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In this paper, dual spaces of large Fock spaces 371; with 0 < p < 0o are characterized. Also, algebraic properties and equivalent
conditions for compactness of weakly localized operators are obtained on 9‘;(0 < p<oo).

1. Introduction (B) For any ze C" and r >0, A¢ satisfies the reverse-

Holder inequality
Let C" be the n-dimensional complex Euclidean space. Let dv

denote the Lebesgue volume measure on C". For any two an
points z = (z;,,2,,) and w = (wy,:--,w,) in C", we write (z HA¢||L°°(B(z,r)) <Cr JB( )A¢dV ?)
z,r
, W) =Z,Wy + -+ +2,W, and |z| = \/|z,[*+---+|z,|*.
For each z € C" and r >0, for some 0 < C < 00;

(C) The eigenvalues of H ¢ are comparable, i.e., for every
z,u € C", there exists §, > 0 such that

B(z,r)={weC": |lw-z|<r} (1)
(Hy (@) 1) 2 8,09 (2) " (4)
denotes the Euclidean ball centered at z with radius r.
Let A denote the Laplacian operator. Suppose ¢ : C" where
—> R is a C* plurisubharmonic function (see [1]). We say
that ¢ belongs to the weight class W if ¢ satisfies the follow- ( 3¢ ) )
ing statements: H I By 5
& 0z;0z ;

(A) There exists ¢ > 0 such that for z € C"

Suppose 0 < p <o, ¢ € W. The space L}J) consists of all
Lebesgue measurable functions f on C" for which

inf sup Ap(w)>0; (2) 1 f1lpg = (JU If (2) |pep¢<z)dv(z)>‘D < 00. (6)

2€C" eB(z,0)


https://orcid.org/0000-0001-9136-1423
https://orcid.org/0000-0001-5966-6673
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6619459

Lgis the set of all Lebesgue measurable functions f on C"
with

[/ oo, = Sgg If (2)|e ) < 0. (7)
z

Let H(C") be the family of all entire functions on C". The
large Fock space is defined as

Fh=LinH(C"). (8)

fgis a Banach space under [, if p>1, and .7-‘; is a
quasi-Banach space with distance d(f, g) = ||f - g||§’¢ if0<

p < 1. Assume that ¢(z) = |z|*/2, then fﬁ is the classical Fock
space which has been studied in [2-4] for example. Also, the
weight function ¢ on C" with the restriction that dd¢ =d
d°|z|* belongs to W, where d =0 + 9 and d* = (v/=1/4)(0 -
0). See [5, 6] for more details.

Particularly, ]—'é is a reproducing kernel Hilbert space.
That is, for any f € F3, there exists a unique function K, €

Fj so that f(z) = (f, K,) 2, where

o905 = J f@)9@)e ™ Idv(z). foge Fy (9)

"

We say that the function K,(-) is the reproducing kernel
of .7::5. It is well known that the orthogonal projection P

: Ly — F is given by
Pf(z) = J f(w)K(z,w)e W dv(w), f € L. (10)
-

Asweknowif 1 < p < co and g is the conjugate exponents
of p, then the dual space of L‘; can be identified with LZ, by the
integral pairing (,) 7 defined by (9). In general, for 1 < p < oo,
no less important than the Hahn-Banach theorem is the
Bergman projection to explore the dual spaces of .7-"; How-
ever, there are some differences for these quasi-Banach
spaces .7:2(0 <p<1). To do this, we will mainly apply

Hoérmander’s solution of the 0 equation and the Lebesgue
dominated convergence theorem to consider the duality of
FE(0<p<l).

The “weakly localized” operators were introduced for the
first time in [7], and the authors studied the compactness of
these operators on the Bergman space A? and weighted the
Bargmann-Fock space Fj with 1 <p < co. In fact, this kind

of operators is interesting since these weakly localized opera-
tors contain Toeplitz operators which are induced by
bounded symbols. Indeed, Toeplitz operators are a kind of
significant operators, and these Toeplitz operators induced
by diverse functions enjoy abundant properties, see more in
[8, 9]. As a further research, Hu, Lv, and Wick characterized
the compactness of these weakly localized operators on gen-
eralized Fock spaces Fj with 0 <p<1, see [5]. Besides, in
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generalized Bergman space setting [10], there are two ques-
tions: whether Toeplitz operators induced by bounded sym-
bols are weakly localized operators? Would these weakly
localized operators form an algebra?

This paper is devoted to consider the compactness of
these weakly localized operators on large Fock spaces .’P;
with 0 < p < 00. To ensure the validity of these fascinating
operators, we show these localization operators contain
Toeplitz operators induced by bounded symbols on 7%,
see Theorem 16. Meanwhile, we also give affirmative
answer about the second question on our Fock spaces,
see Theorem 15.

Notice that although in the one-dimensional case, the
diverse weight function gives another Bergman metric, and
the resulting Bergman disk will be changed. Furthermore,
there is no inclusion relation between .7-"; and fz ifp#gq.
The above properties are much different from [5], so we have
to apply more techniques to discuss the compactness of
weakly localized operators in case 0 <p<1. For case 1 <p
< 00, the ideas to study compact weakly localized operators
in [7] are not entirely applicable to the situation we are dis-
cussing. Hence, we finally combine the skills in [5, 7] to con-
sider the compactness of these operators on .7:‘;( 1< p<oo).
Eventually, when p > 1, we bring new consequences even if
.7-"; is the generalized Fock space in [5].

This paper is organized as follows. In Section 2, we give
some lemmas which will play key roles in our proofs. In
Section 3, we show some properties of projection and dual
spaces of large Fock spaces J’-ﬁ when 0 < p < co. In Section

4, we conclude the algebraic properties and boundedness of
localization operators. Finally, in Section 5, we consider the
compactness of weakly localized operators on our Fock
spaces.

Throughout this paper, we write A < B for two quantities
A and Bif there is a constant C > 0 such that A < CB. Further-
more, A = B means that both A < B and B < A are satisfied.

2. Preliminaries and Basic Estimates

In this section, we will give some useful estimates for our
proofs. For z € C", set

weB(z,r)

py(z) = sup {r>0 :osup Ap(w) < rz}. (11)

In the following, we write p(z) instead of p,(z) for short.
By [11]
consequences.

