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Two common fixed point theorems for weakly compatible mappings satisfying contractive conditions of integral type in G-metric
spaces are demonstrated. The results obtained in this paper generalize and differ from a few results in the literature and are used to
prove the existence and uniqueness of common bounded and continuous solutions for certain functional equations and nonlinear
Volterra integral equations. A nontrivial example is included.

1. Introduction

The Banach fixed point theorem which was first presented by
Banach in 1922 is a significant result in fixed point theory.
Because of its importance in proving the existence of solutions
for functional equations, nonlinear Volterra integral equations
and nonlinear integro-differential equations, this result has
been extended in many different directions (see, e.g., [1-22]
and the references cited therein). In particular, Rhoades [12]
and Branciari [4] generalized the Banach fixed point theorem
and gave the following fixed point theorems, respectively.

Theorem 1 (see [12]). Let f be a mapping from a complete
metric space (X, d) into itself satisfying

d(fx fy)<d(xy) -¢(d(xy), VxyeX, (1)

where ¢ € ®,. Then, f has a unique fixed point in X.

Theorem 2 (see [4]). Let (X, d) be a complete metric space
and f : X — X be a mapping satisfying

d(x.y)

p(t)dt,

d(fx.fy)
J Vx,yeX, (2)

@(t)dt < CJ

0 0

where p € @, and c € [0, 1) is a constant. Then, f has a unique
fixed point a € X such that lim,_,  f"x = a for each x € X.

In 2013, Gupta and Mani [21] obtained the existence and
uniqueness of a fixed point for contractive mappings of an
integral type in complete metric spaces by using iterative
approximations. In 2007, Kumar et al. [6] proved a common
fixed point theorem for a pair of compatible mappings satis-
fying a contractive inequality of integral type, which
improves Theorem 2.

Theorem 3 (see [6]). Let (X, d) be a complete metric space
and f, g : X — X be compatible mappings such that

f(X) € g(X), gis continuous,

d(gx%.99) (3)

d(fxfy)
J p(H)dt, VxyeX,

(p(t)dtSCJ

0 0

where ¢ € @, and c€0,1) is a constant. Then, f and g
have a unique common fixed point in X.

In 2006, Mustafa and Sims [9] introduced a new concept
of generalized metric space called G-metric space. From then
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on, lots of research works have been carried out on generaliz-
ing contractive conditions for different contractive mappings
satistying various known properties in G-metric spaces [1-3,
5,10, 11, 13, 15, 19, 20]. In 2018, Gupta et al. [19] proved
some fixed point theorems for the functions satisfying ¢
-contraction and mixed g-monotone property in G-metric
spaces. In 2015, Gupta and Deep [20] gave a few common
fixed point theorems using the property E.A. in the setting
of G-metric and fuzzy metric spaces by taking a set of three
conditions for self-mappings. In 2011, Aydi [1] proved a
fixed point theorem for mappings satisfying a (y, ¢)-weakly
contractive condition in G-metric spaces.

Theorem 4 (see [1]). Let (X, G) be a complete G-metric space
and f be a mapping from X into itself satisfying

V(G(fx% f3.f2)) <y(G(x.p:2)) - $(G(x.y, ), Va6 prz € X,

(4)

where v, ¢ € @,. Then, f has a unique fixed point u € X and f
is G-continuous at u.

In 2012, Aydi [2] obtained the following common fixed
point theorem for a pair of mappings involving a contractive
condition of integral type in G-metric spaces.

Theorem 5 (see [2]). Let (X, G) be a G-metric space and f, g
be two mappings from X into itself such that

G(gx.9y.97)

p(t)dt,

JG(fx’f%fZ) v X, (5)
X, ya zZ €KX,

p(t)dt < ocJ

0 0

where ¢ € @, and a € [0, 1) is a constant. If f(X) € g(X) and
g(X) is a complete subset of X, then f and g have a unique
point of coincidence in X. Moreover, if f and g are weakly
compatible, then f and g have a unique common fixed point.

