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In this paper, dual spaces of large Fock spaces Fp
ϕ with 0 < p <∞ are characterized. Also, algebraic properties and equivalent

conditions for compactness of weakly localized operators are obtained on F
p
ϕð0 < p<∞Þ.

1. Introduction

Letℂn be the n-dimensional complex Euclidean space. Let dv
denote the Lebesgue volume measure on ℂn. For any two
points z = ðz1,⋯,znÞ and w = ðw1,⋯,wnÞ in ℂn, we write hz
,wi = z1w1 +⋯ + znwn and jzj =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jz1j2+⋯+jznj2

q
.

For each z ∈ℂn and r>0,

B z, rð Þ = w ∈ℂn : w − zj j < rf g ð1Þ

denotes the Euclidean ball centered at z with radius r.
Let Δ denote the Laplacian operator. Suppose ϕ : ℂn

⟶ℝ is a C2 plurisubharmonic function (see [1]). We say
that ϕ belongs to the weight class W if ϕ satisfies the follow-
ing statements:

(A) There exists c > 0 such that for z ∈ℂn

inf
z∈ℂn

sup
w∈B z,cð Þ

Δϕ wð Þ > 0 ; ð2Þ

(B) For any z ∈ ℂn and r > 0, Δϕ satisfies the reverse-
Hölder inequality

Δϕk kL∞ B z,rð Þð Þ ≤ Cr−2n
ð
B z,rð Þ

Δϕdv ð3Þ

for some 0 < C <∞;

(C) The eigenvalues of Hϕ are comparable, i.e., for every
z, u ∈ℂn, there exists δ0 > 0 such that

Hϕ zð Þu, u� �
≥ δ0Δϕ zð Þ uj j2, ð4Þ

where

Hϕ =
∂2ϕ

∂zj∂zk

 !
j,k

: ð5Þ

Suppose 0 < p <∞, ϕ ∈W. The space Lpϕ consists of all
Lebesgue measurable functions f on ℂn for which

fk kp,ϕ =
ð
ℂn

f zð Þj jpe−pϕ zð Þdv zð Þ
� �1

p

<∞: ð6Þ
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L∞ϕ is the set of all Lebesgue measurable functions f onℂn

with

fk k∞,ϕ = sup
z∈ℂn

f zð Þj je−ϕ zð Þ <∞: ð7Þ

LetHðℂnÞ be the family of all entire functions onℂn. The
large Fock space is defined as

Fp
ϕ = Lpϕ ∩H ℂnð Þ: ð8Þ

Fp
ϕis a Banach space under k·kp,ϕ if p ≥ 1, and Fp

ϕ is a

quasi-Banach space with distance dð f , gÞ = k f − gkpp,ϕ if 0 <
p < 1. Assume that ϕðzÞ = jzj2/2, then Fp

ϕ is the classical Fock
space which has been studied in [2–4] for example. Also, the
weight function ϕ on ℂn with the restriction that ddcϕ ⋍ d
dcjzj2 belongs to W, where d = �∂ + ∂ and dc = ð ffiffiffiffiffiffi

−1
p

/4Þð�∂ −
∂Þ. See [5, 6] for more details.

Particularly, F2
ϕ is a reproducing kernel Hilbert space.

That is, for any f ∈F2
ϕ, there exists a unique function Kz ∈

F2
ϕ so that f ðzÞ = h f , KziF2

ϕ
, where

f , gh iF2
ϕ
=
ð
ℂn
f zð Þ �g zð Þe−2ϕ zð Þdv zð Þ, f , g ∈F2

ϕ: ð9Þ

We say that the function Kzð·Þ is the reproducing kernel
of F2

ϕ. It is well known that the orthogonal projection P

: L2ϕ ⟶F2
ϕ is given by

Pf zð Þ =
ð
ℂn
f wð ÞK z,wð Þe−2ϕ wð Þdv wð Þ, f ∈ L2ϕ: ð10Þ

As we know if 1 ≤ p <∞ and q is the conjugate exponents
of p, then the dual space of Lpϕ can be identified with Lqϕ by the
integral pairing h,iF2

ϕ
defined by (9). In general, for 1 ≤ p <∞,

no less important than the Hahn-Banach theorem is the
Bergman projection to explore the dual spaces of Fp

ϕ. How-
ever, there are some differences for these quasi-Banach
spaces Fp

ϕð0 < p < 1Þ. To do this, we will mainly apply

Hörmander’s solution of the �∂ equation and the Lebesgue
dominated convergence theorem to consider the duality of
Fp

ϕ ð0 < p < 1Þ.
The “weakly localized” operators were introduced for the

first time in [7], and the authors studied the compactness of
these operators on the Bergman space Ap and weighted the
Bargmann-Fock space Fp

φ with 1 < p <∞. In fact, this kind
of operators is interesting since these weakly localized opera-
tors contain Toeplitz operators which are induced by
bounded symbols. Indeed, Toeplitz operators are a kind of
significant operators, and these Toeplitz operators induced
by diverse functions enjoy abundant properties, see more in
[8, 9]. As a further research, Hu, Lv, and Wick characterized
the compactness of these weakly localized operators on gen-
eralized Fock spaces Fp

φ with 0 < p ≤ 1, see [5]. Besides, in

generalized Bergman space setting [10], there are two ques-
tions: whether Toeplitz operators induced by bounded sym-
bols are weakly localized operators? Would these weakly
localized operators form an algebra?

This paper is devoted to consider the compactness of
these weakly localized operators on large Fock spaces Fp

ϕ

with 0 < p <∞. To ensure the validity of these fascinating
operators, we show these localization operators contain
Toeplitz operators induced by bounded symbols on Fp

ϕ,
see Theorem 16. Meanwhile, we also give affirmative
answer about the second question on our Fock spaces,
see Theorem 15.

Notice that although in the one-dimensional case, the
diverse weight function gives another Bergman metric, and
the resulting Bergman disk will be changed. Furthermore,
there is no inclusion relation between Fp

ϕ and Fq
ϕ if p ≠ q.

The above properties are much different from [5], so we have
to apply more techniques to discuss the compactness of
weakly localized operators in case 0 < p ≤ 1. For case 1 < p
<∞, the ideas to study compact weakly localized operators
in [7] are not entirely applicable to the situation we are dis-
cussing. Hence, we finally combine the skills in [5, 7] to con-
sider the compactness of these operators on Fp

ϕð1 < p<∞Þ.
Eventually, when p > 1, we bring new consequences even if
Fp

ϕ is the generalized Fock space in [5].
This paper is organized as follows. In Section 2, we give

some lemmas which will play key roles in our proofs. In
Section 3, we show some properties of projection and dual
spaces of large Fock spaces Fp

ϕ when 0 < p <∞. In Section
4, we conclude the algebraic properties and boundedness of
localization operators. Finally, in Section 5, we consider the
compactness of weakly localized operators on our Fock
spaces.

Throughout this paper, we write A ≲ B for two quantities
A and B if there is a constant C > 0 such thatA ≤ CB. Further-
more, A ⋍ B means that both A ≲ B and B ≲ A are satisfied.

2. Preliminaries and Basic Estimates

In this section, we will give some useful estimates for our
proofs. For z ∈ℂn, set

ρϕ zð Þ = sup r > 0 : sup
w∈B z,rð Þ

Δϕ wð Þ ≤ r−2
( )

: ð11Þ

In the following, we write ρðzÞ instead of ρϕðzÞ for short.
By [11] (see also [12]), we have the following

consequences.

Lemma 1. Let ϕ be as defined in (2). Then, the function ρ sat-
isfies the following properties:

(A) There exists M > 0 such that

sup
z∈ℂn

ρ zð Þ ≤M: ð12Þ
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(B) The function ρ is Lipschitz, that is

ρ zð Þ − ρ wð Þj j ≤ z −wj j, z,w ∈ℂn: ð13Þ

(C) For r ∈ ð0, 1Þ and w ∈ Bðz, rρðzÞ), there holds

1 − rð Þρ zð Þ ≤ ρ wð Þ ≤ 1 + rð Þρ zð Þ: ð14Þ

(D) There exist a, b > 0 such that

zj j−a ≲ ρ zð Þ ≲ zj jb, for zj j > 1: ð15Þ

Let r > 0, we writeBrðzÞ = Bðz, rρðzÞÞ and BðzÞ = B1ðzÞ.
In fact, it is easily obtained from estimate (14) that there is
some constant cr such that c−1r ρðzÞ ≤ ρðwÞ ≤ crρðzÞ, where
cr = ð1 − rÞ−1 for any r ∈ ð0, 1Þ. That is for every r ∈ ð0, 1Þ,
we have ρðwÞ ⋍ ρðzÞ whenever w ∈ BrðzÞ. Besides, (14) and
the triangle inequality give m1 and m2 so that

B zð Þ ⊂ Bm1 wð Þ andB wð Þ ⊂ Bm2 zð Þ, wheneverw ∈ B zð Þ:
ð16Þ

Given r > 0, there is a sequence fakg∞k=1 in ℂn such that
fBrðakÞgk covers ℂn, and the balls fBr/5ðakÞgk are pairwise
disjoint. We say the sequence fakgk is an r-lattice. For the r
-lattice fakgk and m > 0, there exists some integer N such
that any z in ℂn belongs to at most N balls of fBmrðakÞgk.
That is, for every z ∈ℂn,

〠
∞

k=1
χBmr akð Þ zð Þ ≤N: ð17Þ

Now, we are going to state the properties of the reproduc-
ing kernel Kz . Let ϕ ∈W, and it follows from [11–13] that

(A) For z,w ∈ℂn, there are constants ϵ, α > 0 such that

Kz wð Þj j ≲ eϕ zð Þ+ϕ wð Þ

ρ zð Þnρ wð Þn e
−ϵ w−zj j

ρ zð Þ
� �α

: ð18Þ

(B) For z ∈ℂn, there exists β ∈ ð0, 1Þ such that

Kz wð Þj j ⋍ eϕ zð Þ+ϕ wð Þ

ρ zð Þ2n , w ∈ Bβ zð Þ : ð19Þ

(C) For 0 < p ≤∞, there holds

Kzk kp,ϕ ⋍ eϕ zð Þρ zð Þ2n 1/p−1ð Þ, z ∈ℂn: ð20Þ

With the help of Lemmas 1 and 2 in [12], we get the fol-
lowing lemma.

Lemma 2. Given p, α > 0 and k ∈ℝ, there exists C > 0 such
that for z ∈ℂn

ð
ℂn
ρ wð Þke−p

w−zj j
ρ zð Þ
� �α

dv wð Þ ≤ Cρ zð Þ2n+k: ð21Þ

For r > 0 and z ∈ℂn, we write ðBrðzÞÞc =ℂn \ BrðzÞ. Let
dσ = ρ−2ndv. It is directly from ([14], Lemma 2.7) that we
have the next estimate.

Lemma 3. For any α > 0, p > 0, k ≥ 0, r ≥ 1, and z ∈ℂn, there
is a constant Cα,p,kðrÞ > 0 such that

ð
Br zð Þð Þc

w − zj jke−p
w−zj j
ρ zð Þ
� �α

dσ wð Þ ≤ Cα,p,k rð Þρ zð Þk, ð22Þ

and Cα,p,kðrÞ⟶ 0 whenever r⟶∞.