(see also [12]), we have the following

Lemma 1. Let ¢ be as defined in (2). Then, the function p sat-
isfies the following properties:

(A) There exists M > 0 such that

supp(z) <M. (12)

zeC"
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(B) The function p is Lipschitz, that is

p(@) - W) <o~ w} ZweC.  (13)
(C) Forre (0,1)andw € B(z,rp(z)), there holds

(1-np(@)<pw)<(L+r)p(z).  (14)
(D) There exist a, b > 0 such that

e s p() sl forle > 1. (15)

Let r >0, we write B'(z) = B(z, rp(z)) and B(z) = B'(z).
In fact, it is easily obtained from estimate (14) that there is
some constant ¢, such that ¢;'p(z) < p(w) <c,p(z), where
¢,=(1-r)"" for any r € (0,1). That is for every r € (0, 1),
we have p(w) = p(z) whenever w € B'(z). Besides, (14) and
the triangle inequality give m, and m, so that

B(z) ¢ B™(w) and B(w) ¢ B™(z), whenever w € B(z).
(16)
Given r > 0, there is a sequence {a,};>, in C" such that
{B"(ay)}, covers C", and the balls {B"°(a;)}, are pairwise
disjoint. We say the sequence {a;}, is an r-lattice. For the r
-lattice {a,}, and m >0, there exists some integer N such

that any z in C" belongs to at most N balls of {B"™"(a;)},.
That is, for every z € C",

> X (q)(2) <N (17)
k=1

Now, we are going to state the properties of the reproduc-
ing kernel K. Let ¢ € W, and it follows from [11-13] that

(A) For z,w € C", there are constants €, a > 0 such that

e¢(z)+¢(w> 76(\wfz\) «
— p(2)
p(2)"p(w)

K (w)| < 0 - (18)

n

(B) For z € C", there exists f € (0, 1) such that

9 +9(w)
K (w)] =

PR weBf(z). (19)

2n

(C) For 0 < p < 00, there holds

K. |pp = e?@p(2)" 177D, zeCn. (20)

With the help of Lemmas 1 and 2 in [12], we get the fol-
lowing lemma.

Lemma 2. Given p,a >0 and k € R, there exists C> 0 such
that for z e C"

[w=2|

| pwrer & avwscot. @

For r >0 and z € C", we write (B"(z)) = C" \ B'(z). Let
do = p~"dv. Tt is directly from ([14], Lemma 2.7) that we
have the next estimate.

Lemma 3. Forany a> 0, p>0, k>0, r>1, and z € C", there
is a constant C,,(r) > 0 such that

J lw-z|fe? (55
(B'(2))°

and C,,(r) — 0 whenever r — oo.

Vdo(w) < Copu(Mp(@)s  (22)

Wewill write k, . (w) = K_(w)/||K_||,; for the normalized
reproducing kernel at z € C”, where 0 < p < co and w € C".

Lemma 4. Let 0 < p < 2. Then, for every z € C", we have

J(B'(Z))C

k,.

(w)e *) ‘Pdv(w) -0 (23)

as r — 0Q.

Proof. By joining (18) and (20), we have

J (B'(2))

K (w) |

k @+ 9w)

e P dv(w)

w)e ) )p dv(w) = J

(B"(2))
@[ pwpr et () dofw
(B'(2))"

< p(z)”"’z"LBV( ))tefp(‘f%‘) do(w).

(24)

Here, the last step is from the estimate (12). Thus, the
assertion follows from Lemma 3 with k=0 for any fixed z
eC".

The next lemma is immediately from ([12], Lemma 4)
(see also ([11], Lemma 2) for any r > 0.

Lemma 5. For 0<p<oo, there is a constant C>0 such that for
each r> 0, f € H(C") and z € C", we have

1lp
[4 p
f(2)]e?P s —— J ‘f w e_‘/’(w)’ dv(w .
@k s o (], avw
(25)
For >0 and some domain Q ¢ C", write Q) = J,.,B"(2)

. Let d(-, -) be the Euclidean distance, and we have the
following lemma.



Lemma 6. For 0<p<1, 0<r<1, and a € R, there is some
constant C (depending on p, n, and r) such that for any
domain Q c C" and f € Z(C"),

G | f(w)e @ p(w)” | dv(w))P < C[ ‘f(w)ﬂ(w)P(w)a Pp(w)(2p—2)ndv(w).
Jo Jor

(26)

Proof. Consider the r-lattice & = {2, z,++,z;,"-} in C". For
0<r<1landzeC", we get p(w) = p(z) whenever w € B'(z).
By letting w € B(z;), it follows from (16) that

B'(z;) < B" (w) < B""(z;), (27)

where m =m(r) > 1. Also notice that (a+b)’ <a” + b’

for positive a, b and 0 < p < 1. Let r be sufficiently small so
that m?r < 1. Thus, the above inequality, (17) and (25) show

dv(w))P

P
(2] 1w pr dvw)
zeZ QnB'(z])

sc ¥ sup [ fw)e )| pw) @
£62d(2,2) <rp(z;) l0-2)1=rp (2;)

(] [rae=pw

4
<C
zjsg,d(z,,zo)w(z,) J B (3)

¢ 2 J B ()

zje.y,d(zj,ﬁ)ofp(zj)
XB'”Z’(Z

SCJQ Z /

:zjej{),d(zj,ﬂ)qp(zj)

<oN| |fwpe @ pw)
o

p (Zj) (2n+a)p—2ndv(z)

f)e

F(@)e?@)] p(z) 22y 2)

P

()| w)e @ p(w)*|p(w) " dv(w)

’ p(w) D" dv(w),

(28)
which completes the proof.

3. Bergman Projection and Duality

The paper [12] points out that the Bergman projection P is
bounded on 9’2 for 0 < p <o0o. And there is no answer to
whether Pf = f on 91 In what follows, we use the classical
Hormander theorem to prove that the projection P is an
identity operator on 9{;(0 < p<o0).

Theorem 7 ([15], Theorem 4.2.6). Let X be a pseudo-convex
open set in C", ¢ a plurisubharmonic function in X, and a
>0.Ifyisin Lfm) locally in X and oy = 0, then the equation

Ou = has a solution u € L2 (X) such that

loc

aJ.X\u(z)\Ze_‘P(Z) (1+]2P) “dv(z) < LIW(Z)IZE“”(Z) (1+]2P)" " dv(2).

(29)
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For 1 < p < 0o, we let q be the conjugate exponent of p such
that 1/p+1/q = 1.

Theorem8.1f0<p<ooandf€9~§, then Pf =f.

Proof. Suppose that h(z) € C*(C") satisfying h,(z) =1 if |z
|<R(R>1),0<hy(z) <1if R<|z|<R+1, hy(z)=0if |z]| >
R+1and

|0k, (2)| < By (2). (30)

Set Q;={z : |zI<jR} where j=1,2, ---. It follows that for
any z € Qj,

ho(2) = hy <_) =1. (31)

Because of (15), there are a, b > 0 so that |z| “ < p(z) <
|z|b whenever |z | >1. Indeed, by choosing r > 0 sufficiently
small, we obtain (Qj): c{w: |lw[>j(R-1)} when j is large
enough.