The objective of this paper is both to introduce two new
classes of contractive mappings of integral type in the setting
of G-metric spaces and to prove the existence and uniqueness
of points of coincidence and common fixed points for these
mappings. Our results extend Theorem 5, are different from
Theorem 4, and are used to show solvability of the functional
equations arising in dynamic programming and nonlinear
Volterra integral equations. A nontrivial example is given.

2. Preliminaries

Throughout this paper, IN denotes the set of all positive inte-
gers, N, = {0} UN, R" = [0,4+00), and R = (00, + 00). Put

_ .t +
D, = {(p lo:R" >R
is Lebesgue integrable and summable on each compact subset of R* and

J @(t)dt >0,Ve> 0},

0
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D,={plg:R" > R"
is a continuous and nondecreasing function such that ¢(t) =0
if and onlyif t =0},

D, ={p|¢p: R" — R" satisfies that

liminfe(a,) > 0 < liminfa, >0

n—00 n—o0o0

foreach {a,},  C [R*},

@,={plpc@yand lim g() = +oo

Vi, t, e R

(6)

Definition 6 (see [9]). Let X be a nonempty set and G : X x
X x X — R* be a function satisfying the following properties:
(G1) G(x,y,2)=0ifx=y=z,
(G2) 0< G(x,x,y) for all x,y € X with x # y,
(G3) G(x,x,y) <G(x,y,2) for all x,y,z € X with y # z,
(G4) G(x,y,2) =G(x,2,y) = G(y, 2, x) = ---, symmetry in
all three variables,
(G5) G(x,9,2) <G(x,a,a) + G(a, y,z) forall x, y, z,a € X.

O;={plpecDandg(t; +1,) <@(t;) + (),

The function G is called a G-metric in X, and the pair
(X, G) is called a G-metric space.

Definition 7 (see [9]). Let (X, G) be a G-metric space and
{x,},en be a sequence of points of X. The sequence
{x,} e 18 G-convergent to x € X if

lim G(x,x,,x,,) =0, (7)

n,m—00
that is, for any & > 0, there exists N € N such that

G(x, x,,x,,) <& Vm,n>=N. (8)

The point x is called the limit of the sequence {x,},

and writex,, — x or lim,_, x, = x.

Lemma 8 (see [9]). Let (X, G) be a G-metric space. Then, the
following statements are equivalent:

(1) {x,},en is G-convergent to x,
(2) G(x,,x,,x) — 0 as n — oo,
(3) G(x,,x,x) — 0 as n— oo,

(4) G(x,,x,,,x) = 0 as n, m — 0o.

Definition 9 (see [9]). Let (X,G) be a G-metric space. A
sequence {x,}, in X is called G-Cauchy if for every & > 0,
there is N € N such that



Journal of Function Spaces

G(xp, x5 X,,) <& Vl,n,m>N, (9)

that is, G(x}, x,,, x,,) — Oasl, n, m — co.

Lemma 10 (see [9]). Let (X, G) be a G-metric space. Then, the
following statements are equivalent:
(1) {x,},cn is G-Cauchy,

(2) For every € > 0, there exists N € N such that G(x,, x,,
x,,) <&foralln,m>=N.

Definition 11 (see [9]). A G-metric space (X, G) is called G
-complete if every G-Cauchy sequence is G-convergent in
(X, G).

Lemma 12 (see [9]). Let (X, G) be a G-metric space. Then, the
function G(x,y,z) is jointly continuous in all three of its
variables.

Lemma 13 (see [9]). Let (X, G) be a G-metric space. Then,

G(x, 5, ) <2G(y, x, x),
|G(x,y,2) — G(x, y, a)| < max {G(a, 2, 2), G(2,a,a) },

Vx,yeX,
Vx,y,z,a€X.

(10)

Definition 14 (see [14]). LetS and T be self-mappings of a
nonempty set X.

(1) A point x € X is said to be a fixed point of T if Tx = x.

(2) A point x € X is said to be a coincidence point of S
and T if Tx = Sx and w = Sx = T'x is said to be a point
of coincidence of S and T.

(3) A point x € X is said to be a common fixed point of S
and T if x = Tx = Sx.