Wewill write kp,zðwÞ = KzðwÞ/kKzkp,ϕ for the normalized
reproducing kernel at z ∈ℂn, where 0 < p <∞ and w ∈ℂn.

Lemma 4. Let 0 < p ≤ 2. Then, for every z ∈ℂn, we have

ð
Br zð Þð Þc

kp,z wð Þe−ϕ wð Þ
��� ���pdv wð Þ→ 0 ð23Þ

as r⟶∞.

Proof. By joining (18) and (20), we have

ð
Br zð Þð Þc

kp,z wð Þe−ϕ wð Þ
��� ���pdv wð Þ ≃

ð
Br zð Þð Þc

Kz wð Þ
eϕ zð Þ+ϕ wð Þ

����
����
p

ρ zð Þ2np−2ndv wð Þ

≲ ρ zð Þnp−2n
ð

Br zð Þð Þc
ρ wð Þ2n−pne−p

w−zj j
ρ zð Þ
� �α

dσ wð Þ

≲ ρ zð Þnp−2n
ð

Br zð Þð Þc
e−p

w−zj j
ρ zð Þ
� �α

dσ wð Þ:

ð24Þ

Here, the last step is from the estimate (12). Thus, the
assertion follows from Lemma 3 with k = 0 for any fixed z
∈ℂn.

The next lemma is immediately from ([12], Lemma 4)
(see also ([11], Lemma 2) for any r > 0.

Lemma 5. For 0<p<∞, there is a constant C>0 such that for
each r > 0, f ∈HðℂnÞ and z ∈ℂn, we have

f zð Þj je−ϕ zð Þ ≤
c

rρ zð Þð Þ2n/p
ð
Br zð Þ

f wð Þe−ϕ wð Þ
��� ���pdv wð Þ

 !1/p

:

ð25Þ

For r>0 and some domainΩ ⊂ℂn, writeΩ+
r =
S

z∈ΩB
rðzÞ

. Let dð·, · Þ be the Euclidean distance, and we have the
following lemma.

3Journal of Function Spaces



Lemma 6. For 0 < p ≤ 1, 0 < r < 1, and α ∈ℝ, there is some
constant C (depending on p, n, and r) such that for any
domain Ω ⊂ℂn and f ∈HðℂnÞ,
ð
Ω

∣ f wð Þe−ϕ wð Þρ wð Þα ∣ dv wð Þ
� �p

≤ C
ð
Ω+

r

f wð Þe−ϕ wð Þρ wð Þα
��� ���pρ wð Þ 2p−2ð Þndv wð Þ:

ð26Þ

Proof. Consider the r-lattice L = fz1, z2,⋯,zj,⋯g in ℂn. For
0 < r < 1 and z ∈ℂn, we get ρðwÞ ≃ ρðzÞ whenever w ∈ BrðzÞ.
By letting w ∈ BrðzjÞ, it follows from (16) that

Br zj
� �

⊂ Bmr wð Þ ⊂ Bm2r zj
� �

, ð27Þ

where m =mðrÞ > 1. Also notice that ða + bÞp ≤ ap + bp

for positive a, b and 0 < p ≤ 1. Let r be sufficiently small so
that m2r < 1. Thus, the above inequality, (17) and (25) show

ð
Ω

f wð Þe−ϕ wð Þρ wð Þα
��� ���dv wð Þ

� �p

≤ 〠
z j∈L

ð
Ω∩Br z jð Þ

∣ f wð Þe−ϕ wð Þρ wð Þα ∣ dv wð Þ
0
@

1
A

p

≲ C 〠
z j∈L ,d z j ,Ωð Þ<rρ z jð Þ

sup
∣w−z j∣≤rρ z jð Þ

f wð Þe−ϕ wð Þ
��� ���pρ wð Þ 2n+αð Þp

≲ C 〠
z j∈L ,d z j ,Ωð Þ<rρ z jð Þ

ð
Bm

2r z jð Þ
f zð Þe−ϕ zð Þ
��� ���pρ zj

� � 2n+αð Þp−2ndv zð Þ

≃ C 〠
z j∈L ,d z j ,Ωð Þ<rρ z jð Þ

ð
Bm

2r z jð Þ
f zð Þe−ϕ zð Þ
��� ���pρ zð Þ 2n+αð Þp−2ndv zð Þ

≤ C
ð
Ω+

r

〠
z j∈L ,d z j ,Ωð Þ<rρ z jð Þ

χBm2r z jð Þ wð Þ f wð Þe−ϕ wð Þρ wð Þα
��� ���pρ wð Þ 2p−2ð Þndv wð Þ

≤ CN
ð
Ω+

r

f wð Þe−ϕ wð Þρ wð Þα
��� ���pρ wð Þ 2p−2ð Þndv wð Þ,

ð28Þ

which completes the proof.

3. Bergman Projection and Duality

The paper [12] points out that the Bergman projection P is
bounded on F

p
ϕ for 0 < p <∞. And there is no answer to

whether Pf = f on F
p
ϕ. In what follows, we use the classical

H€ormander theorem to prove that the projection P is an
identity operator on F

p
ϕð0 < p<∞Þ.

Theorem 7 ([15], Theorem 4.2.6). Let X be a pseudo-convex
open set in ℂn, φ a plurisubharmonic function in X, and a
> 0 . If ψ is in L2ð0,1Þ locally in X and �∂ψ = 0, then the equation
�∂u = ψ has a solution u ∈ L2locðXÞ such that

a
ð
X
u zð Þj j2e−φ zð Þ 1 + zj j2� �−a

dv zð Þ ≤
ð
X
ψ zð Þj j2e−φ zð Þ 1 + zj j2� �2−a

dv zð Þ:

ð29Þ

For 1 < p <∞, we let q be the conjugate exponent of p such
that 1/p + 1/q = 1.

Theorem 8. If 0 < p <∞ and f ∈Fp
ϕ , then Pf = f .

Proof. Suppose that h0ðzÞ ∈ C∞ðℂnÞ satisfying h0ðzÞ = 1 if ∣z
∣ ≤RðR > 1Þ, 0 < h0ðzÞ < 1 if R < ∣z ∣ <R + 1, h0ðzÞ = 0 if ∣z ∣ ≥
R + 1 and

�∂h0 zð Þ�� ��2 ≲ h0 zð Þ: ð30Þ

Set Ωj = fz : ∣z∣≤jRg where j = 1, 2,⋯. It follows that for
any z ∈Ωj,

h0,j zð Þ≔ h0
z
j

� �
= 1: ð31Þ

Because of (15), there are a, b > 0 so that jzj−a ≲ ρðzÞ ≲
jzjb whenever ∣z ∣ >1. Indeed, by choosing r > 0 sufficiently
small, we obtain ðΩc

jÞ+r ⊂ fw : ∣w∣>jðR − 1Þg when j is large
enough.

If 0 < p ≤ 1, then by Lemma 6, we have

Pf zð Þ − P f h0, j
� �

zð Þ�� ��p ≤ ð
wj j>jR

f wð ÞK z,wð Þj je−2ϕ wð Þdv wð Þ
 !p

≲
ð

Ωc
jð Þ+r

f wð ÞK z,wð Þj jpe−2pϕ wð Þρ wð Þ 2p−2ð Þndv wð Þ:

ð32Þ

This together with (18), Lemma 2 and Fubini’s theorem
give

Pf − P f h0,j
� ��� ��p

p,ϕ ≲
ð
ℂn

ð
Ωc

jð Þ+r
f wð ÞK z,wð Þj jpe−2pϕ wð Þρ wð Þ 2p−2ð Þne−pϕ zð Þdv wð Þdv zð Þ

=
ð

Ωc
jð Þ+r

f wð Þj jpe−2pϕ wð Þρ wð Þ 2p−2ð Þn
ð
ℂn

K z,wð Þj jpe−pϕ zð Þdv zð Þdv wð Þ

≲
ð

Ωc
jð Þ+r

f wð Þj jpe−pϕ wð Þdv wð Þ ≤
ð

wj j>j R−1ð Þ
f wð Þj jpe−pϕ wð Þdv wð Þ:

ð33Þ

We now let 1 < p <∞. Notice that estimate (18) and
Lemma 2 indicate

ð
ℂn
∣K z,wð Þ∣e−ϕ zð Þ−ϕ wð Þdv wð Þ ≲

ð
ℂn
ρ zð Þ−nρ wð Þ−ne−ϵ ∣w−z∣

ρ zð Þ
� �α

dv wð Þ <∞:

ð34Þ
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So, H€older’s inequality and Fubini’s theorem show

Pf − P f h0,j
� ��� ��p

p,ϕ ≲
ð
ℂn

ð
Ωc

j

f wð Þj jpe−pϕ wð Þ∣K z,wð Þ∣e−ϕ zð Þ−ϕ wð Þdv wð Þ

×
ð
Ωc

j

∣ K z,wð Þ ∣ e−ϕ zð Þ−ϕ wð Þdv wð Þ
 !p

q

dv zð Þ

≲
ð
Ωc

j

f wð Þj jpe−pϕ wð Þ
ð
ℂn
∣K z,wð Þ∣e−ϕ zð Þ−ϕ wð Þdv zð Þdv wð Þ

≲
ð
Ωc

j

f wð Þj jpe−pϕ wð Þdv wð Þ ≤
ð
∣w∣>j R−1ð Þ

f wð Þj jpe−pϕ wð Þdv wð Þ:

ð35Þ

And then, for 0 < p <∞, we get

lim
j⟶∞

Pf − P f h0, j
� ��� ��p

p,ϕ ≤ C lim
j⟶∞

ð
∣w∣>j R−1ð Þ

f wð Þj jpe−pϕ wð Þdv wð Þ = 0:

ð36Þ

This combined with (25) means that

Pf zð Þ − P f h0,j
� �

zð Þ�� �� ≤ Ceϕ zð Þρ zð Þ−2n
p ∥Pf − P f h0,j

� �
∥p,ϕ ⟶ 0,

ð37Þ

as j⟶∞.
On the other hand, applying Theorem 7 with a = 2 to the

solution of �∂u = ψ in L2ϕ, we have

ð
X
u wð Þj j2e−2ϕ wð Þ 1 + wj j2� �−2

dv wð Þ ≤
ð
X
ψ wð Þj j2e−2ϕ wð Þdv wð Þ:

ð38Þ

Hence, for z ∈Ωj and let j be sufficiently large, it follows
immediately from esitmates (25), (30), and Lemma 2 that

f zð Þ − P f h0,j
� �

zð Þ�� ��2e−2ϕ zð Þρ zð Þ4np
= f h0,j zð Þ − P f h0,j

� �
zð Þ�� ��2e−2ϕ zð Þρ zð Þ4np

≲ ρ zð Þ2n 2
p−1ð Þ
ð
Br zð Þ

f h0,j wð Þ − P f h0,j
� �

wð Þ�� ��2 1 + wj j2� �−2
e−2ϕ wð Þe−

∣z−w∣
ρ zð Þ
� �α

dv wð Þ

≲ ρ zð Þ2n 2
p−1ð Þ
ð
ℂn

f h0,j wð Þ − P f h0,j
� �

wð Þ�� ��2 1 + wj j2� �−2
e−2ϕ wð Þe−

∣z−w∣
ρ zð Þ
� �α

dv wð Þ

≲ ρ zð Þ2n 2
p−1ð Þ
ð
ℂn

1
j
f wð Þ�∂h0

w
j

� �����
����
2
e−2ϕ wð Þe−

∣z−w∣
ρ zð Þ
� �α

dv wð Þ

≲
1
j2
ρ zð Þ2n 2

p−1ð Þ∥f ∥2p,ϕ
ð
jR<∣w∣<j R+1ð Þ

ρ wð Þ−4np e− ∣z−w∣
ρ zð Þ
� �α

dv wð Þ ≲ 1
j2
∥f ∥2p,ϕ:

ð39Þ

By combining the above estimate and (37), we finally
obtain

∣Pf zð Þ − f zð Þ∣ ≤ ∣Pf zð Þ − P f h0,j
� �

zð Þ∣ + ∣P f h0,j
� �

zð Þ − f zð Þ∣⟶ 0,
ð40Þ

as j⟶∞. This ends the proof.