If 0 < p <1, then by Lemma 6, we have

IN

. P
|Pf(2) = P(fho,) (2)[ (J K w>e2¢<w>dv(w>>
w|>jR
<| KPP 0) ()

(32)

This together with (18), Lemma 2 and Fubini’s theorem
give

HPf - P(fho,j) Hi,qﬁ s JCW '[@;)

[ \f(w)\Pe'zf"“”p(w)(zﬂ)"[ 1K (20 w) P9 d(2)dv(w)
(@) Je

il

[ (w)K (2 w) e 40 p(aw) 2 PO dy (w) dv(2)

<] lfrertaw s jwpertdw).
(), Jw]>i(R-1)

ilr

(33)

We now let 1<p<o0o. Notice that estimate (18) and
Lemma 2 indicate

J K (z, w)|e-¢<z)-¢<w>dv(w)sj p(2)"p(w) e (55) dv(w) < oo.
c" ct
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So, Holder s inequality and Fubini’s theorem show

2 =Pl < [ | )P ik wle 4 dvw)

X [ | K(z,w) | e~
Jox

< JQ{\f(w)|Pe‘P¢( )J K (z, w)|e @) dy(z) dv(w)

9(w) dv(w)) Edv(z)

|f(w) e dv(w).

|w|>j(R-1)

<, rwperaws |

i

(35)

And then, for 0 < p < 0o, we get

hm ||Pf P(fhy)) H‘D <C lim J If (w)[Pe ™) dy(w) =0.
lwl>j(R-1)

Jj—00

(36)
This combined with (25) means that

)| < Ce?@ p(z) 7 |Pf - P (fhoj)lps — 0,

(37)

|Pf(2) = P(fho ) (z

as j — 0o.
On the other hand, applying Theorem 7 with a =2 to the
solution of du =y in Li, we have

| )P (1 ) v < [ fy)Pe 2 dvu).
38)

Hence, for z € 2; and let j be sufficiently large, it follows
immediately from esitmates (25), (30), and Lemma 2 that

£(2) = P(fho;) (2) e p(2) 7
=|fhoj(2) = P(fhoy) (2) € @ p(2)F

SP(Z)Z"(%’I)L( [Fto) — P(fhy,) (@) (1 + o) 2 %@ () dv(w)

s;a(z)“(f’l)J () = B(ha ) @) (1 + ) "2 () v

o)
L

< =p(2) i >||f||;,¢[

J J jiR<lwl<j(R+1)

<p( ! e () dy(w)

pw)e () daviw) < 5111,
(39)

By combining the above estimate and (37), we finally
obtain

Pf(2) = ()] < IPf(2) = P(fho) (2)| + IP(f o) (2) = f(2)| — 0,

(40)

as j — 00. This ends the proof.

We now proceed to identify the dual space of % when
0 < p < co. Arguing as in [16], we let
723 = {1 € () Wy =s0p (1 (2) ple)e#) oo ).
zeC"
(41)

Theorem 9. Suppose 0 < p < 1. Then, (97‘;)* = F o nipr

Proof. For any fe%, consider Lg(.) =
9“52_2”,1,46. Then, (25) says

(-, g) where ge

[Ly()] < J.c" [f(2)g(2)le @ (z)

< (sup If(z)le"”(z)p(z)zﬂl) 7Pj.0|g(z)|P(Z)2n_27ne_¢(z) (2)e et d"( )

zeC"

< Cllgloozn-z61f g,
(42)

The above inqueality shows that L, is a bounded linear
functional on 92 and "Lg||Scl|g||m,2n—}n/p,¢'

For weC", define g(w)=L(K(,w)) where L is a
bounded linear functional on 9‘; Pick an r > 0 such that w

+ Aw € B"(w). For some m > 0 and every z € C", using Cau-
chy’s estimates, we have

P P

K(w + Aw, z) -
Aw

K(w, z)

K
— (w+tAw, z)

< sup
w

0<t<1

1 p
< Grp@)P (lf wflinlzp(w)lK(E, Z)>

1

s »
< r2np p(w) 2P LW )\ (u, 2)[Pdv(u).
(43)

We note that for any fixed we C”", the function
me , |K u, ) [Pdv(u))" is in Lﬁ. Fix w and z, and we get

. K(w+Aw,z) -K(w,z) 0K
43)120 Aw T 0w (w.2). (44)

Thus Lebesgue dominated convergence theorem indi-
cates

K(w+Aw, ) -K(w,-) 0K

lim o ~ 30 (w, ")

Aw—0

=0. (45)
po

Hence, for any L € (97;)* , we obtain g(w) € Z(C") since

“LK(w) (g—K (_w’ ')>’

b LK(sw+ Aw))
g(w)_A&;lEo Aw

(46)



and  |g(w) | <||LI[|IK( w)]|, 4 < CIIL[| ) p(w)™ 7.
The result is

9 € Fopmgand||glloz, a4 < CIIL]- (47)
To complete the proof, it only remains to show that
)= | fwigwe avw).  as)
CVI
Let {a,}, be an r-lattice. For 0 < R < 00, we consider

Sr,R(f)(Z)=ZK(z>an)J< U F(w)e @ dy(w).
n B'(a,)\ B'(aj)>ﬂB(O,R)

j<n

(49)

Since B(0, R) is compact, there exists k > 0 so that U};:I
B'(a,) > B(0,R). Moreover, we see that S p(f)e #(C")
because it is actually a finite sum of analytic functions. And
there is R’ >R such that Uﬁle’(an) cB(0,R"). It follows
from (43) that

$:2(N@) = P(Faan ) @)
-3 (K(z.) - Kz w)f (@)e dv(w)
" (W(a”)\UB'(u,)) (BO.R)

j<n

: ( [Flw)e ] ) 3 (
< ( sup |f<w)e’2‘“”)\> ) (sup IK(E, z)\) frp(a,)™"
weB(0,R) B (a,)(JBOR) [E[<2R'

<CR) < sup |K(§,2) | >

&l<2R'

IK(z,a,) - K(z, w)|dv(w)
B'(un)\UB’(a])) (BOR)

j<n

(50)

goes to 0 by letting r — 0, where x5 denotes the
characteristic function for the ball B(0, R). This means that

lim S, x(f) = P(fXB(O,R)) : (51)

It is clear that, for each fixed z € C", sup |K(a,,z)]| is
|a,|<2R'

in L‘;. Hence, by the following estimate,

|S,)R(f)(z)‘ < ( :Bung |f(w)e*2¢<w‘> z ) |K(ay, z)|dv(w)
weB(0,R) (B'(a,J\UMB'(“/))mB(O,R) B'(a,)

<C(R) sup [K(a,,z)|>
Ja, <28’

(52)

and the Lebesgue dominated convergence theorem we
deduce

Journal of Function Spaces

5 1S, (f) = P(FXaom ) I = O (53)
Furthermore, we claim that

fw)L(K (- w))e ) dv(w)|

|w|<R

IL(S,2(F)() j

s( sup |L<I<<-,un>—1<<-,w>>|>[ If (w)le) dv(w)
weB' (a,)(\B(O.R) Jiw|<r

SC(R)<IILI sup IK(-:an)—K(-»w)p,qa)—%
weB' (a,)()B(0.R)

(54)

as r — 0. Here, the last assertion follows from fact that
IK(~a,) = K(>w)||,, — 0 whenever r — 0. To see this,
by letting r — 0 and w € B'(a,,), we then get K, — K|, .
Indeed, (18) gives us a dominating function, and it is from
Lemma 2 that the function 1is in Lg since
| (e2@)+9(2) 1 p(w)" p(z)")eellzwllp(w)® o9 S @) p(w) > P2"
for any fixed w. Then, the desired assertion holds by Lebes-
gue dominated convergence theorem again. So, we have

lim L(S, 4(f)) = j J@LKC ) o). (55)

r—0

Therefore, we have by Theorem 8, (51) and (55) that

L(f) = Jim L(P(fxuon)) = Jim_ lim L(S,x(f))

—o0r—0
= lim
R—00

fW)L(K (- w))e @ dv(w) (56)
= JU FW)L(K(-w))e ™ dy(w).

|lw|<R

This finishes the proof.