Definition 15. A pair of self-mappings f and g in a G-metric
space (X, G) are said to be weakly compatible if for any x € X,
the equality fx = gx gives that fgx = gfx.

Lemma 16 (see [14]). Let X be a nonempty set and f, g : X
— X be weakly compatible mappings. If f and g have a
unique point of coincidence w € X, then w is the unique com-

mon fixed point of f and g.

Lemma 17 (see [7]). Let ¢ € @, and {r,} . be a nonnegative

sequence with lim, | 7, = a. Then,
lim J " o(t)dt = J o(1)dt. (11)
n—o00 0 0

Lemma 18 (see [8]). Let ¢ € @;. Then, ¢(t) > 0 if and only if
t>0.

3. Main Results

Now, we study the existence and uniqueness of points of
coincidence and common fixed points for contractive map-
pings (12) and (51) below in G-metric spaces, respectively.

Theorem 19. Let (X, G) be a G-metric space, f and g : X —» X
be two mappings satisfying

G(fx:fyfz) M, (x.9,2)
o o) so[ )

M (x.y:2)
—(/)(J (p(t)dt), Vx,y,z€X,

0

(12)

where (@, v, ¢) € D, x D, x O; and

[1+ G(gx, gx, fx)|G(gy> 9y, f2)
2+ G(gx, fx, fy) ’
[1 + G(gx, gx, [x)|G(g2, g2, f)
2+ G(gx, fx, fz) ’
[1+G(gy 9y-1y)|G(97 g2 [ %)
2+G(gy: fy.f2)
[1+G(gy> 9y-17)|G(gx, gx. fz)
2[1+G(gy. fx. fy)] ’
[1+G(g2 g2, 2)|G(9y> 9y fx)
2[1+G(gz. [, f2)]
[1 +G(gz. g2, [2)|G(gx: gx. fy)
2[1+G(gz fx. f2)] ’
[1 + G(gx gy» 92)|G(fx. [y, f2)
1+G(gz fy.fy) + G(gx, 9y, g2)
[1+G(gx: gy 92)|G(fx [y, f2)
1+G(gy, fx. fx) + G(gx, 99> g2)’
[1+G(gx gy> 92)|G(fx: [y, f2) }
1+G(gx. fz fz) + G(gx, gy» g2)

M;(x,y,z) =max {G(gx, 9> 92)s

>

>

(13)

If f(X) € g(X) and g(X) is a complete subset of X, then f
and g have a unique point of coincidence in X. Furthermore,
if f and g are weakly compatible mappings, then f and g have
a unique common fixed point in X.

Proof. Let x,, be an arbitrary point in X. Since f(X) € g(X), it
follows that there exists a sequence {x,} ., in X satisfying

fxn = gxn+1’ Vn e INO' (14)

Put G, = G(fx,, fx,.:1> fX,,,) forall n € N;. Assume that
Jxp, =[x, for some ny € N Itis clear that gx,, ,; = fx, ;>
thatis, fx,, ., isa point of coincidence of f and g. Assume that
fx,#fx,,, for all neN,. Clearly, G, >0 for all ne N,. By



virtue of (G3)-(G5) and (14), we observe that

[1 + G(gxnﬂ’ gxn+1>fxn+l)]G(gxn’ gxn’fxn+2)
2[1 + G(gxn+1>fxn’fxn+1)]
[1 + G(fxn’fxn’fxnﬂ)]G(fxn—l’fxn—l’fxn+2)
2[1 + G(fxn’fxn’fxnﬂ)]
— G(fxn—l’fxn—l’fxn+2) — G(fxn+2’fxn—1’fxn—1)
2 2
< G(fxn+2’fxn’fxn) + G(fxn’fxn—l’fxnfl)
a 2
— G(fxn’fxn’fxn+2) + G(fxnfl’f'xn—l’fxn)
2
< G(fxn’fxn+2’fxn+l) + G(fxn—l’fxn’fan)
a 2

Vn e N.