We now proceed to identify the dual space of Fp
ϕ when

0 < p <∞. Arguing as in [16], we let

F∞
s,ϕ = f ∈H ℂnð Þ: ∥f ∥∞,s,ϕ = sup

z∈ℂn
∣f zð Þ ∣ ρ zð Þse−ϕ zð Þ
	 


<∞
� �

:

ð41Þ

Theorem 9. Suppose 0 < p ≤ 1. Then, ðFp
ϕÞ

∗ =F∞
2n−2n/p,ϕ.

Proof. For any f ∈Fp
ϕ, consider Lgð·Þ = h·, gi where g ∈

F∞
2n−2n/p,ϕ. Then, (25) says

Lg fð Þ�� �� ≤ ð
ℂn
∣f zð Þg zð Þ∣e−2ϕ zð Þdv zð Þ

≤ sup
z∈ℂn

∣ f zð Þ ∣ e−ϕ zð Þρ zð Þ2np
� �1−pð

ℂn
∣g zð Þ∣ρ zð Þ2n−2n

p e−ϕ zð Þ f zð Þe−ϕ zð Þ
��� ���pdv zð Þ

≤ C∥g∥∞,2n−2n
p ,ϕ∥f ∥p,ϕ:

ð42Þ

The above inqueality shows that Lg is a bounded linear

functional on F
p
ϕ and ∥Lg∥≤C∥g∥∞,2n−2n/p,ϕ.

For w ∈ℂn, define gðwÞ = �LðKð·,wÞÞ where L is a
bounded linear functional on F

p
ϕ. Pick an r > 0 such that w

+ Δw ∈ BrðwÞ. For some m > 0 and every z ∈ℂn, using Cau-
chy’s estimates, we have

K w + Δw, zð Þ − K w, zð Þ
Δw

����
����
p

≤ sup
0≤t≤1

∂K
∂w

w + tΔw, zð Þ
����

����
p

≤
1

mrρ wð Þð Þp sup
ξ−wj j=mrρ wð Þ

K ξ, zð Þj j
 !p

≲
1

r2n+pρ wð Þ2n+p
ð
Bm2r wð Þ

K u, zð Þj jpdv uð Þ:

ð43Þ

We note that for any fixed w ∈ℂn, the function

ðÐ Bm2rðwÞjKðu, ·Þj
pdvðuÞÞ1/p is in Lpϕ. Fix w and z, and we get

lim
Δw⟶0

K w + Δw, zð Þ − K w, zð Þ
Δw

= ∂K
∂w

w, zð Þ: ð44Þ

Thus Lebesgue dominated convergence theorem indi-
cates

lim
Δw⟶0

K w + Δw, ·ð Þ − K w, ·ð Þ
Δw

−
∂K
∂w

w, ·ð Þ
����

����
p,ϕ

= 0: ð45Þ

Hence, for any L ∈ ðFp
ϕÞ

∗
, we obtain gðwÞ ∈HðℂnÞ since

g′ wð Þ = lim
Δw⟶0

�L K ·,w + Δwð Þð Þ − �L K ·,wð Þð Þ
Δw

=
�

L
�∂K

∂w
w, ·ð Þ

� �¯

,

ð46Þ
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and ∣gðwÞ ∣ ≤kLkkKð·,wÞkp,ϕ ≤ CkLkeϕðwÞρðwÞ2nð1/p−1Þ.
The result is

g ∈F∞
2n−2n

p ,ϕ
and gk k∞,2n−2n

p ,ϕ
≤ C Lk k: ð47Þ

To complete the proof, it only remains to show that

L fð Þ =
ð
ℂn
f wð Þ �g wð Þe−2ϕ wð Þdv wð Þ: ð48Þ

Let fangn be an r-lattice. For 0 < R <∞, we consider

Sr,R fð Þ zð Þ =〠
n

K z, anð Þ
ð

Br anð Þ\
[
j<n

Br ajð Þ
 !T

B 0,Rð Þ
f wð Þe−2ϕ wð Þdv wð Þ:

ð49Þ

Since �Bð0, RÞ is compact, there exists k > 0 so that
Sk

n=1
BrðanÞ ⊃ Bð0, RÞ. Moreover, we see that Sr,Rð f Þ ∈HðℂnÞ
because it is actually a finite sum of analytic functions. And
there is R′ > R such that

Sk
n=1B

rðanÞ ⊂ Bð0, R′Þ. It follows
from (43) that

Sr,R fð Þ zð Þ − P fχB 0,Rð Þ
	 


zð Þ
��� ���

= ∣〠
n

ð
Br anð Þ\

[
j<n

Br ajð Þ
 !T

B 0,Rð Þ
K z, anð Þ − K z,wð Þð Þf wð Þe−2ϕ wð Þdv wð Þ∣

≤ sup
w∈B 0,Rð Þ

∣ f wð Þe−2ϕ wð Þ ∣

 !
〠
n

ð
Br anð Þ\

[
j<n

Br ajð Þ
 !T

B 0,Rð Þ
K z, anð Þ − K z,wð Þj jdv wð Þ

≲ sup
w∈B 0,Rð Þ

f wð Þe−2ϕ wð Þ
��� ���

 !
〠

Br anð Þ
T

B 0,Rð Þ
sup
∣ξ∣<2R′

K ξ, zð Þj j
 !

rρ anð Þ½ �2n

≲ C Rð Þ r2n sup
∣ξ∣<2R′

∣ K ξ, zð Þ ∣
 !

ð50Þ

goes to 0 by letting r⟶ 0, where χBð0,RÞ denotes the
characteristic function for the ball Bð0, RÞ. This means that

lim
r⟶0

Sr,R fð Þ = P fχB 0,Rð Þ
	 


: ð51Þ

It is clear that, for each fixed z ∈ℂn, sup
∣an∣≤2R′

∣ Kðan, zÞ ∣ is

in Lpϕ. Hence, by the following estimate,

Sr,R fð Þ zð Þ�� �� ≤ sup
w∈B 0,Rð Þ

f wð Þe−2ϕ wð Þ
��� ���

 !
〠

Br anð Þ\
S

j<n
Br ajð Þ

	 
T
B 0,Rð Þ

ð
Br anð Þ

K an, zð Þj jdv wð Þ

≲ C Rð Þ sup
anj j≤2R′

K an, zð Þj j,

ð52Þ

and the Lebesgue dominated convergence theorem we
deduce

lim
r⟶0

∥Sr,R fð Þ − P fχB 0,Rð Þ
	 


∥p,ϕ = 0: ð53Þ

Furthermore, we claim that

∣L Sr,R fð Þð Þ ·ð Þ −
ð

wj j≤R
f wð ÞL K ·,wð Þð Þe−2ϕ wð Þdv wð Þ∣

≤ sup
w∈Br anð Þ

T
B 0,Rð Þ

∣ L K ·, anð Þ − K ·,wð Þð Þ ∣
0
@

1
Að

wj j≤R
∣f wð Þ∣e−2ϕ wð Þdv wð Þ

≤ C Rð Þ Lk k sup
w∈Br anð Þ

T
B 0,Rð Þ

K ·, anð Þ − K ·,wð Þk kp,ϕ

0
@

1
A⟶ 0,

ð54Þ

as r⟶ 0. Here, the last assertion follows from fact that
kKð·, anÞ − Kð·,wÞkp,ϕ ⟶ 0 whenever r⟶ 0. To see this,
by letting r⟶ 0 and w ∈ BrðanÞ, we then get Kw ⟶ Kan

.
Indeed, (18) gives us a dominating function, and it is from
Lemma 2 that the function is in Lpϕ since

kðeϕðwÞ+ϕðzÞ/ρðwÞnρðzÞnÞe−ϵðjz−wj/ρðwÞÞαkp,ϕ ≲ eϕðwÞρðwÞ2n/p−2n
for any fixed w. Then, the desired assertion holds by Lebes-
gue dominated convergence theorem again. So, we have

lim
r⟶0

L Sr,R fð Þð Þ =
ð
∣w∣≤R

f wð ÞL K ·,wð Þð Þe−2ϕ wð Þdv wð Þ: ð55Þ

Therefore, we have by Theorem 8, (51) and (55) that

L fð Þ = lim
R⟶∞

L P fχB 0,Rð Þ
	 
	 


= lim
R⟶∞

lim
r⟶0

L Sr,R fð Þð Þ

= lim
R⟶∞

ð
∣w∣≤R

f wð ÞL K ·,wð Þð Þe−2ϕ wð Þdv wð Þ

=
ð
ℂn
f wð ÞL K ·,wð Þð Þe−2ϕ wð Þdv wð Þ:

ð56Þ

This finishes the proof.

Theorem 10. Suppose 1 < p <∞. Then, ðFp
ϕÞ

∗ =F
q
ϕ under

the pairing

f , gh i =
ð
ℂn
f zð Þ �g zð Þe−2ϕ zð Þdv zð Þ: ð57Þ

Proof. If g ∈Fq
ϕ, define

Lg ·ð Þ = ·, gh i: ð58Þ

For any f ∈Fp
ϕ, H€older’s inequality gives

∣Lg fð Þ∣ ≤
ð
ℂn
∣f zð Þ �g zð Þ∣e−2ϕ zð Þdv zð Þ ≤ ∥g∥q,ϕ∥f ∥p,ϕ: ð59Þ

This means that Lg is a bounded linear functional on F
p
ϕ

and ∥Lg∥≤∥g∥q,ϕ.
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On the other hand, let L : F
p
ϕ ⟶ℂ be a bounded linear

functional. The Hahn-Banach extension theorem implies
that L can be extended to a bounded linear functional ~L on
Lpϕ. It follows from the duality theory of Lpϕ that there is a

function G ∈ Lqϕ such that ∥G∥q,ϕ ≤ ∥~L∥ = ∥Lg∥ and

~L fð Þ = f ,Gh i, f ∈ Lpϕ: ð60Þ

Set g = PG, then ∥g∥q,ϕ ≤ ∥P∥∥G∥q,ϕ since P is bounded.

Also, note that Theorem 8 shows Pf = f for f ∈Fp
ϕ. So, (60)

indicates

~L fð Þ = f ,Gh i = Pf ,Gh i = f , PGh i = f , gh i, f ∈Fp
ϕ: ð61Þ

This completes the proof.

Corollary 11. Suppose 0 < p <∞. Then, the linear span E of
all reproducing kernel functions Kzð·Þ is dense in F

p
ϕ.