Theorem 10. Suppose 1<p < co. Then, (

X
Il )

2
S
=
&
=

the pairing

(> 9) j f(2)g(2)e @ (). (57)

c
Proof. If g € 973,, define
Ly()=(-9)- (58)

For any f € 7, Holder's inequality gives

If (2)9(2)le P dv(z) < llgl sl (59)

cr

L)< |

This means that L g is a bounded linear functional on %
and 1L, l1<lgl,
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On the other hand, let L : 92 — C be a bounded linear
functional. The Hahn-Banach extension theorem implies
that L can be extended to a bounded linear functional L on
LZ. It follows from the duality theory of LZ, that there is a

function G € L such that |G|l 4 < |LI = L, || and

L(f)=(f.G).f €Ly (60)

Set g =PG, then |gll,4 < IIPIlGl 4 since P is bounded.
Also, note that Theorem 8 shows Pf = f for f € 9‘; So, (60)
indicates

L(f)={f.G) = (P, G) = (f.PG) = (f.g). f € Fy.  (61)

This completes the proof.

Corollary 11. Suppose 0 < p < co. Then, the linear span E of
all reproducing kernel functions K, () is dense in 37‘;

Proof. Let 0 < p<1. It is immediately from Theorem 8 and
the proof of Theorem 9, for any f € 9“;, that
tim_1im [1S,.(f) /]|,

< lim lim ( Sir(f) _p<fXB(o,R)) HM + HP(fXB(o,R)) _pr)(J =0.
(62)

R—0cor—0

Next, we assume that p>1. By Theorem 10 and the
Hahn-Banach theorem, it suffices to show that for any g €
E, we have f=01if f e 93) satisfies (f, g) =0. This follows

from the fact that f(z) =Pf(z) = (f,K,) =0 for every z ¢
C".

4. Localization Operators

In this section, we will explore some properties of weakly
localized operators on our Fock spaces. In particular, we will
show the algebraic properties of these localization operators.

Before stating weakly localized operators, we consider
firstly the following proposition.

Proposition 12. Suppose 0 < p < 1. Then,

2n

1K (5 w)l-225 = € p(w) 7. (63)

Proof. Tt is from (11) that there exists some r, > 0 such that
p(u) > r, for each u € C". Fix w € C", and we have

lu—w|

2n lu—w|

P_"p(u)"_%efe(f’(w)a < (ro)n_%p(w)%_”eie(;)(m)a. (64)

p(w)

For every w € C", let r > 0 be sufficiently large and let |u
—w|=>r, and it follows that estimate (18) together with

(64) gives

IK (1, w)le ) p(u)" ¥ < ¥ p(w) ¥ (Uo)”*?—”p(w)?‘"’”e’e%) )

is a dimensionless. For fixed w € C", we get r = fp(w),
where f3 € (0, 1). Hence, Theorem 9 together with (19) shows
that

2 n2n
I (s w)lf2n = =5, ¢ = sup (1K (1 w) [ p(u) )

zeC"

= sup
ueB(w,r)

= e/ p(w) 7,

(IK(u, w) | e_gb(”)p(u)z"*zp—")

(66)

which is the desired estimate.
Now, with the above preparations, we are ready for the
definition of weakly localized operators.

Definition 13. Let 0 <p<1. A linear operator T on % is

called weakly localized for 9‘; if

4
Tk, k. o > 21 dy(w) <o,
:g‘gjcn< > Kan-2n, 9;’ p(w) "dv(w)<oco

supj
zeC"J C"

(67)

p
*
< T kzn’%’z’ Kpw >972

P
<Tkp,z’ k2n—%”,w> o

lim supJ
TRzl (B (o))

%
p
lim supJ <T*k2n_2,n,z, kp,w> p(w)dv(w) =0,

Tzee I () ! 7

(68)
where
K(u’ ) ) n

k2n_zp_n,,(u) = W, ueC". (69)

Recall that, for 1 < p < 00, q is the conjugate exponent of p
so that 1/p+ 1/g=1.

Definition 14. Suppose 1 < p < 0o. A linear operator T on F,

¢
is called weakly localized for 92 if
supJ I(Thy 2 ko) o lp(w) " dv(w) <00,
zeC"J C" ¢
(70)
supj |<T*kq,z, kp,w>g2 lp(w) " dv(w)<oo,
zeC"J C" ¢



lim supj I(Tk,.. k, >92|P(w)_2”dv(w) =0,
(B'(2))

r—00 zeC" ¢

lim supJ I(T"k,. Ky,
(B'(2))°

r—00 zeC"

>9$ lp(w)"dv(w) = 0.
(71)

Next, we are going to answer the questions raised at the
beginning of the paper in our Fock spaces. In fact, each set
of these weakly localized operators on 9‘; is an algebra.

Theorem 15. Suppose 0 < p < co. Then, weakly localized oper-
ators on % form an algebra.

Proof. Suppose operators T and S are weakly localized. So, it
remains to show that TS is a weakly localized operator
because the linear combination of two weakly localized oper-
ators is also a weakly localized operator.

We let 0 < p<1. It follows from (68) that there is some
r> 0 such that

P
p(w) dv(w)<e,  (72)

J (Bi(2))’ ‘ <Tk” g kz"_z'*n’“’>92

[

where a=(1+7)"*+1 and any £> 0 (when 1< p < co,
estimate (71) gives an analogous representation). For z, x €
C", if x € B"%(z) then p(x) < (1 + (r/a))p(z) and by the trian-
gle inequality, we have B"(x) C B'(z). That is, (B"(z))‘ c
(B"%(x))" whenever x € B"*(z).

By joining Lemma 6 and Fubini’s theorem, we get

LB ' (2)°

<TSk gy w> Pp(w)_zndv(w)

o
T

P
plw) 2" dv(w)

Sk Ty w>7é

4

‘ PP () 21021y 1)

P
j (SK» K g2 (Ko T'K >gze'2“’(”)dv(x) PRI p(2) 21721 gy (1)

° 2,
plw) " dv(w)

IZ

[ (St o) (e T o) () )
¢

P
(B'(2))° J o ong > T4

<Sk Jk p(x)2 ](B o

N

(o Tl | 0 a)pt0 o)

2n—=1, x

i
Ji
[
Jue
J
.