_ Gn—l + Gn
= > S

Set

[1 + G(gxn’ gxn’fxn)]G(gxml’ gxn+l’fxn+2)
2+G(gxn’fxn’f‘xn+l) ’
[1 + G(gxn’ gxn’fxn)]G(gxn+2’ gxn+2’fxn+l)
2+G(gxn’f‘xn’fxn+2) ’
[1 + G(gxnﬂ’ gxnﬂ’fxnﬂ)]c(gxml’ gxn+2’fxn)
2+ G(gxn+l’fxn+l’fxn+2) '
[1 + G(gan’ gxn+1’fxn+l)]G(gxw gxn’fxn+2)
2[1 + G(gxn+l’fxn’fxn+l)] ’
[1 + G(gxn+2’ gxn+2’fxn+2)]G(gxn+l’ gxn+1>fxn)
2[1 + G(gxn+2’fxn+1’fxn+2)]
[1 + G(ngHZ’ gxn+2’fxn+2)]G(gxn’ gxn’fval)
2[1 + G(gxn+2’fxn’fxn+2)]

my (xn’an’ xn+2) =max {

}, VneN,

(16)

which together with (15) yields that

[1 + G(fxnfl’fxnfl’fxn)]G(fxn’fxn’fxn+2)
2+ G(fxn—l’fxn’fxnﬂ) ’
[1 + G(fxnfl’fxnfl’fxn)]G(fxn+1’fxn+1’fxn+l)
2+G(fxn71’fxn’fxn+2) ’
[1 + G(fxn’fxn’fxnﬂ)]G(fxn+l’fxn+1>fxn)
2+G(fxn’fxn+l’fxn+2) ’
[1 + G(fxn’fxn’fxnﬂ)]G(fxnfl’fxnfl’fanrZ)
2[1 + G(fxn’fxn’fnﬂ)} '
[1 + G(fxnﬂ’fxn+1’fxn+2)}G(fxﬂ’fxn’fxn)
2[1 + G(fxnﬂ’fxnﬂ’fxnﬂ)] '
[1 + G(fxnﬂ’fxwrl’fxn+2)}G(fxn—l’fxn—l’fxml)}
2[1 + G(fxml’fxn’fxnﬂﬂ
<max {50,
(1+2G,)G,,
2(1+G,)

ml(xn’xn+1’xn+2) = max {

(1+Gn)anl Gn71+Gn 0
2+G, 2 7

} <max {G,_,,G,}, VneN.

(17)
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In light of (G1), (G3), (G5), and (13)-(17), we get that

My (%> X415 Xi2) = MaX {G(G%,p5 G015 GXpi2)> 11 (X Xpy15 Xy )s
[1 + G(gxn’ 9Xns1> gxn+2)]G(fxn’fxn+l’fxn+2)
1+ G(G%400 f X1 [Xpi1) + G(G%> GXpi1> GXia)
[1 + G(gxn’ 9Xn+1> gxn+2)]G(fxn’fxn+l>fxn+2)
1+ G(g%y415 £, f,) + G955 GXpi1> GXi)
[1 + G(gxn’ 9Xn+1> gxn+2)}G(fxwfxnﬂ’fxnﬂ) }
1+ G(gxn’fxn+2’fxn+2) + G(gxn’ 9Xn+1> gxn+2)
=max {G(fx,_p> [, [X11)s 11 (X0 1> Xp2)s
[1+ G(f %1 [ X [Xi )]G %o [ X1 [Xni2)
L+ G(f %10 [0 [Xnir) + G(fXp fX0 fX00)
(1+ G(f %> [ X [X00 )]G %0 [ X1 [Xi2)
L+ G(f X0 [, f%,) + G(fXyo [X fX1)
[1 + G(fxn—l’fxn’fxnﬂ)]G(fxn’fxn+1’fxn+2) }
1+ G(f X1 [ X2 [Xi2) + G(f Xt [0 f2011)
=max {G,_y, My (X, X115 Xp42)> G Gos
(1+G,,)G,
1+ G(fxo1s X2 fXp42) + Gn—l}
=max {G,_,G,}, VneN.