Proof. Let 0 < p ≤ 1. It is immediately from Theorem 8 and
the proof of Theorem 9, for any f ∈Fp

ϕ, that

lim
R⟶∞

lim
r⟶0

Sr,R fð Þ − f
�� ��

p,ϕ

≤ lim
R⟶∞

lim
r⟶0

Sr,R fð Þ − P fχB 0,Rð Þ
	 
��� ���

p,ϕ
+ P fχB 0,Rð Þ

	 

− f

��� ���
p,ϕ

� �
= 0:

ð62Þ

Next, we assume that p > 1. By Theorem 10 and the
Hahn-Banach theorem, it suffices to show that for any g ∈
E, we have f = 0 if f ∈Fq

ϕ satisfies h f , gi = 0. This follows
from the fact that f ðzÞ = Pf ðzÞ = h f , Kzi = 0 for every z ∈
ℂn.

4. Localization Operators

In this section, we will explore some properties of weakly
localized operators on our Fock spaces. In particular, we will
show the algebraic properties of these localization operators.

Before stating weakly localized operators, we consider
firstly the following proposition.

Proposition 12. Suppose 0 < p ≤ 1. Then,

∥K ·,wð Þ∥2n−2n
p ,ϕ ≃ eϕ wð Þρ wð Þ−2n

p : ð63Þ

Proof. It is from (11) that there exists some r0 > 0 such that
ρðuÞ > r0 for each u ∈ℂn. Fix w ∈ℂn, and we have

ρ wð Þ2np −nρ uð Þn−2n
p e−ϵ

∣u−w∣
ρ wð Þ
� �α

< r0ð Þn−2n
p ρ wð Þ2np −ne−ϵ ∣u−w∣

ρ wð Þ
� �α

: ð64Þ

For every w ∈ℂn, let r > 0 be sufficiently large and let ∣u
−w ∣ ≥r, and it follows that estimate (18) together with

(64) gives

∣K u,wð Þ∣e−ϕ uð Þρ uð Þ2n−2n
p < eϕ wð Þρ wð Þ−2n

p r0ð Þn−2n
p ρ wð Þ2np −ne−ϵ r

ρ wð Þ
� �α� �
ð65Þ

is a dimensionless. For fixed w ∈ℂn, we get r ≃ βρðwÞ,
where β ∈ ð0, 1Þ. Hence, Theorem 9 together with (19) shows
that

K u,wð Þk k2n − 2n
p
, ϕ = sup

z∈ℂn
∣K u,wð Þ ∣ e−ϕ uð Þρ uð Þ2n−2n

p

	 

≃ sup

u∈B w,rð Þ
∣K u,wð Þ ∣ e−ϕ uð Þρ uð Þ2n−2n

p

	 

≃ eϕ wð Þρ wð Þ−2n

p ,
ð66Þ

which is the desired estimate.
Now, with the above preparations, we are ready for the

definition of weakly localized operators.

Definition 13. Let 0 < p ≤ 1. A linear operator T on F
p
ϕ is

called weakly localized for Fp
ϕ if

sup
z∈ℂn

ð
ℂn

Tkp,z , k2n−2n
p ,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þ<∞,

sup
z∈ℂn

ð
ℂn

T∗k2n−2n
p ,z , kp,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þ<∞,
ð67Þ

lim
r⟶∞

sup
z∈ℂn

ð
Br zð Þð Þc

Tkp,z , k2n−2n
p ,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þ = 0,

lim
r⟶∞

sup
z∈ℂn

ð
Br zð Þð Þc

T∗k2n−2n
p ,z , kp,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þ = 0,

ð68Þ
where

k2n−2n
p ,⋅ uð Þ ≃ K u, ⋅ð Þ

eϕ ⋅ð Þρ ⋅ð Þ− 2n/pð Þ , u ∈ℂ
n: ð69Þ

Recall that, for 1 < p <∞, q is the conjugate exponent of p
so that 1/p + 1/q = 1.

Definition 14. Suppose 1 < p <∞. A linear operator T on F
p
ϕ

is called weakly localized for Fp
ϕ if

sup
z∈ℂn

ð
ℂn
∣ Tkp,z , kq,w

 �

F2
ϕ

∣ρ wð Þ−2ndv wð Þ<∞,

sup
z∈ℂn

ð
ℂn
∣ T∗kq,z , kp,w

 �

F2
ϕ

∣ρ wð Þ−2ndv wð Þ<∞,
ð70Þ
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lim
r⟶∞

sup
z∈ℂn

ð
Br zð Þð Þc

∣ Tkp,z , kq,w

 �

F2
ϕ

∣ρ wð Þ−2ndv wð Þ = 0,

lim
r⟶∞

sup
z∈ℂn

ð
Br zð Þð Þc

∣ T∗kq,z , kp,w

 �

F2
ϕ

∣ρ wð Þ−2ndv wð Þ = 0:

ð71Þ

Next, we are going to answer the questions raised at the
beginning of the paper in our Fock spaces. In fact, each set
of these weakly localized operators on F

p
ϕ is an algebra.

Theorem 15. Suppose 0 < p <∞. Then, weakly localized oper-
ators on F

p
ϕ form an algebra.

Proof. Suppose operators T and S are weakly localized. So, it
remains to show that TS is a weakly localized operator
because the linear combination of two weakly localized oper-
ators is also a weakly localized operator.

We let 0 < p ≤ 1. It follows from (68) that there is some
r > 0 such that

ð
B
r
a zð Þð Þc

Tkp,z , k2n−2n
p ,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þ < ε, ð72Þ

where a = ð1 + rÞ1/2 + 1 and any ε > 0 (when 1 < p <∞,
estimate (71) gives an analogous representation). For z, x ∈
ℂn, if x ∈ Br/aðzÞ then ρðxÞ ≤ ð1 + ðr/aÞÞρðzÞ and by the trian-
gle inequality, we have Br/aðxÞ ⊂ BrðzÞ. That is, ðBrðzÞÞc ⊂
ðBr/aðxÞÞc whenever x ∈ Br/aðzÞ.

By joining Lemma 6 and Fubini’s theorem, we get

ð
Br zð Þð Þc

TSkp,z, k2n−2n
p ,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þ

=
ð

Br zð Þð Þc
Skp,z, T∗k2n−2n

p ,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þ

≃
ð

Br zð Þð Þc
SKz , T∗Kwh iF2

ϕ

��� ���pe−pϕ zð Þ−pϕ wð Þρ zð Þ2np−2ndv wð Þ

=
ð

Br zð Þð Þc

ð
ℂn

SKz, Kxh iF2
ϕ
Kx , T∗Kwh iF2

ϕ
e−2ϕ xð Þdv xð Þ

����
����
p

e−pϕ zð Þ−pϕ wð Þρ zð Þ2np−2ndv wð Þ

≃
ð

Br zð Þð Þc

ð
ℂn

Skp,z , k2n−2n
p ,x

D E
F2

ϕ

kp,x , T∗k2n−2n
p ,w

D E
F2

ϕ

ρ xð Þ−2ndv xð Þ
����

����
p

ρ wð Þ−2ndv wð Þ

≲
ð

Br zð Þð Þc

ð
ℂn

Skp,z , k2n−2n
p ,x

D E
F2

ϕ

����
����
p

kp,x, T∗k2n−2n
p ,w

D E
F2

ϕ

����
����
p

ρ xð Þ−2ndv xð Þρ wð Þ−2ndv wð Þ

=
ð
ℂn

Skp,z , k2n−2n
p ,x

D E
F2

ϕ

����
����
p

ρ xð Þ−2n
ð

Br zð Þð Þc
Tkp,x , k2n−2n

p ,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þdv xð Þ:

ð73Þ

Since T and S are weakly localized, hence

I1 ≔
ð
B
r
a zð Þ

Skp,z , k2n−2n
p ,x

D E
F2

ϕ

����
����
p

ρ xð Þ−2n
ð

Br zð Þð Þc
Tkp,x, k2n−2n

p ,w
D E

F2
ϕ

����
����
p

ρ wð Þ−2ndv wð Þdv xð Þ

≤
ð
B
r
a zð Þ

Skp,z , k2n−2n
p ,x

D E
F2

ϕ

����
����
p

ρ xð Þ−2n
ð

B
r
a xð Þð Þc

Tkp,x , k2n−2n
p ,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þdv xð Þ

< ε
ð
B
r
a zð Þ

Skp,z , k2n−2n
p ,x

D E
F2

ϕ

����
����
p

ρ xð Þ−2ndv xð Þ,

I2 ≔
ð

B
r
a zð Þð Þc

Skp,z , k2n−2n
p ,x

D E
F2

ϕ

����
����
p

ρ xð Þ−2n
ð

Br zð Þð Þc

� Tkp,x, k2n−2n
p ,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þdv xð Þ

≤
ð

B
r
a zð Þð Þc

Skp,z , k2n−2n
p ,x

D E
F2

ϕ

����
����
p

ρ xð Þ−2n
ð
ℂn

� Tkp,x, k2n−2n
p ,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þdv xð Þ

≤ sup
x∈ℂn

ð
ℂn

Tkp,x, k2n−2n
p ,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þ
� �ð

B
r
a zð Þð Þc

� Skp,z , k2n−2n
p ,x

D E
F2

ϕ

����
����
p

ρ xð Þ−2ndv xð Þ

< ε sup
x∈ℂn

ð
ℂn

Tkp,x, k2n−2n
p ,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þ
� �

:

ð74Þ

Therefore, by combining I1 and I2, we get

ð
Br zð Þð Þc

TSkp,z , k2n−2n
p ,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þ < Cε, ð75Þ

where the constant C does not depend on ε. This means

sup
z∈ℂn

ð
Br zð Þð Þc

TSkp,z , k2n−2n
p ,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þ⟶ 0,

ð76Þ

when r⟶∞. Meanwhile, we also get

sup
z∈ℂn

ð
Br zð Þð Þc

TSð Þ∗k2n−2n
p ,z , kp,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þ⟶ 0,

ð77Þ

whenever r⟶∞.
On the other hand, let now 1 < p <∞, by Fubini’s theo-

rem, and we have

ð
Br zð Þð Þc

∣ TSkp,z , kq,w

 �

F2
ϕ

∣ρ wð Þ−2ndv wð Þ

≃
ð

Br zð Þð Þc
∣
ð
ℂn

Skp,z , kq,x

 �

F2
ϕ

kp,x, T∗kq,w

 �

F2
ϕ

ρ xð Þ−2ndv xð Þ∣ρ wð Þ−2ndv wð Þ

≤
ð
ℂn
∣ Skp,z , kq,x

 �

F2
ϕ

∣ρ xð Þ−2n
ð

Br zð Þð Þc
∣ Tkp,x, kq,w

 �

F2
ϕ

∣ρ wð Þ−2ndv wð Þdv xð Þ:

ð78Þ

We split again the above integral on ℂn into the
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corresponding integrals on Br/aðzÞ and ðBr/aðzÞÞc, then

sup
z∈ℂn

ð
Br zð Þð Þc

∣ TSkp,z , kq,w

 �

F2
ϕ

∣ρ wð Þ−2ndv wð Þ,

sup
z∈ℂn

ð
Br zð Þð Þc

∣ TSð Þ∗kq,z , kp,w

 �

F2
ϕ

∣ρ wð Þ−2ndv wð Þ
ð79Þ

all go to 0 as r⟶∞. This ends the proof since others
are obvious.