<Tkp gy w> ‘p(w) My (w)dv(x).

c"

(73)

Since T and § are weakly localized, hence

! :J' Ky k. P<">’“J ThyoKapzn ) | p(w) " dv(w)dv(x)
l K;(z>< e >9§ @) (Tho ke >9é
P
K, s Koy -2 Tk ko 214y w)d
SJB . <S Pz 2n——x>$3 P(X) [(Rﬁ(x)) < P 2"77w>g$ P( ) v(w) V(x)
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b= J(g%( 9)° ‘<Skpz’ an,_,€>%
[Tt
J(BE(Z)) <Skpz’k 2n-3: X>J

'<Tkpx,k >%\Pp<w>-2"dv<w>dv<x>

< (supJ
xeC"J

p
TR >g\ p(x) " dv(x)

<8(§:§JC« <Tkpx, k,,_ z, >

(Thys kzn_zp_n,w>% ‘pP(w)_Z"dv(w)) J o)

“plw) b))

Therefore, by combining I, and I,, we get

J(B'(Z))‘

where the constant C does not depend on ¢. This means

Pp(w)’z”dv(w) <Ce (75)

<TSkPZ,k2n an>4

P
pw) " dv(w) — 0,

<TSkPZ, ky, 2 w>J2

supJ
zeC"J (B'(2))° ¢

(76)

when r — 00. Meanwhile, we also get

supj
zeC) (B(2))"

whenever r — oo.
On the other hand, let now 1 < p < 0o, by Fubini’s theo-

rem, and we have

J .|<TSkp,z’ kq,w>gz lp(w)"dv(w)
(B'(2)) ¢
<] ks e
(B'(2))" JC"
< J |<Skp,z> kq,x>g2 |P(x)72n4[
c" 9

T Ky) s P(3) 2" dv(x) () " dv(w)

o]

|<Tkpx qw> 2|P( )zndv(w)dv(x)‘

®(2)
(78)

We split again the above integral on C" into the
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corresponding integrals on B”%(z) and (B"*(z))", then

sup J(B'< )>[I<Tskpz, kqw>% Ip(w) P dv(w),

zeC"

(79)
p | (1) ko,
(B'(2))°

zeC" >%|p(w)_2”d1}(w)

all go to 0 as r — oo. This ends the proof since others
are obvious.

Let WLﬁ denote the algebra generated by weakly local-
ized operators for 9{; Let T, be a Toeplitz operator (see
[8]) on 91;, where f is called a symbol function. Then, each

WLﬁ contains some special Toeplitz operators.

Theorem 16. Suppose 0 < p < co and f € L. Then, Toeplitz
operator T € WLfﬁ.

Proof. We first suppose 0 < p < 1. Clearly, it suffices to prove
that

P
su k> k2, w) " dv(w 80
ze£J<B'<z>>“< i >%‘ pluy i) (80

converges to 0 as r — 0o.

Since Tk, =P(fk,,) for any fixed z, hence Lemma 4

gives that
k z’an— W
J (@) (T >ffo

4
S| | [(bbag) | o) 1)
(B'(2)" <p " >%
| ket
(B'(2))

P
pw) dv(w)

e dv(w)

goes to 0 whenever r — co.
Now, assume that 1 < p < oo. It is easily obtained from
(18), (20), and Lemma 2 that

Jcn (T sk, K, >92 lp(w) " dv(w)

) J cr [f ()| (w)[e ) p(2)" % p(w) T dv(w)

2n

<l "L“’J P(Z)"_%P(w)‘"?e‘e(‘Z(zi‘) dv

c"

(w) < Ifllge-
(82)

Thus, we only need to show

supJ (T
2eC"J (B'(2))"

as r — 00. In fact, lw—z | >rp(z) if we (B'(z))". This

rky o Ky, w>9§> lp(w)>"dv(w) — 0  (83)

9
together with (82) indicates
J 1Ty s kg oo lp(w) ™ dv(w)
(B'(2))° ¢
<Whe | pley oy F ) e v
(B(2))
< e |f|l oo
(84)

Therefore, the desired conclusion follows when r — 0.
This ends the proof.
Remark. Moreover, Theorem 16 indicates that the iden-

tity operator is also in WLI‘f. Namely, each algebra WLﬁ pos-
sesses an unit.

We next consider the boundedness of operator T € WL;‘,5
for 0 < p < 0o.

Theorem 17. [f 0<p<oco and T € WLS, then T is bounded
on 371;

Proof. First, we see that

Tf(2) = (If. Ko gz = (/ T'Ky) 2

= | S, TR e
CYI

Let 0 <p <1 and let

M, = supJ
c

weC"

p
(T ko) [ oo avte). (50
Estimate (20) combined with Lemma 6 yields

)" < ([ |f(W)(Ky T'K,) 52 [ ¢20() Z>dv(w)>p
Jer
i <-[c" i )<K Tk z> [ e 20 z)izr*"dv(w)y

(|

<p(e [ _|fw) (b

‘Tf(z)e’

2n p
£ )t ()

£() (K T*k2nf%,z> .

¢

'W dv(w)

T k2n— z>
7

(87)

So, we conclude by Fubini’s theorem that

P
_2n
2n 7,z>. 5

¢

ple) > dv(2)dv(w)

11, J |Pe-P¢<w>J ‘< Thy o k

Mlj £ () PP dv(w) = My I .

(88)
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We now assume that p > 1. Set

M, = max { supJ | <Tkp)w, kq,z>92 | p(z) > dv(2), SUPJ
c ¢ c

weC" zeC"

92’ Pw>92

’(T k

plw) () .
(59)

By Fubini’s theorem and Holder s inequality, we obtain

||Tf||§,¢SJU (J@| f(w)(TKw,Kz>gi\e-zvﬁ(w)dv( )> (o)
SJ@(J@V( )PP | (Tky,, qz>g2|pz Mdv(w)>
' <L T koo Kpaw) 53 | P(w)’z“dv(w)ydv(z)
<M U@PE| 1(Thyunby) oo ae)in(w) < U

(90)

which completes the proof.

Now, it follows from Theorem 17 that each WL}“,S(O <p
<1) is analogous to a Banach algebra.

Theorem 18. Suppose 0<p<1and T,S¢€ WLﬁ. Then, | TS
g < IT, oISl s

Proof. Suppose 0 < p < 1. For every z € C", by the proof of
Theorem 15, we see that

| TSkP)ZHj:, .= J@ | TSk, , (w)["e P9 dv(w)
P -2n
= JC” <TSkp V44 an——w>gi‘ p(w) dv(w)
—2n
< JC" <Skp V4 ]<2V1727",)c>57'fb p(X) JC"

(T ), o) Mdv(u)iv(s)

P

= Ln |k () e“’”’OJCH | Tk, (w) [P Pt dv(w)dv(x)

= | I
.

Since T,S € WL;f,
bounded on 9"{;
TSk, ],
the supremum of HTSkp)ZHP "
T[] 1Sl -

5.5 Sepc ()" e ().
(91)

then Theorem 17 says T and S are
Thus, the above estimate implies
< |ITl,4l1Sll,4- This completes the proof since

is no more than C times

Theorem 19. If 0 < p < I, then WLﬁ is closed under the oper-
ator norm on 9‘;

Journal of Function Spaces

Proof. See Lemma 2.6 of [5]. We omit the details.