(18)

Now we assert that G, < G,,_;, Vn € IN. Suppose that there
exists some 1, € N satisfying G, > G,, _;. It follows from (12),

(@, v, ¢) € D, x D, x @, and Lemma 18, we infer that

Gno G(fxno ’fxnml ’fxnmz)
o[ o) =v (| o(t)dt
Ml xno’xn0+l’xn0+2
SW(J ( )(p(t)dt>
0

—¢ (J . (XWO’XWOH’XWOQ)Mt)dt) .

0

{[Fr0u) o)
< w(J:nugo(t)dt>,

which is a contradiction. Therefore, G, <G,_, for all ne N
and

Ml (xn>xn+l’ xn+2) = Gn—l’ VneN. (20)

It is apparent that the sequence {Gn}neNO is nonincreasing
and bounded, which implies that there exists r with

lim G, =r>0.
n—0o

(21)
Now, we demonstrate that = 0. Suppose that > 0. On

account of (12), (20), and (21), (¢, ¥, ¢) € @; x ©, x @, and
Lemma 17, we deduce that
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([ ptoat) =1m igpw(jjﬂp(t)dt)

G(f % X1 %s2)
=lim supy (J (p(t)dt)
0

n—oo

[ M (XX 41 %42
<lim sup W(J (p(t)dt)

n—00 0

)
e[ 0 ( " 0]
([ o0) e [ 00
< dt)—h{lnmf¢< (p(t)dt)
()

>

(22)

which is impossible. Thus, r = 0. That is,

lim G, = 0. (23)

n—00

It follows from (G3), (G4), and (23) that

= G(fxnfl’fxnfl’fxn) =

G(f%,_15 % fX,,1) = 0asn — oo,

0< G(fxn—l’fxn’fxn) = G(fxn’fxn’fxnfl) < G(fxn»fxnflvfxnfz) —0asn— oo,

(24)
which yield that
lim G(fxn—l’fxn—l’fxn) = lim G(fxn—l’fxn’fxn) =
(25)

Next, we verify that {fx,},y, is a G-Cauchy sequence.
Suppose that {fx, },,c, is nota G-Cauchy sequence. It follows
from Lemma 10 that there exist a constant £ > 0 and two sub-
sequences {fx,,},  and {fx,},  of {f*,},en, such
that n(k) is minimal in the sense that

k<m(k) <n(k) <m(k+1)and G(fxm(k),fxm(k),fxn(k)> >e,  VkeNN,
(26)

which means that G(fx,,,)» f %, ()> fXu(c)-1) < € for all k€ N.

By means of (G3)-(G5) and Lemma 13, we deduce that

<G (fxm(k)’fxm(k)’fxn(k)) = G(fxn(k)’fxm(k)’fxm(k))
S G(fxn(k)’fxn(k)—l’fxn(k)—l)
+ G(fxn(k)—l’fxm(k)’fxm(k))
<e+G (fxn(k)’fxn(k)—l’fxn(k)—l)
<e+Gyp-1, VkeN,

(27)

’G(fxn(k)’fxm(k)—l’fxm(k)> - G(fxm(k)’fxm(k)’fxn(k)) ‘
< max {G< xm(k)—l’fxm(k)’fxm(k))’ G(fxm(k)’fxm(k)—l’fxm(k)—l) }

S 2G( xm(k)—l’fxm(k)’fxm(k)Jrl) =2G,p1> VkeN,

‘G(fxm(k)—l’fxm(k)—l’fxn(k)) - G( xn(k)’fxm(k)—l’fxm(k)) ‘
< max {G(fxm(k)—l’fxm(k)’fxm(k))’ G(fxm(k)’fxm(k)—l’fxm(k)—l) }

< 2G<fxm(k)—1’fxm(k)’fxm(k)H) =2G, -1 VkEN,

|G(fxm(k)—l>fxm(k)—1’fxn(k)—l) - G( xm(k)—l’fxm(k)—l’fxn(k)> |
< max {G< xn(k)—l’fxn(k)’fxn(k))’ G(fxn(k)>fxn(k)—1’fxn(k)—1) }
< ZG( xn(k)—l’fxn(k)’fxn(k)ﬂ) =2G,1» VkeN,