Let WLϕp denote the algebra generated by weakly local-
ized operators for F

p
ϕ. Let T f be a Toeplitz operator (see

[8]) on F
p
ϕ, where f is called a symbol function. Then, each

WLϕp contains some special Toeplitz operators.

Theorem 16. Suppose 0 < p <∞ and f ∈ L∞. Then, Toeplitz
operator T f ∈WLϕp .

Proof. We first suppose 0 < p ≤ 1. Clearly, it suffices to prove
that

sup
z∈ℂn

ð
Br zð Þð Þc

T f kp,z , k2n−2n
p ,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þ ð80Þ

converges to 0 as r⟶∞.

Since T f kp,z = Pð f kp,zÞ for any fixed z, hence Lemma 4
gives that

ð
Br zð Þð Þc

T f kp,z , k2n−2n
p ,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þ

≲ fk kpL∞
ð

Br zð Þð Þc
kp,z , k2n−2n

p ,w
D E

F2
ϕ

����
����
p

ρ wð Þ−2ndv wð Þ

≃ fk kpL∞
ð

Br zð Þð Þc
kp,z wð Þ�� ��pe−pϕ wð Þdv wð Þ

ð81Þ

goes to 0 whenever r⟶∞.
Now, assume that 1 < p <∞. It is easily obtained from

(18), (20), and Lemma 2 thatð
ℂn
∣ T f kp,z , kq,w

 �

F2
ϕ

∣ρ wð Þ−2ndv wð Þ

≃
ð
ℂn

f wð Þj j Kz wð Þj je−ϕ zð Þ−ϕ wð Þρ zð Þ2n−2n
p ρ wð Þ−2n

q dv wð Þ

≲ ∥f ∥L∞
ð
ℂn
ρ zð Þn−2n

p ρ wð Þ−n−2n
q e−ϵ

∣w−z∣
ρ zð Þ
� �α

dv wð Þ ≲ ∥f ∥L∞ :

ð82Þ

Thus, we only need to show

sup
z∈ℂn

ð
Br zð Þð Þc

∣ T f kp,z , kq,w

 �

F2
ϕ

∣ρ wð Þ−2ndv wð Þ⟶ 0 ð83Þ

as r⟶∞. In fact, ∣w − z ∣ ≥rρðzÞ if w ∈ ðBrðzÞÞc. This

together with (82) indicates

ð
Br zð Þð Þc

∣ T f kp,z , kq,w

 �

F2
ϕ

∣ρ wð Þ−2ndv wð Þ

≲ ∥f ∥L∞
ð

Br zð Þð Þc
ρ zð Þn−2n

p ρ wð Þ−n−2n
q e−

ϵ
2

∣w−z∣
ρ zð Þ
� �α

e−
ϵ
2r

α

dv wð Þ

≲ e−
ϵ
2r

α

∥f ∥L∞ :
ð84Þ

Therefore, the desired conclusion follows when r⟶∞.
This ends the proof.

Remark. Moreover, Theorem 16 indicates that the iden-
tity operator is also inWLϕp . Namely, each algebra WLϕp pos-
sesses an unit.

We next consider the boundedness of operator T ∈WLϕp
for 0 < p <∞.

Theorem 17. If 0 < p <∞ and T ∈WLϕp , then T is bounded
on F

p
ϕ.

Proof. First, we see that

Tf zð Þ = Tf , Kzh iF2
ϕ
= f , T∗Kzh iF2

ϕ

=
ð
ℂn
f wð Þ Kw, T∗Kzh iF2

ϕ
e−2ϕ wð Þdv wð Þ:

ð85Þ

Let 0 < p ≤ 1 and let

M1 = sup
w∈ℂn

ð
ℂn

Tkp,w, k2n−2n
p ,z

D E
F2

ϕ

����
����
p

ρ zð Þ−2ndv zð Þ: ð86Þ

Estimate (20) combined with Lemma 6 yields

Tf zð Þe−ϕ zð Þ
��� ���p ≤ ð

ℂn
∣ f wð Þ Kw, T∗Kzh iF2

ϕ
∣ e−2ϕ wð Þe−ϕ zð Þdv wð Þ

� �p

≃
ð
ℂn

∣ f wð Þ Kw, T∗k2n−2n
p ,z

D E
F2

ϕ

∣ e−2ϕ wð Þρ zð Þ−2n
p dv wð Þ

� �p

≃ ρ zð Þ−2n
ð
ℂn

f wð Þ kp,w, T∗k2n−2n
p ,z

D E
F2

ϕ

����
����e−ϕ wð Þρ wð Þ2np −2ndv wð Þ

� �p

≲ ρ zð Þ−2n
ð
ℂn

f wð Þ kp,w, T∗k2n−2n
p ,z

D E
F2

ϕ

����
����
p

e−pϕ wð Þdv wð Þ:

ð87Þ

So, we conclude by Fubini’s theorem that

∥Tf ∥pp,ϕ ≲
ð
ℂn

f wð Þj jpe−pϕ wð Þ
ð
ℂn

Tkp,w, k2n−2n
p ,z

D E
F2

ϕ

����
����
p

ρ zð Þ−2ndv zð Þdv wð Þ

≤M1

ð
ℂn

f wð Þj jpe−pϕ wð Þdv wð Þ =M1∥f ∥
p
p,ϕ:

ð88Þ
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We now assume that p > 1. Set

M2 = max sup
w∈ℂn

ð
ℂn

∣ Tkp,w, kq,z

 �

F2
ϕ

∣ ρ zð Þ−2ndv zð Þ, sup
z∈ℂn

ð
ℂn

�

� T∗kq,z , kp,w

 �

F2
ϕ

����
����ρ wð Þ−2ndv wð Þ

�
:

ð89Þ

By Fubini’s theorem and H€older’s inequality, we obtain

∥Tf ∥pp,ϕ ≤
ð
ℂn

ð
ℂn

∣ f wð Þ TKw, Kzh iF2
ϕ
∣ e−2ϕ wð Þdv wð Þ

� �p

e−pϕ zð Þdv zð Þ

≃
ð
ℂn

ð
ℂn

∣ f wð Þ ∣ e−ϕ wð Þ ∣ Tkp,w, kq,z

 �

F2
ϕ

∣ ρ wð Þ2np −2nρ zð Þ2nq −2ndv wð Þ
� �p

dv zð Þ

≤
ð
ℂn

ð
ℂn

f wð Þj jpe−pϕ wð Þ ∣ Tkp,w, kq,z

 �

F2
ϕ

∣ ρ zð Þ−2ndv wð Þ
� �

·
ð
ℂn

∣ T∗kq,z , kp,w

 �

F2
ϕ

∣ ρ wð Þ−2ndv wð Þ
� �p

q

dv zð Þ

≲M
p
q

2

ð
ℂn

f wð Þj jpe−pϕ wð Þ
ð
ℂn
∣ Tkp,w, kq,z

 �

F2
ϕ

∣ρ zð Þ−2ndv zð Þdv wð Þ ≲ ∥f ∥pp,ϕ,

ð90Þ

which completes the proof.
Now, it follows from Theorem 17 that each WLϕpð0 < p

≤ 1Þ is analogous to a Banach algebra.

Theorem 18. Suppose 0 < p ≤ 1 and T , S ∈WLϕp . Then, ∥TS
∥p,ϕ ≲ ∥T∥p,ϕ∥S∥p,ϕ.

Proof. Suppose 0 < p ≤ 1. For every z ∈ℂn, by the proof of
Theorem 15, we see that

TSkp,z
�� ��p

p,ϕ =
ð
ℂn

TSkp,z wð Þ�� ��pe−pϕ wð Þdv wð Þ

≃
ð
ℂn

TSkp,z , k2n−2n
p ,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þ

≲
ð
ℂn

Skp,z , k2n−2n
p ,x

D E
F2

ϕ

����
����
p

ρ xð Þ−2n
ð
ℂn

� Tkp,x, k2n−2n
p ,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þdv xð Þ

≃
ð
ℂn

Skp,z xð Þ�� ��pe−pϕ xð Þ
ð
ℂn

Tkp,x wð Þ�� ��pe−pϕ wð Þdv wð Þdv xð Þ

=
ð
ℂn

Tkp,x
�� ��p

p,ϕ Skp,z xð Þ�� ��pe−pϕ xð Þdv xð Þ:

ð91Þ

Since T , S ∈WLϕp , then Theorem 17 says T and S are
bounded on F

p
ϕ. Thus, the above estimate implies

kTSkp,zkp,ϕ ≲ kTkp,ϕkSkp,ϕ. This completes the proof since

the supremum of kTSkp,zkp,ϕ is no more than C times

kTkp,ϕkSkp,ϕ.

Theorem 19. If 0 < p ≤ 1, then WLϕp is closed under the oper-
ator norm on F

p
ϕ.

Proof. See Lemma 2.6 of [5]. We omit the details.

5. Equivalent Conditions for Compactness

For this section, we use the ideas in [5, 7] to characterize
compactness of weakly localized operators on large Fock
spaces. Indeed, it is more complex than [5] because Bergman
metric works in a different way than in Euclidean metric.

We begin with the following preparations. Recall that, for
fixed r > 0, there is an r-lattice fzjgj such that fBrðzjÞgj
covers ℂn. Let Fj = BrðzjÞ \

S
i<jB

rðziÞ. It follows that fFjgj
is also a covering of ℂn and Fj ∩ Fk =∅ðj ≠ kÞ. We write

ðFjÞ+r =
S

x∈F j
BrðxÞ, and it is from estimate (16) that we con-

sider

Gj = y : d y, Fj

� �
≤m4rρ zj

� �
,m =m rð Þ > 1

� �
: ð92Þ

In what follows, we always define Fj and Gj as above.
Also, there is some constant N such that

〠
∞

j=1
χF j

wð Þ ≤ 〠
∞

j=1
χ F jð Þ+r wð Þ ≤N for any w ∈ℂn: ð93Þ

Lemma 20. If 0 < p ≤ 1 and T ∈WLϕp , then for every ε > 0,
there exists sufficiently large r > 0 such that for the covering
fFjgj (associated to r), we obtain

T − P 〠
∞

j=1
MχF j

TPMχGj

 !�����
�����
F

p
ϕ⟶F

p
ϕ

< ε: ð94Þ

Proof. Since T ∈WLϕp , then there is some r > 0 sufficiently
large such that

sup
u∈ℂn

ð
Br uð Þð Þc

Tkp,u, k2n−2n
p ,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þ < ε: ð95Þ

Define S = TP −∑∞
j=1MχF j

TPMχGj
. Then, Lemma 6 indi-

cates that

PSf zð Þj jp ≤
ð
ℂn

Sf wð ÞK z,wð Þe−2ϕ wð Þ
��� ���dv wð Þ

� �p

=
ð
ℂn

〠
∞

j=1
MχF j

TPMχGc
j

f wð Þ
�����

����� K z,wð Þj je−2ϕ wð Þdv wð Þ
 !p

≤ 〠
∞

j=1

ð
ℂn

MχF j
TPMχGc

j

f wð Þ
����

���� K z,wð Þj je−2ϕ wð Þdv wð Þ
 !p

≤ 〠
∞

j=1

ð
F j

TPMχGc
j

f wð Þ
����

���� K z,wð Þj je−2ϕ wð Þdv wð Þ
 !p

≲ 〠
∞

j=1

ð
F jð Þ+t

TPMχGc
j

f wð Þ
����

����
p

K z,wð Þj jpe−2pϕ wð Þρ wð Þ2np−2ndv wð Þ:

ð96Þ
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Notice that

∣TPMχGc
j

f wð Þ∣ = ∣ TPMχGc
j

f , Kw

� �
F2

ϕ

∣ = ∣ MχGc
j

f , T∗Kw

� �
F2

ϕ

∣

= ∣
ð
ℂn

MχGc
j

f
� �

�T∗Kwe
−2ϕ uð Þdv uð Þ∣

≤
ð
Gc

j

∣f uð Þ Ku, T∗Kwh iF2
ϕ
∣e−2ϕ uð Þdv uð Þ:

ð97Þ

This together with, for some t, s > 0, estimate (20),
Lemma 6, and Proposition 12 shows

PSf zð Þj jp ≲ 〠
∞

j=1

ð
F jð Þ+t

ð
Gc

j

f uð Þ Ku, T∗Kwh iF2
ϕ

��� ���e−2ϕ uð Þdv uð Þ
 !p

� K z,wð Þj jpe−2pϕ wð Þρ wð Þ2np−2ndv wð Þ

≃ 〠
∞

j=1

ð
F jð Þ+t

K z,wð Þj jpe−pϕ wð Þρ wð Þ2np−2n

×
ð
Gc

j

f uð Þe−ϕ uð Þ Tkp,u, k2n−2n
p ,w

D E
F2

ϕ

����
����ρ wð Þ−2n

p ρ uð Þ2np −2ndv uð Þ
 !p

dv wð Þ

≲ 〠
∞

j=1

ð
F jð Þ+t

K z,wð Þj jpe−pϕ wð Þρ wð Þ2np−4n
ð

Gc
jð Þ+s

� f uð Þe−ϕ uð Þ Tkp,u, k2n−2n
p ,w

D E
F2

ϕ

����
����
p

dv uð Þdv wð Þ:

ð98Þ

We claim first that ðFjÞ+t ⊂ ðBrðuÞÞc if w ∈ ðFjÞ+t and u ∈
ðGc

jÞ+s . Furthermore, applying (18), (93), Lemma 6, and Fubi-

ni’s theorem, we obtain

∥PSf zð Þ∥pp,ϕ ≲ 〠
∞

j=1

ð
Gc

jð Þ+s
f uð Þe−ϕ uð Þ
��� ���pð

F jð Þ+t
χ Br uð Þð Þc wð Þ

� Tkp,u, k2n−2n
p ,w

D E
F2

ϕ

����
����
p

e−pϕ wð Þρ wð Þ2np−4n

×
ð
ℂn

K z,wð Þj jpe−pϕ zð Þdv zð Þdv wð Þdv uð Þ

≲N
ð
ℂn

f uð Þe−ϕ uð Þ
��� ���pð

Br uð Þð Þc

� Tkp,u, k2n−2n
p ,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þdv uð Þ

≲
ð
ℂn

f uð Þe−ϕ uð Þ
��� ���p

� sup
u∈ℂn

ð
Br uð Þð Þc

Tkp,u, k2n−2n
p ,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þ
 !

dv uð Þ

< ε∥f ∥pp,ϕ:

ð99Þ

Since PTP = T on F
p
ϕ, thus PS = T − Pð∑∞

j=1MχF j
TP

MχGj
Þ is well defined.
Thus it only remains to prove that ðFjÞ+t ⊂ ðBrðuÞÞc.
In fact, (16) gives BrðzjÞ ⊂ Bm2rðzjÞ ⊂ Bm4rðzjÞ where m =

mðrÞ > 1. We then choose a t satisfying w ∈ ðFjÞ+t ⊂ Bm2rðzjÞ.

Note that for any u ∈ℂn, there exists M > 0 so that ρðuÞ
≤M by estimate (12). For fixed r > 0, it follows that ∣u ∣ −rρ
ðuÞ > 0 whenever ∣u ∣ is sufficiently large. So, for any j > 0,
there is some R > 0 such that

uj j − rρ uð Þ >m2rρ zj
� �

+ zj
�� ��, ð100Þ

whenever ∣u ∣ >R. Thus, the triangle inequality implies ∣
u − zj ∣ ≥ ∣ u ∣ − ∣ zj ∣ >rρðuÞ +m2rρðzjÞ. Further, the above

inequality concludes that ðFjÞ+t ∩ BrðuÞ =∅.
Next, we assume that ∣u ∣ ≤R. For any fixed j, there is a r0

satisfying u ∈ Br0ðzjÞ. Since ρ is a Lipschitz function, then ρ

ðzjÞ ≥ ð1/cr0ÞρðuÞ where cr0 > 1. Notice that m =mðrÞ > 1,
thus it allows us to let m > cr0 . It follows that mrρðzjÞ > rρð
uÞ. For u ∈ ðGc

jÞ+s and ∣u ∣ ≤R, we can pick an appropriate s
so that sρðuÞ <mrρðzjÞ − rρðuÞ. Hence,

∣u − zj∣ > m4 + 1
� �

rρ zj
� �

− sρ uð Þ > m4 −m + 1
� �

rρ zj
� �

+ rρ uð Þ
>m2rρ zj

� �
+ rρ uð Þ

ð101Þ

shows ðFjÞ+t ∩ BrðuÞ =∅.
Therefore, the desired assertion holds, and the proof is

finished.

Lemma 21. If 1 < p <∞ and T ∈WLϕp , then for every ε > 0,
there exists sufficiently large r > 0 such that for the covering
fFjgj (associated to r), we obtain

TP − 〠
∞

j=1
MχF j

TPMχGj

 !�����
�����
F

p
ϕ⟶F

p
ϕ

< ε: ð102Þ

Proof. By (71), for any ε > 0 and w ∈ℂn, there is some r > 0
such that

ð
Br wð Þð Þc

∣ T∗kq,w, kp,u

 �

F2
ϕ

∣ρ uð Þ−2ndv uð Þ < ε, ð103Þ

and (70) shows

ð
ℂn
∣ Tkp,u, kq,w

 �

F2
ϕ

∣ρ wð Þ−2ndv wð Þ <M <∞: ð104Þ

We also consider S = TP − ∑∞
j=1MχF j

TPMχGj
. For any

fixed w ∈ℂn, we assume that w ∈ Fj0
⊂ Brðzj0Þ. Note first that

if u ∈Gc
j0
, then ∣u − zj0 ∣ >ðm4 + 1Þrρðzj0Þ wherem =mðrÞ > 1

. For w ∈ Fj0
, we have ∣w − zj0 ∣ <rρðzj0Þ and ρðzj0Þ ≥ c−1r ρðwÞ

since ρ is a Lipschitz function. Suppose m4 > cr , so ∣u −w ∣
>m4rρðzj0Þ > rρðwÞ, that is Gc

j0
⊂ ðBrðwÞÞc. It follows from
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Lemma 20 that

∣Sf wð Þ∣ = ∣〠
∞

j=1
MχF j

TPMχGc
j

f wð Þ∣

≤ 〠
∞

j=1
MχF j

wð Þ
ð
Gc

j

∣f uð Þ Ku, T∗Kwh iF2
ϕ
∣e−2ϕ uð Þdv uð Þ

≤
ð

Br wð Þð Þc
∣f uð Þ Ku, T∗Kwh iF2

ϕ
∣e−2ϕ uð Þdv uð Þ:

ð105Þ

This together withH€older’s inequality and Fubini’s theo-
rem implies

∥Sf ∥pp,ϕ ≤
ð
ℂn

ð
Br wð Þð Þc

∣ f uð Þ TKu, Kwh iF2
ϕ
∣ e−2ϕ uð Þdv uð Þ

 !p

e−pϕ wð Þdv wð Þ

≃
ð
ℂn

ð
Br wð Þð Þc

∣ f uð Þ ∣ e−ϕ uð Þ ∣ Tkp,u, kq,w

 �

F2
ϕ

∣ ρ uð Þ2np −2nρ wð Þ2nq −2ndv uð Þ
 !p

dv wð Þ

≲
ð
ℂn

ð
Br wð Þð Þc

f uð Þj jpe−pϕ uð Þ∣ Tkp,u, kq,w

 �

F2
ϕ

∣ρ wð Þ−2ndv uð Þ

×
ð

Br wð Þð Þc
∣ T∗kq,w, kp,u

 �

F2
ϕ

∣ ρ uð Þ−2ndv uð Þ
 !p

q

dv wð Þ

< ε
p
q

ð
ℂn

f uð Þj jpe−pϕ uð Þ
ð
ℂn
∣ Tkp,u, kq,w

 �

F2
ϕ

∣ρ wð Þ−2ndv uð Þdv wð Þ <Mε
p
q∥f ∥pp,ϕ,

ð106Þ

which proves the desired result.

Lemma 22. Suppose 0 < p <∞. For any bounded linear oper-
ator T on F

p
ϕ, there is some constant C such that

lim sup
m⟶∞

∥PTm∥Fp
ϕ⟶F

p
ϕ
≤ Clim sup

m⟶∞
sup

w∈
S

j>m
Gjð Þ+r

∥Tkp,w∥p,ϕ,

ð107Þ

where Tm =∑ j>mMχF j
TPMχGj

.

Proof. First, let 0 < p ≤ 1. Suppose f ∈Fp
ϕ and f ≠ 0, define

gj = P
χGj

f

∥χ Gjð Þ+r f ∥p,ϕ

 !
: ð108Þ

Since Pf = f on F
p
ϕ, then by (85) we get

∣Tgj zð Þ∣ = ∣
ð
ℂn
gj wð ÞTKw zð Þe−2ϕ wð Þdv wð Þ∣

= ∣
ð
ℂn

χGj
f wð Þ

∥χ Gjð Þ+r f ∥p,ϕ
TKw zð Þe−2ϕ wð Þdv wð Þ∣

≤
ð
Gj

f wð Þj j TKw zð Þj je−2ϕ wð Þ

∥χ Gjð Þ+r f ∥p,ϕ
dv wð Þ:

ð109Þ

By combining the above estimate and Lemma 6, we

obtain

P MχF j
Tgj

	 

uð Þ

��� ���p

=
ð
F j

Tgj

	 

zð ÞK u, zð Þe−2ϕ zð Þdv zð Þ

�����
�����
p

≲
ð

F jð Þ+r
Tgj

	 

zð Þ

��� ���p K u, zð Þj jpe−2pϕ zð Þρ zð Þ2np−2ndv zð Þ

≤
ð

F jð Þ+r
K u, zð Þj jpe−2pϕ zð Þ

�
ð
Gj

f wð Þj j TKw zð Þj je−2ϕ wð Þ

χ Gjð Þ+r f
��� ���

p,ϕ

dv wð Þ

0
B@

1
CA

p

ρ zð Þ2np−2ndv zð Þ

≲
ð

F jð Þ+r
K u, zð Þj jpe−2pϕ zð Þρ zð Þ2np−2n

×
ð

Gjð Þ+r
f wð Þj jp TKw zð Þj jpe−2pϕ wð Þ

χ Gjð Þ+r f
��� ���p

p,ϕ

ρ wð Þ2np−2ndv wð Þ

0
BB@

1
CCAdv zð Þ:

ð110Þ

Notice that there is a r′ ∈ ð0, 1Þ such that ðFjÞ+r ⊂ Br′ðzjÞ
(we can let r be small enough), then for z ∈ Br′ðzjÞ, we get ρ
ðzÞ ≃ ρðzjÞ by (14). Now, by (18), (25), Lemma 2, and Fubi-
ni’s theorem, we have