5. Equivalent Conditions for Compactness

For this section, we use the ideas in [5, 7] to characterize
compactness of weakly localized operators on large Fock
spaces. Indeed, it is more complex than [5] because Bergman
metric works in a different way than in Euclidean metric.
We begin with the following preparations. Recall that, for
fixed r >0, there is an r-lattice {Zj}j such that {Br(zj)}j
covers C". Let F;=B"(z;) \ UK].Br(zi). It follows that {Fj}j
is also a covering of C" and F;NF,=J(j#k). We write
(FJ);r =, B'(x), and it is from estimate (16) that we con-
J

sider
G;={y:d(y, F;) <m'rp(z;),m=m(r) > 1}. (92)

In what follows, we always define F; and G; as above.
Also, there is some constant N such that

OZOZXF,(w)S iX(Fj)+(w)storanyweC”. (93)

1 .

Lemma 20. If 0<p<1and T e WLS, then for every >0,
there exists sufficiently large r > 0 such that for the covering
{Fj}j (associated to r), we obtain

<e. (94)
—

(e8]
T-P (z M, TPMXGJ>

=1

Proof. Since T € WLY, then there is some r>0 sufficiently
large such that

pp(w)’z"dv(w) <e. (95)

sup J <Tkp w k2n—%”,w> S
ueC"J (Br(u))* ]

Define S=TP - Z M, TPM

cates that

Then, Lemma 6 indi-

(96)
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Notice that

o %
= “Ke ¥ Wdv(u

|JU (MXG? f>T K, e dv(u)|
sJ (U)K T"K ) gz le ().

G

(97)

This together with, for some t,s>0, estimate (20),

Lemma 6, and Proposition 12 shows

o P
IPSf(2)F < Y. ([ ‘f ) (K T'Ku) g 2¢<“>dv(u)>

)
K (2 w) e ) p(uw) ™ dv(w)

) K(z,w) ‘Pefw(w)p(w)%?*ln

e (Thy o )
e

P
p<w>’%”p(u>%’z“dv<u)> dv(w)

K(z,w) ‘Pefm(w)p(w)ZnP*‘an
F (), (e);

Afwe <Tk gy w> dv(u)dv(w).

(98)

We claim first that (F;)” ¢ (B"(«))  if w e (F)] and u €

(GC) Furthermore, applymg (18), (93), Lemma 6, and Fubi-

ni’s theorem, we obtain

IPSf (2) p¢~ZJ ‘ )
‘<Tk gy

2"_7 w>§7~$

|K (2, w)[Pe @ dv(z)dv(w)dv(u)
J(B " (1))
4
\(Tk,,wkn,_w> p(w) " dv(w)dv(u)
<] _[rees]
o

. supJ
ueC" J (B (u))°

<elfl 4.

X (u ‘(w)
J(F,),* (B ()

—p(b(w) P(w) 2np—4n

X

<N e o)

I
J b

c"

14

<Tkau’ kln—zl—f‘,w>% P(w)_Z"dV(w)> dv(u)

(99)

Since PTP=T on F, thus PS=T - P(Z;flMxpj TP
M ch) is well defined.

Thus it only remains to prove that (F )+ c (B (u))".

In fact, (16) gives B'(z;) C B (z i) C CB"(z ;) where m =
m(r) > 1. We then choose a t satisfying w € (Fj))f CB™(z zj).

11

Note that for any u € C", there exists M > 0 so that p(u)
< M by estimate (12). For fixed r > 0, it follows that |u | —rp
(u) >0 whenever |u]| is sufficiently large. So, for any j> 0,
there is some R > 0 such that

u| = rp(u) > m*rp(z;) + |z (100)
whenever |u | >R. Thus, the triangle inequality implies |

u-z;|2lul-lz;|>rp(u) + mzrp(zj). Further, the above

F)"nB(u)=2.

Next, we assume that |u | <R. For any fixed j, there isa r,
satisfying u € B"(z;). Since p is a Lipschitz function, then p
(z;) = (L/c, )p(u) where ¢, > 1. Notice that m=m(r) > 1,
thus it allows us to let m > ¢, . It follows that mrp(z;) > rp(

inequality concludes that (

u). For u e (Gj)s+ and |u| SR we can pick an appropriate s
so that sp(u) < mrp(z;) — rp(u). Hence,
lu—z;| > (m* +1)rp(z;) = sp(u) > (m* —m+1)rp(z;) + rp(u)
>m’rp(z;) +rp(u)
(101)

shows (Fj):r NB'(u)=@.
Therefore, the desired assertion holds, and the proof is
finished.

Lemma 21. If 1 < p < co and T € WLY, then for every &> 0,
there exists sufficiently large r > 0 such that for the covering
{Fj}j (associated to ), we obtain

(;M TPM ,)

Proof. By (71), for any € > 0 and w € C", there is some r >0
such that

<e. (102)
7

J (T k> Kps) 52 lp(u)"dv(u) <e, (103)
(B"(w))* ¢
and (70) shows
L:n|<Tkpu,kqw>%|p(w)_2”dv(w) <M < 0. (104)
We also consider S=TP - Z(?f M, TPM, . For any

fixed w € C", we assume that w € F, CB’(
ifueG,thenfu-gz |>(m +1)rp( )wherem m(r)>1

ForweF wehavelw z; | <rp(z; )andp( SELS 'o(w)
since p is a Lipschitz functlon Suppose m* > cr, so lu—w]|

z,) > rp(w), that is G} c (B'(w))"

) Note first that

>mtrp(z It follows from
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Lemma 20 that

|Sf (w)| = iMXFJ TPMXGL_f(w)I

(105)

This together with Holder s inequality and Fubini’s theo-
rem implies

P
HSfllgvlng <I | f(u)(TKu,Kw>9;|e’2¢(”)dv(u)> e dy(w)
e \J@w)

P
J| ([ )1 €901 (Thy Ky Ip(uﬁ"’%(wff’“dv(u)) dv(w)
e \J (B w)y i

<[ L SR Ty o)

2
q

x (J (T kg Kp) oo Ip(u)’z”dv(u)) dv(w)
(B(w))* ¢
<ol PP Ty b)) (i) < MU,
Jcr (o

(106)
which proves the desired result.