(30)

|G(fxm(k)>fxm(k)’fxn(k)—l) - G( xm(k)’fxm(k)’fxn(k)> |
< max {G(fxn(k)’fxn(k)—l’fxn(k)—l)’ G(fxn(k)—l’fxn(k)’fxn(k)) }
S ZG(fxn(k)—l’fxn(k)’fxn(k)ﬂ) =2G,-» VkeN

(31)

‘G(fxn(k)—l’fxm(k)—l’fxm(k)) - G( xm(k)’fxm(k)’fxn(k)—l)
< max {G (fxm(k)’fxm(k)—l’fxm(k)—l)’ G <fxm(k)—l>fxm(k)’fxm(k)> }
ES 2G<fxm(k)—1’fxm(k)’fxm(k)ﬂ) =2G,p-1» VkeN.

(32)

Letting k — oo in (27)-(32) and using (23) and (25), we
obtain that

€= kliToG<fxm(k)’fxm(k)’fxn(k)) = I}_UEOG< xn(k)’fxm(k)—l’fxm(k))

= klirg)G<fxm(k)—l’fxm(k)—l’fxn(k)> = kli‘r};loG(fxm(k)fl’fxm(k)—l’fxn(kyl)
= }}Ln;)G<fxm(k)’fxm(k)’fxn(k)—l) = leEOG(fxn(k)—l’fxm(k)—l’fxm(k)> :

(33)



In view of (G3)-(G5) and Lemma 13, we infer that

G (fxn(k)—hfxn(k)—l’fxm(k)) =G (fxm(k)’fxn(k)—l’fxn(k)—1>

<G (fxm(k)’fxn(k)’fxn(k))
+G (fxn(k)’fxn(k)—l’fxn(k)—l)

< G(fxm(k)>fxm(k)—1’fxn(k))
+G (fxn(k)ﬂ’fxn(k)’fxn(k)—l)

= G(fxm(k)>fxm(k)—l’fxn(k))
+Gyp1»  VKEN,

(34)

G(fxm(k)’fxm(k)—l’fxn(k)) = G(fxn(k)’fxm(k)—l’fxm(k))
< G(fxn(k)’fxm(k)’fxm(k))

+G <fxm(k)’fxm(k)—l’fxm(k)>
< G(fxn(k)’fxn(k)—l’fxm(k))

+ G(fxm(k)’fxm(k)—l ’fxm(k))
< G<fxn(k)’fxn(k)—1’fxn(k)—l)

+ G< xn(k)—l’fxn(k)—l’fxm(k)>

+G <fxm(k)’fxm(k)—l’fxm(k))
<SGy +2G 1

+ G(fxn(k)—l’fxn(k)—l’fxm(k))’ Vk e N.

(35)

Taking k — co in (34) and (35) and utilizing (23) and (33),
we conclude that

e=limG (fxn(k)—l’fxn(k)—Pfxm(k)) : (36)

On the basis of (G3)-(G5) and Lemma 13, we arrive at

G(fxn(k)-1>fxm(k)>fxn(k)) = G(fxn(k)’fxn(k)—l’fxm(k)>
< G<fxn(k)’fxn(k)—l’fxn(k)—l)

+ G(f’%(k)—l e »f’%(k))
<SGy +G

: (fxn(k)—l’fxn(k)—l’fxm(k))’ VkeN,

(37)
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G(fxn(k),l, Py fxm(k)> sG( Xoty10 Xt i )
+G( o> STty 10 o )
SZG(fx,, Pty F i 1)
+G( Xty X )
<26y + G( Xty fxm(k), fxn(k)), VkeN.
(38)

Letting k — oo in (37) and (38) and using (23) and (36),
we deduce that

€= khj{)loG(fxn(k)—1>fxm(k)>fxn<k)) : (39)

