh 0ð Þ∣ ≤ t∣h tð Þ − h 1ð Þ∣ + 1 − tð Þ h tð Þ − h 0ð Þj j:
ð74Þ

The details are omitted.

The following results also are of interest:

Theorem 18. Suppose that the mappingF : DðC ,RÞ→ℝ is
Lipschitzian with respect to a constant K > 0 and the Euclid-
ean norm k∙k. The following inequalities hold:

∣H tð Þ −H 0ð Þ∣ = ∣
1

πR2

ð ð
D C ,Rð Þ

F tC + 1 − tð Þ x, yð Þð Þdxdy

−
1

πR2

ð ð
D C ,Rð Þ

F x, yð Þdxdy∣ ≤ 2KtR
3

,

ð75Þ

for all t ∈ ð0, 1�.

∣H 1ð Þ −H tð Þ∣ = ∣F Cð Þ − 1

πR2

ð ð
D C ,Rð Þ

F tC + 1 − tð Þ x, yð Þð Þdxdy∣

≤
2K 1 − tð ÞR

3
,

ð76Þ

for all t ∈ ½0, 1Þ.

∣h tð Þ − h 0ð Þ∣ = ∣
1

2πtR

ð
∂ C ,tRð Þ

F γð Þdl γ tð Þð Þ −F Cð Þ∣ ≤KtR,

ð77Þ

for all t ∈ ð0, 1�, and

∣h 1ð Þ − h tð Þ∣ = ∣
1

2πR

ð
∂ C ,Rð Þ

F γð Þdl γð Þ − 1
2πtR

ð
∂ C ,tRð Þ

F γð Þdl γ tð Þð Þ∣

≤K 1 − tð ÞR,
ð78Þ

for all t ∈ ð0, 1Þ.

Proof. It is enough to consider special cases for t1 and t2 in
two inequalities (66) and (67) obtained in the proof of previ-
ous theorem.

Remark 19.

(1) For a convex function F : DðC ,RÞ→ℝ with K =
supw∈DðC ,RÞk∇FðwÞk <∞, if we consider (1), some
results obtained in [1], and the following inequality

F Cð Þ ≤ 1
πR2t2

ð ð
D C ,tRð Þ

F x, yð Þdxdy

≤
1

2πtR

ð
∂ C ,tRð Þ

F γð Þdl γ tð Þð Þ ≤ h 1ð Þ, t ∈ 0, 1ð Þ,

ð79Þ

then, we deduce that (64) and (75)–(78) hold without using
absolute value symbol.

(2) If we consider t = 1 in inequality (75) or consider t
= 0 in inequality (76), then, we recapture inequality
(29) in Theorem 9. Also from inequality (77), we
obtain this new inequality

∣
1

2πR

ð
∂ C ,Rð Þ

F γð Þdl γð Þ −F Cð Þ∣ ≤KR, ð80Þ

where F : DðC ,RÞ→ℝ is Lipschitzian with respect to a
constant K > 0 and the Euclidean norm k∙k.
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