Lemma 22. Suppose 0 < p < 0o. For any bounded linear oper-
ator T on 92, there is some constant C such that

lim sup||PT,, ||9pé¢ <Climsup  sup ||T ||p’¢,
e " e, (G),
(107)
where T, =Y ;.,,M, TPM, .
Proof. First, let 0 < p < 1. Suppose f € 9‘1; and f #0, define
ch
=p (108)
= Qm)ﬂw>
Since Pf = f on .97‘;, then by (85) we get
Tg,@1=1|_g/@TK, @) ds(uw)
o
Xef (W)
= |J — 7 _ TK e 2@ dy(w)|
gy s 20 (109)

v(w).

| VlTKute e
REEORLY

By combining the above estimate and Lemma 6, we

Journal of Function Spaces

obtain
‘P(MXFJ ng) (u) ’P

P

Idv(z)

J 7 (79)) (@)K (w2)e

< J(F.)* ’ (ng) (2) ’p‘]{(u, 2)[Pe ) p(2)2P 2y (2)

7)r

= J(F.)*

7)r

K (u, 2) |Pe*21>¢(2)

J If (w)|| TK, (2)]e2#®)
K HX(GJ‘):f ‘M
X \K(u, z) |Pe’2p¢(z)p(z) 2np-2n

dv(w) | p()""dv(z)

w i < p672 Lp(w) 2np-2n
x j(G)f a )|HTKw(f)|p ’ p(w)* " dv(w) | dv(z).
)

r

b

(110)
Notice that there is a r’ € (0, 1) such that (F ) CB'(z i)
(we can let r be small enough), then for z € B (z ) we get p

(2) = p(z;) by (14). Now, by (18), (25), Lemma 2 and Fubi-
ni’s theorem, we have

f ? —2 w 2np-2n
1P (MXF,T%‘) ”5,¢SJ(GJ) ||X|(G<) ;'"M P90 p(w)*

X TK,,(z)[Pe @) p(z) 02"
j(Fj): o2 p(a
(w)dv(z)
T
(6)! ||X( j)7f||p,¢ (F)!

fod

K (u, 2)[Pe P dv(u)dv
)

1y

| Tk, (2)[Pe PP dv(z)dv(w)

s( sup IITkp,wII§,¢>
we(G)),

: p(z)"dv(z)
JB" (z) J(G]):
)P
Ix(6) /T

< sup [Tk, lb,
we(G));

e Po(w dv( )

(111)
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Therefore, we deduce

IPT,f Iy < Y 1My, TPM, i, = 3 IP(M,, Ta;) I ghx(q )/l

j>m j>m

<Y sup 1Tkl ol (6l
Pmwe(G;); v

SN( sup ||Tkp,w||§,¢) IFIE -
wEU]>m(G])r
(112)

Now, 1 < p < 0o. It comes from the above proof that

P

[PT,f (u)l” =

p (ZMxpj TPM,, f) (u)

]>m

S<ZL|K(”’2)I€‘2¢<Z>J I (w)] (113)

j>mJ Ej Gj

(TR Ko e e’2¢(w)dv(w)dv(z))p .

For fixed j and r >0, let x € F; \ {z;}. Note that F; ¢ B'(
z;), we then get F; C B'(x) and G;c BY"(x) by (16), where
b=b(r) > 1. Furthermore, there exists some ' > 0 such that
BY"(x) c (G]-):,. It follows from estimate (14) we have p(z)
= p(x) if z € B (x) and p(w) = p(x) if w € B (x) (here we
also assume 7 is small enough so that b°r < 1). Hence, by esti-
mates (18), (20), (25), (93), Minkowski’s inequality, and
Lemma 6, we obtain

"PTmf"p,¢ <N |:L:n (JRM( ) |f(w) ] e 29(w)

1

. p »
x J | TK,(2) | €*@ | K (u, 2) | e’ﬂz)’”“)dv(z)dv(w)) dv(u)}
B (x)
SJ ) Ur(w)|e-2<b(w)J ITK,,(z)le ™)
Bb’V(x) BbY(x)

[f(w)le'z“’(“’) [

J B (x)

ITK,(2)le @ p(2) 7" dv(z)dv(w)

|Tkyq(2) |e’¢(z)p(z)%2" dv(z)dv(w)

BY"(x)

Fw)le ) p(w)

If(w)Ie’d’("’)p(w)zl_'”’z'fIITkp,w”p,«me( )p(z)‘z"dv(z)d"(w)

weB”s'(x)

sc<b,r)< sup ||Tkp,wllp,¢) Ifl -
weUpm(G/),’

<| sup ||Tkp,w||P,¢> ||f||N5(P(x)’z"v(Bb’(x)))Lbs,(x)p(x)’zndv(w)

(114)
This completes the proof.

Theorem 23. Suppose 0 < p <ocoand T € WLﬁ. Then, the fol-
lowing conditions are equivalent (q:==2n—2n/pif 0<p<1):

13

(A) lim [Tk, ]l =0;

(B) lim sup [(Tk,,,k,,) .| =0foranyr>0;
2T OweB (2) 7o

(C) Zli_r)n sup | (Tkp)z,kq,w>% | =0.

OOwec”

Proof. Suppose condition (A) holds. If 0 <p <1, then (25)
gives

P

P 2n
‘<Tk k ~ ‘Tkp)z(w)e"ﬁ(‘“) p(w)?

_2n
p,2> V2n P’w>g$

< cJ | Tk, () [ e P dv(u)
B (w)
<IITk, I 4.

(115)

Similarly, when 1 < p < 0o, we obtain

P

Tk

k) = [Ty (w)e 9 pu) ¥
< J | Tk, (u)|"e P dv(u) < ||Tkpyzl|§)¢.
B (w)

(116)

Then (A) implies (C).
Because (C) = (B) is clear, so it remains to prove that the

implication (B) = (A). If T € WLZ’ and 0 <p<1, then, by
(68), there is some r > 0 such that

J(B'<Z>)’

Note that by the definition of function p, we get p > a > 0.
Then, (B) shows

p(w) " dv(w) <e.  (117)

P
< TkP,Z’ an—%",w > gé

»
e W) dy(w)

P _
Tkl = | ' (T o)

V4
Tk, ., ky, 21 ‘ p(w)_z"dv(w)
Py 2n—="w 2
J<B'<z>>CU<B'<z>>< o >9¢

<e+ <Tk Lk _w>
JB'(Z) e g

<e+ sup <Tkp,z, k2n_z§,w>

weB'(z)

P
plw) " dv(w)

2

(118)

whenever |z | is large enough. By hypothesis, (A) holds
when 0<p<1.
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Suppose 1 < p < 0o. It follows from (20), (25), and Theo-
rem 17 that

(W) T < Tk, < 1
(119)

<T .2 q,w>g;|: <TkpZ,K >9$|67¢(

Therefore, joining condition (B) and (71), we deduce

p
plw) dv(w)

Tkl = | [(Thy k)

¢

SJ(B,( |<Tk 22 qw>g$|P(w)72ndV(w)
+JB( <T 2 q,w>gi|P(w)_2ndV(w)

<e+ J |(Tk,, kqw>§;|p(w)’2"dv(w)
B (2)

<e+ ( sup | (Tk,» kqw>yé | )JBwZ)P(w)'z”dv(w) <e

weB'(z)

(120)

for sufficiently large z. This completes the proof.

It is similar to ([17], Lemma 3.2) that we have the follow-
ing assertion about relatively compact. That is, for every & > 0
, there is some R > 0 such that

P

f(2)e# (121)

supJ dv(z) <e
feE Jiz=R

if and only if a bounded subset E C 9*1; is relatively com-
pact. In what follows, we call & (?‘;) the set of compact oper-
ators on 97;

Theorem 24. If 0<p <co and T € K (F. ) then

thloo"PMXB(o,R) T - T"?z_>gz =0. (122)

Proof. We omit the details for 0 < p<1, see ([5], Lemma
2.11).