∥P MχF j
Tgj

	 

∥pp,ϕ ≲

ð
Gjð Þ+r

f wð Þj jp
∥χ Gjð Þ+r f ∥

p
p,ϕ

e−2pϕ wð Þρ wð Þ2np−2n

×
ð

F jð Þ+r
TKw zð Þj jpe−2pϕ zð Þρ zð Þ2np−2n

ð
ℂn

� K u, zð Þj jpe−pϕ uð Þdv uð Þdv wð Þdv zð Þ

≃
ð

Gjð Þ+r
f wð Þj jp

∥χ Gjð Þ+r f ∥
p
p,ϕ

e−pϕ wð Þ
ð

F jð Þ+r
� Tkp,w zð Þ�� ��pe−pϕ zð Þdv zð Þdv wð Þ

≲ sup
w∈ Gjð Þ+r

∥Tkp,w∥
p
p,ϕ

0
@

1
A

�
ð
Br′ z jð Þ

ρ zð Þ−2ndv zð Þ
ð

Gjð Þ+r
� f wð Þj jp
∥χ Gjð Þ+r f ∥

p
p,ϕ

e−pϕ wð Þdv wð Þ

≲ sup
w∈ Gjð Þ+r

∥Tkp,w∥
p
p,ϕ:

ð111Þ
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Therefore, we deduce

∥PTmf ∥
p
p,ϕ ≤ 〠

j>m
∥PMχF j

TPMχGj
f ∥pp,ϕ = 〠

j>m
∥P MχF j

Tgj

	 

∥pp,ϕ∥χ Gjð Þ+r f ∥

p
p,ϕ

≲ 〠
j>m

sup
w∈ Gjð Þ+r

∥Tkp,w∥
p
p,ϕ∥χ Gjð Þ+r f ∥

p
p,ϕ

≤N sup
w∈
S

j>m
Gjð Þ+r

∥Tkp,w∥
p
p,ϕ

0
@

1
A∥f ∥pp,ϕ:

ð112Þ

Now, 1 < p <∞. It comes from the above proof that

PTmf uð Þj jp = P 〠
j>m

MχF j
TPMχGj

f

 !
uð Þ

�����
�����
p

≤ 〠
j>m

ð
F j

∣ K u, zð Þ ∣ e−2ϕ zð Þ
ð
Gj

f wð Þj j
 

� TKw, Kzh iF2
ϕ

��� ���e−2ϕ wð Þdv wð Þdv zð Þ

p
:

ð113Þ

For fixed j and r > 0, let x ∈ Fj \ fzjg. Note that Fj ⊂ Brð
zjÞ, we then get Fj ⊂ BbrðxÞ and Gj ⊂ Bb5rðxÞ by (16), where

b = bðrÞ > 1. Furthermore, there exists some r′ > 0 such that
Bb5rðxÞ ⊂ ðGjÞ+r′. It follows from estimate (14) we have ρðzÞ
≃ ρðxÞ if z ∈ BbrðxÞ and ρðwÞ ≃ ρðxÞ if w ∈ Bb5rðxÞ (here we
also assume r is small enough so that b5r < 1). Hence, by esti-
mates (18), (20), (25), (93), Minkowski’s inequality, and
Lemma 6, we obtain

∥PTmf ∥p,ϕ ≤N
ð
ℂn

ð
Bb5r xð Þ

∣ f wð Þ ∣ e−2ϕ wð Þ
 "

×
ð
Bbr xð Þ

∣ TKw zð Þ ∣ e−ϕ zð Þ ∣ K u, zð Þ ∣ e−ϕ zð Þ−ϕ uð Þdv zð Þdv wð Þ
!p

dv uð Þ
#1

p

≲
ð
Bb5r xð Þ

∣f wð Þ∣e−2ϕ wð Þ
ð
Bbr xð Þ

∣TKw zð Þ∣e−ϕ zð Þ

×
ð
ℂn

K u, zð Þj jpe−pϕ zð Þ−pϕ uð Þdv uð Þ
� �1

p

dv zð Þdv wð Þ

≃
ð
Bb5r xð Þ

∣f wð Þ∣e−2ϕ wð Þ
ð
Bbr xð Þ

∣TKw zð Þ∣e−ϕ zð Þρ zð Þ2np −2ndv zð Þdv wð Þ

≃
ð
Bb5r xð Þ

∣f wð Þ∣e−ϕ wð Þρ wð Þ2np −2n
ð
Bbr xð Þ

∣Tkp,w zð Þ∣e−ϕ zð Þρ zð Þ2np −2ndv zð Þdv wð Þ

≃
ð
Bb5r xð Þ

∣f wð Þ∣e−ϕ wð Þρ wð Þ2np −2n∥Tkp,w∥p,ϕ
ð
Bbr xð Þ

ρ zð Þ−2ndv zð Þdv wð Þ

≲ sup
w∈Bb5r xð Þ

∥Tkp,w∥p,ϕ

0
@

1
A∥f ∥p,ϕ ρ xð Þ−2nv Bbr xð Þ

	 
	 
ð
Bb

5r xð Þ
ρ xð Þ−2ndv wð Þ

≲ C b, rð Þ sup
w∈
S

j>m
Gjð Þ+r′

∥Tkp,w∥p,ϕ

0
@

1
A∥f ∥p,ϕ:

ð114Þ

This completes the proof.

Theorem 23. Suppose 0 < p <∞ and T ∈WLϕp . Then, the fol-
lowing conditions are equivalent (q≔ 2n − 2n/p if 0 < p ≤ 1):

(A) lim
z⟶∞

∥Tkp,z∥p,ϕ = 0;

(B) lim
z⟶∞

sup
w∈BrðzÞ

∣ hTkp,z , kq,wiF2
ϕ

∣ = 0 for any r > 0;

(C) lim
z⟶∞

sup
w∈ℂn

∣ hTkp,z , kq,wiF2
ϕ

∣ = 0.

Proof. Suppose condition (A) holds. If 0 < p ≤ 1, then (25)
gives

Tkp,z , k2n−2n
p ,w

D E
F2

ϕ

����
����
p

≃ Tkp,z wð Þe−ϕ wð Þρ wð Þ2np
��� ���p

≤ C
ð
Br wð Þ

Tkp,z uð Þ�� ��pe−pϕ uð Þdv uð Þ

≲ ∥Tkp,z∥
p
p,ϕ:

ð115Þ

Similarly, when 1 < p <∞, we obtain

Tkp,z , kq,w

 ��� ��p ≃ Tkp,z wð Þe−ϕ wð Þρ wð Þ2n−2n

q

��� ���p
≲
ð
Br wð Þ

Tkp,z uð Þ�� ��pe−pϕ uð Þdv uð Þ ≲ ∥Tkp,z∥
p
p,ϕ:

ð116Þ

Then (A) implies (C).
Because ðCÞ⇒ ðBÞ is clear, so it remains to prove that the

implication ðBÞ⇒ ðAÞ. If T ∈WLϕp and 0 < p ≤ 1, then, by
(68), there is some r > 0 such that

ð
Br zð Þð Þc

Tkp,z , k2n−2n
p ,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þ < ε: ð117Þ

Note that by the definition of function ρ, we get ρ ≥ α > 0.
Then, (B) shows

∥Tkp,z∥
p
p,ϕ =

ð
ℂn

Tkp,z , Kw


 �
F2

ϕ

����
����
p

e−pϕ wð Þdv wð Þ

≃
ð

Br zð Þð Þc
S

Br zð Þð Þ
Tkp,z , k2n−2n

p ,w
D E

F2
ϕ

����
����
p

ρ wð Þ−2ndv wð Þ

< ε +
ð
Br zð Þ

Tkp,z , k2n−2n
p ,w

D E
F2

ϕ

����
����
p

ρ wð Þ−2ndv wð Þ

≤ ε + sup
w∈Br zð Þ

Tkp,z , k2n−2n
p ,w

D E
F2

ϕ

����
����
pð

Br zð Þ
ρ wð Þ−2ndv wð Þ ≲ ε,

ð118Þ

whenever ∣z ∣ is large enough. By hypothesis, ðAÞ holds
when 0 < p ≤ 1.
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Suppose 1 < p <∞. It follows from (20), (25), and Theo-
rem 17 that

∣ Tkp,z , kq,w

 �

F2
ϕ

∣ ≃ ∣ Tkp,z , Kw


 �
F2

ϕ

∣e−ϕ wð Þρ wð Þ2n−2n
q ≲ ∥Tkp,z∥p,ϕ ≲ 1:

ð119Þ

Therefore, joining condition ðBÞ and (71), we deduce

∥Tkp,z∥
p
p,ϕ ≃

ð
ℂn

Tkp,z, kq,w

 �

F2
ϕ

����
����
p

ρ wð Þ−2ndv wð Þ

≲
ð

Br zð Þð Þc
∣ Tkp,z , kq,w

 �

F2
ϕ

∣ρ wð Þ−2ndv wð Þ

+
ð
Br zð Þ

∣ Tkp,z , kq,w

 �

F2
ϕ

∣ρ wð Þ−2ndv wð Þ

< ε +
ð
Br zð Þ

∣ Tkp,z , kq,w

 �

F2
ϕ

∣ρ wð Þ−2ndv wð Þ

≲ ε + sup
w∈Br zð Þ

∣ Tkp,z , kq,w

 �

F2
ϕ

∣

 !ð
Br zð Þ

ρ wð Þ−2ndv wð Þ ≲ ε

ð120Þ

for sufficiently large z. This completes the proof.
It is similar to ([17], Lemma 3.2) that we have the follow-

ing assertion about relatively compact. That is, for every ε > 0
, there is some R > 0 such that

sup
f ∈E

ð
∣z∣≥R

f zð Þe−ϕ zð Þ
��� ���pdv zð Þ < ε ð121Þ

if and only if a bounded subset E ⊂F
p
ϕ is relatively com-

pact. In what follows, we callKðFp
ϕÞ the set of compact oper-

ators on F
p
ϕ.

Theorem 24. If 0 < p <∞ and T ∈KðFp
ϕÞ, then

lim
R⟶∞

∥PMχB 0,Rð Þ
T − T∥Fp

ϕ⟶F
p
ϕ
= 0: ð122Þ

Proof. We omit the details for 0 < p ≤ 1, see ([5], Lemma
2.11).

If 1 < p <∞, then H€older’s inequality, Fubini’s theorem,
(18), and Lemma 2 imply

PMχB 0,Rð Þ
T − T

	 

fð Þ

��� ���p
p,ϕ

≤
ð
ℂn

ð
∣w∣≥R

∣ Tf wð Þ ∣ e−ϕ wð Þ ∣ K z,wð Þ ∣ e−ϕ wð Þ−ϕ zð Þdv wð Þ
� �p

dv zð Þ

≤
ð
ℂn

ð
∣w∣≥R

T f wð Þj jpe−pϕ wð Þ ∣ K z,wð Þ ∣ e−ϕ wð Þ−ϕ zð Þdv wð Þ
� �

×
ð
∣w∣≥R

∣ K z,wð Þ ∣ e−ϕ wð Þ−ϕ zð Þdv wð Þ
� �p

q

dv zð Þ

≲
ð
∣w∣≥R

T f wð Þj jpe−pϕ wð Þ
ð
ℂn
∣K z,wð Þ∣e−ϕ wð Þ−ϕ zð Þdv zð Þdv wð Þ

≲
ð
∣w∣≥R

T f wð Þj jpe−pϕ wð Þdv wð Þ

ð123Þ

converges to 0 as R⟶∞. This finishes the proof.
Due to PMχGj

that can be viewed as a Toeplitz operator

induced by χGj
, then PMχGj

is compact (the reason is similar

to ([18], Lemma 3.1)).