If 1 < p < 0o, then Holder s inequality, Fubini’s theorem,
(18), and Lemma 2 imply

p
H (PMX T-
B(O,R) )

T
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IN

p
©) | K(z,w) | e o) ¢(Z)dv(w)> dv(z)

JC“ <J|w|>R | Tf(w) e

Jcn <J|w|2R|Tf(w)‘Pe_P¢<W) | K(z, w) | e—¢<w)—¢<2)d1,(w))

(JM | K(z,w) | &) ¢<Z>dv(w>)§dv<z>

J |Tf(w |Pe‘P¢(w)J K (z, w)|e @)~ dy(z)dv(w)
lw|=R c”

IN

N

J |Tf (w)[Pe P dv(w)
lw|=R

(123)

converges to 0 as R — co. This finishes the proof.
Due to PM,  that can be viewed as a Toeplitz operator

induced by Xe, then PM,
to ([18], Lemma 3.1)).

1s compact (the reason is similar

Theorem 25. Suppose 1< p < oo. Then, there exists r such
that

IT|l, < Clim sup sup (124)

Pz’
z—00 weB'(z)

(Thyor k) 5

where | T||, means the essential norm of a bounded operator T
on %

Proof. Since Pf=f for f e 92, then ||T||, = TPll,, and we
always assume that | TP||, > 0. Thus, Lemma 21 shows there
is some r > 0 satistying

1
< E ”TPHe'
o7

(125)

- (Z MXF]- TPMXQ)
j=1

Because of ) is a compact operator

j<m

MX Fj TPMXGj

where m € N, then

m
- (Z MXFj TPMX(;j>
j=1

(o9
- (Z My, TPMXG])
= 7o

1

+||T < —||TP|| + || T ,

1T llsz— < 5 ITPI+ 1 Tl
(126)

ITP|, <

7,
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where T, . For the rest of the task, we

= YoMy, TPM,

show

1
hm supHT ||¢ < Clim sup sup |(Tk kqw>%|+ leTP||e.

z—00 weB’(z) b
(127)
Letfe&‘fi and ||f||92 < 1. Note that F; N F, = &(j k),
hence
P
IT.f 1 = Y | My, TPM, £
¢ j>m / / 9{;
= X [, |
b XFj J?; X(;j (128)
<N supHM Tl H IFI,,
j>m ¢
where [ =PM . flM g 1l - It follows that
M, f
IT,llz» <sup su HM TI-H =7
K J>”I1)||f||gplzl re g IM, fllgp
(129)
Furthermore, we have
lim supl T, I < M, TI M f
1m Ssuj < Ilim su su ; 2 S —
e 1—*00p\|ngpEl H *ej ’H% TIMy
(130)

Let {f;} be a sequence with |f jllg;; <1 such that

PM, f 1
lim sup  sup {HMX' leH = 5 }— —||TP|,
bl 9T T, fII 4

o Ifippst
<lim supHM TgJH
j—00
(131)
where g; :=PMijfj/"MxG].fj”9‘;' Fix j, for zeF,cG,

and there is a b=b(r) > 0 such that G, ¢ BY(z) by (16). By

joining the proof of Lemma 22 and Holder s inequality, we
deduce

15

P
lim sy, HM T H
]amp X, 9 &

| (J Mdv(w)):wmdv(z)
j—oo Jr | Jg, Ao
» ()l ¥
II;H:EPJF,(JGJ XGfH
J ‘ [f (w)f'e" o
e,

: (j p(w)‘“dv(w)) ()

J
‘ |f(w ‘Pe —ph(w)

<T

(Thpun Kge) 5o 7

)4
p<z>3"2"p<w>?”"dv<w>) dv(z)

|p(e) 2 dv(w)

< lim sup

j—00

(Tk

pKaz) g2

<lim sup p(z)’z"dv(w)dv(z)

j—00

(Tl k)

» . T
(su_p ) plz)™" [ ) V()};dv(u})dv(z))
i Jg Jg, ‘ .

)P

where C(r) is independent of j. This finishes the proof.

<limsup sup
=00 weB(z)

%w > Z

(T, . k

< C(r)lim sup < sup q,w>gz
7

200\ weB"(z)

(132)

Theorem 26. Suppose 0 <p<oo and T € WLﬁ. Then, T €

%’(91;) if and only ilegnoo”TkP’Z"M =0.

Proof. (&) For any & > 0, by Lemma 20, we get
00
T-P(Y M, TPM,_ <e. (133)
st gt
v 7

Consider T, =¥;,,,M,, TPM,_, then P(},M, TP

M ch) is a compact operator on 91;, where m is any positive
integer. Hence,

P
m
P —
"T"e <\|T P(Zl MXF] TPMXGJ‘)
= T
P
(e8]
< T—P<ZMXFj TPMXGJ> Tl s

j=1 F—,

P
<(e+IPTullgr_s0)

(134)

With our assumption, there is an R > 0 such that || Tkp,z
I, <& for |z|>R. Since U]>m( ) C B(0,R)" whenever m

is large enough, then Lemma 22 1nd1cates ITI,=0for0<p
< 1. Also, when p>1, ||T||,=0 follows immediately from
Theorems 23 and 25.

(=) The case 1 < p < 0o is similar to the following discus-
sionof 0<p<1.

Consider 0 < p <1 and r > 0. With the help of Theorem

23, we will finish the proof if sup [(Tk,., ks 2upw) o2 |
weB'(z) 74
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— 0 as z —> 0. Recall first that, for f € J by (25), we
have

(135)

f(2)] < C*@p(2) T[]

Since Tk, € 9‘;, estimate (18), |K,(u)| = |K,(w)|, and
Proposition 12, then

‘<PM o Thepa o _w>%

)dv(u)

J Ty, (1) ()
B(0,R)

SJ | Tk, .( ]‘anmw ‘—w dv(u)
B(O,R

<ol
2n

< || Tk K, (1) €707 p(w) #p () 7 dv(u)
P9 ) boR)

«
m e (|w\—|u\

<1 kel ot | ptay e ) av
Tl B(0.R)

2n 2y _g(w)€
<B|Th,.. |, (p(w)¥ e o))
(136)
goes to 0 as w —> 0o, where g(w) = (Jlw | —R)/max {p(

u): ueB(0,R)}.
On the other hand, Theorems 17 and 24 conclude that

‘ < (PMXB(O,R ) kp z’ kznf%’w>g;

= <(T—PM )kpz,K > ze_‘b(w)p(w)%n

7 (137)
= H (T - PMXB(U,R) T) kP>Z ¢
< HT— PM, THM, —0
as R — co. Altogether gives that
’<Tkpz, k, >g < <PM Ty ks, w>gz
0 0
Pt o
(138)
which ends the proof since sup [(Tk, . kyy_2pw) 2| — 0
weB'(z) ¢
as z — 0.
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