Theorem 25. Suppose 1 < p <∞. Then, there exists r such
that

∥T∥e ≤ Clim sup
z⟶∞

sup
w∈Br zð Þ

Tkp,z , kq,w

 �

F2
ϕ

����
���� ð124Þ

where ∥T∥e means the essential norm of a bounded operator T
on F

p
ϕ.

Proof. Since Pf = f for f ∈Fp
ϕ, then ∥T∥e = ∥TP∥e, and we

always assume that ∥TP∥e > 0. Thus, Lemma 21 shows there
is some r > 0 satisfying

TP − 〠
∞

j=1
MχF j

TPMχGj

 !�����
�����
F

p
ϕ⟶F

p
ϕ

< 1
2 TPk ke: ð125Þ

Because of ∑j≤mMχF j
TPMχGj

is a compact operator

where m ∈ℕ, then

TPk ke ≤ TP − 〠
m

j=1
MχF j

TPMχGj

 !�����
�����
F

p
ϕ⟶F

p
ϕ

≤ TP − 〠
∞

j=1
MχF j

TPMχGj

 !�����
�����
F

p
ϕ⟶F

p
ϕ

+ Tmk kFp
ϕ⟶F

p
ϕ
< 1
2 TPk ke + Tmk kFp

ϕ⟶F
p
ϕ
,

ð126Þ
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where Tm =∑j>mMχF j
TPMχGj

. For the rest of the task, we

show

lim sup
m⟶∞

Tmk kFp
ϕ
≲ Clim sup

z⟶∞
sup

w∈Br zð Þ
∣ Tkp,z , kq,w

 �

F2
ϕ

∣ + 1
4 ∥TP∥e:

ð127Þ

Let f ∈Fp
ϕ and ∥f ∥Fp

ϕ
≤ 1. Note that Fj ∩ Fk =∅ðj ≠ kÞ,

hence

Tmfk kp
F

p
ϕ

= 〠
j>m

MχF j
TPMχGj

f
��� ���p

F
p
ϕ

= 〠
j>m

MχF j
Tlj

��� ���p
F

p
ϕ

MχGj
f

��� ���p
F

p
ϕ

≤N sup
j>m

MχF j
Tlj

��� ���p
F

p
ϕ

 !
∥f ∥p

F
p
ϕ

,

ð128Þ

where l j ≔ PMχGj
f /∥MχGj

f ∥Fp
ϕ
. It follows that

∥Tm∥Fp
ϕ
≲ sup

j>m
sup

∥f ∥
F
p
ϕ
≤1

MχF j
Tlj

��� ���
F

p
ϕ

: l j ≔
PMχGj

f

∥MχGj
f ∥Fp

ϕ

( )
:

ð129Þ

Furthermore, we have

lim sup
m⟶∞

∥Tm∥Fp
ϕ
≲ lim sup

j⟶∞
sup

∥f ∥
F
p
ϕ
≤1

MχF j
Tl j

��� ���
F

p
ϕ

: l j ≔
PMχGj

f

∥MχGj
f ∥Fp

ϕ

( )
:

ð130Þ

Let f f jg be a sequence with ∥f j∥Fp
ϕ
≤ 1 such that

lim sup
j⟶∞

sup
∥f ∥

F
p
ϕ
≤1

MχF j
Tlj

��� ���
F

p
ϕ

: l j ≔
PMχGj

f

∥MχGj
f ∥Fp

ϕ

( )
−
1
4 TPk ke

≤ lim sup
j⟶∞

MχF j
Tgj

��� ���
F

p
ϕ

,

ð131Þ

where gj ≔ PMχGj
f j/∥MχGj

f j∥Fp
ϕ
. Fix j, for z ∈ Fj ⊂Gj,

and there is a b = bðrÞ > 0 such that Gj ⊂ BbrðzÞ by (16). By

joining the proof of Lemma 22 and H€older’s inequality, we
deduce

lim sup
j⟶∞

MχF j
Tgj

��� ���p
F

p
ϕ

≤ lim sup
j⟶∞

ð
F j

ð
Gj

f wð Þj j TKw zð Þj je−2ϕ wð Þ

χGj
f

��� ���
p,ϕ

dv wð Þ

0
B@

1
CA

p

e−pϕ zð Þdv zð Þ

≃ lim sup
j⟶∞

ð
F j

ð
Gj

f wð Þj je−ϕ wð Þ

χGj
f

��� ���
p,ϕ

Tkp,w, kq,z

 �

F2
ϕ

����
����ρ zð Þ2nq −2nρ wð Þ2np −2ndv wð Þ

0
B@

1
CA

p

dv zð Þ

≲ lim sup
j⟶∞

ð
F j

ð
Gj

f wð Þj jpe−pϕ wð Þ

χGj
f

��� ���p
p,ϕ

Tkp,w, kq,z

 �

F2
ϕ

����
����ρ zð Þ−2ndv wð Þ

�
ð
Gj

ρ wð Þ−2ndv wð Þ
 !p

q

dv zð Þ

≲ lim sup
j⟶∞

ð
F j

ð
Gj

f wð Þj jpe−pϕ wð Þ

χGj
f

��� ���p
p,ϕ

Tkp,w, kq,z

 �

F2
ϕ

����
����ρ zð Þ−2ndv wð Þdv zð Þ

≲ lim sup
z⟶∞

sup
w∈Bbr zð Þ

Tkp,z , kq,w

 �

F2
ϕ

����
����
p

sup
j

ð
Gj

ρ zð Þ−2n
ð
Gj

f wð Þj jpe−pϕ wð Þ

χGj
f

��� ���p
p,ϕ

dv wð Þdv zð Þ

0
B@

1
CA

≤ C rð Þlim sup
z⟶∞

sup
w∈Bbr zð Þ

Tkp,z , kq,w

 �

F2
ϕ

����
����

 !p

,

ð132Þ

where CðrÞ is independent of j. This finishes the proof.

Theorem 26. Suppose 0 < p <∞ and T ∈WLϕp . Then, T ∈
KðFp

ϕÞ if and only if lim
z⟶∞

∥Tkp,z∥p,ϕ = 0.

Proof. (⇐) For any ε > 0, by Lemma 20, we get

T − P 〠
∞

j=1
MχF j

TPMχGj

 !�����
�����
F

p
ϕ⟶F

p
ϕ

< ε: ð133Þ

Consider Tm =∑j>mMχF j
TPMχGj

, then Pð∑m
j=1MχF j

TP

MχGj
Þ is a compact operator on F

p
ϕ, where m is any positive

integer. Hence,

∥T∥pe ≤ T − P 〠
m

j=1
MχF j

TPMχGj

 !�����
�����
p

F
p
ϕ⟶F

p
ϕ

≤ T − P 〠
∞

j=1
MχF j

TPMχGj

 !�����
�����
F

p
ϕ⟶F

p
ϕ

+ PTmk kFp
ϕ⟶F

p
ϕ

0
@

1
Ap

< ε + PTmk kFp
ϕ⟶F

p
ϕ

	 
p
:

ð134Þ

With our assumption, there is an R > 0 such that ∥Tkp,z
∥p,ϕ < ε for ∣z ∣ >R. Since Sj>mðGjÞ+r ⊂ Bð0, RÞc whenever m
is large enough, then Lemma 22 indicates ∥T∥e = 0 for 0 < p
≤ 1. Also, when p > 1, ∥T∥e = 0 follows immediately from
Theorems 23 and 25.

(⇒) The case 1 < p <∞ is similar to the following discus-
sion of 0 < p ≤ 1.

Consider 0 < p ≤ 1 and r > 0. With the help of Theorem
23, we will finish the proof if sup

w∈BrðzÞ
jhTkp,z , k2n−2n/p,wiF2

ϕ

j
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⟶ 0 as z⟶∞. Recall first that, for f ∈Fp
ϕ, by (25), we

have

f zð Þj j ≤ Ceϕ zð Þρ zð Þ−2n
p fk kp,ϕ: ð135Þ

Since Tkp,z ∈F
p
ϕ, estimate (18), jKwðuÞj = jKuðwÞj, and

Proposition 12, then

PMχB 0,Rð Þ
Tkp,z , k2n−2n

p ,w
D E

F2
ϕ

����
����

=
ð
B 0,Rð Þ

Tkp,z uð Þ �k2n2np ,w uð Þe−2ϕ uð Þdv uð Þ
�����

�����
≤
ð
B 0,Rð Þ

Tkp,z uð Þ�� �� �k2n2np ,w uð Þ
��� ���e−2ϕ uð Þdv uð Þ

≲ Tkp,z
�� ��

p,ϕ

ð
B 0,Rð Þ

�k2n2np ,w uð Þ
��� ���e−ϕ uð Þρ uð Þ−2n

p dv uð Þ

≲ Tkp,z
�� ��

p,ϕ

ð
B 0,Rð Þ

Kw uð Þj je−ϕ uð Þ−ϕ wð Þρ wð Þ2np ρ uð Þ−2n
p dv uð Þ

≲ Tkp,z
�� ��

p,ϕρ wð Þ2np −n
ð
B 0,Rð Þ

ρ uð Þ−n−2n
p e−ϵ

∣w∣−∣u∣
ρ uð Þ
� �α

dv uð Þ

≲ R2n Tkp,z
�� ��

p,ϕ ρ wð Þ2np −ne−g wð Þϵ
	 


ð136Þ

goes to 0 as w⟶∞, where gðwÞ = ð∣w ∣ −RÞ/max fρð
uÞ: u ∈ �Bð0, RÞg.

On the other hand, Theorems 17 and 24 conclude that

PMχB 0,Rð Þc
T

	 

kp,z , k2n−2n

p ,w
D E

F2
ϕ

����
����

≃ T − PMχB 0,Rð Þ
T

	 

kp,z , Kw

D E
F2

ϕ

e−ϕ wð Þρ wð Þ2np
����

����
≲ T − PMχB 0,Rð Þ

T
	 


kp,z
��� ���p,ϕ

≤ T − PMχB 0,Rð Þ
T

��� ���p,ϕ ⟶ 0

ð137Þ

as R⟶∞. Altogether gives that

Tkp,z , k2n−2n
p ,w

D E
F2

ϕ

����
���� ≤ PMχB 0,Rð Þ

Tkp,z , k2n−2n
p ,w

D E
F2

ϕ

����
����

+ PMχB 0,Rð Þc
T

	 

kp,z , k2n−2n

p ,w
D E

F2
ϕ

��� ���,
ð138Þ

which ends the proof since sup
w∈BrðzÞ

jhTkp,z , k2n−2n/p,wiF2
ϕ

j⟶ 0

as z⟶∞.
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