On account of (G3)-(G5) and Lemma 13, we receive that

G(fxn(k)’fxn(k)’fxm(k)—l) =G (fxm(k)—l’fxn(k)>fxn(k))
G (fxm(k)—l’fxn(k)—l’fxn(k)—1>
+ G( xn(k)—l’fxn(k)’fxn(k))

<G (fxn(k)—l’fxm(k)—l’fxm(k))
Vk eNN,

IN

+2G, -1
(40)

G (fxn(k)fl’fxm(k)fl’fxm(k)> <G (fxn(k)—l’fxm(k)—l’fxm(k)—l)
+ G(fxm(k)—l’fxm(k)—l ’fxm(k))
<G (fxn(k)—l’fxn(k)’fxm(k)—l)
+Gpypo1 < G(fxn(k)—l’fxn(k)’fxn(k)>
+ G(fxn(k)’fxn(k)’fxm(k)—l) + Gy

©S2Gup o t G<fxn(k)’fxn(k)>fxm(k)—l>

+ G-, VkeNN.

(41)

Taking k — co in (40) and (41) and using (23) and (33),
we conclude that

e=lim G (fxn(k)>fxn(k)>fxm(k)—l> . (42)

Making use of (12)-(14), (23), (25), (33), (36), (39), (42),
(o, y, $) € ©; X O, X Oy, and Lemma 12, we obtain that
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lim My (2,47 %40 %1
B2\ Xk Fm(k)> Fon(k)

L Cmr——)
kg{)lo max § G( g,k FXm(ky» FXn(k)

{1 +G (9xm<k>’ G f xm(k))} G (5xm<k>> G f "n(k))
2+ G(gxm(k), Py fxm(k)> ’

{1 +G (gxwk)’ P f xm(k))} G (gxnw Gy S xm<k>)
2+ G<9xm<k)’f (i f xn(k)) )

{1 +G (gxm<k>’ P f xm(k))} G (gxnac)’ Gy S xm<k>)

2+G (ﬂxm<k>>f Xn(i» f xn(k))

{1 +G (gxmm’ P f "m(k))} G (9"m<k>’ Sk S xn(k))
2 [1 + G(gxm(k),fxm(k),fxm(k)>]

[1 + G(gx,,(k>, gx"(k),fx,,(k)>] G(gxm(k) gx
2 {1 + G(gxn(k),fxm(k),fxn(k))}
[1 + G(gxn(k s Pt S )]G(gxm b G
2[1+ G( 9% Frmgyr Frue )|

[1 + G(gx m(k)» FXm(k) Fon(i )] (f (k> X f xn(k))
1+ GGt i S k)> + G992 i 9t )
)

[1+G(gx )}G( Xl Frup

>

>

(> f xm(k))

>

(k)’f xm(k))

1+ G(gx fxm(k fxm(k ) + G(gxm » Pk gxn(k)> ,
{1+G<gx m(k) )]G( Xin(k) n(k))}
1+ G(gx fx ) (gxm n(k))

:klgrolo max {G< xm(k)q’fxm(ky

{1 + G( Xo(k)

l’fxn(k)—1>’
—l’fxm(k)—l’fxm(k))] G( xm(k)—l’fxm(k)—
2+ G( xm(k)fl,fxm(k),fxm(k»

{1 + G(fxm(k)—l’fxm(k)—vfxm(k))] G (fxn(k)—l’ fxn(k)—l’fxm(k))

2+G (fxm(k)—l’fxm(k)’fxn(k)>

{1 + G(fxm(k)—l’fxm(k)—vfxm(k))] G (fxn(k)—l’fxn(k)—l’fxm(k))

2+ G(fxm(k)—l’fxm(k)’fxn(k))

{1 + G(fxm(k)—l’fxm(k)—l’fxm(k))] G(fxm(k)—l’fxm(k)—l’fxn(k))

2 [1 + G(fxm(k)fl,fxm(k),fxm(k))]

{1 + G(fxn(k)—l’fxn(k)—l’fxn(k)>:| G< xm(k)—l’fxm(k)—l’fxm(k)>
2 [1 + G(fxn(k)—l’fxm(k)’fxn(k))]

{1 + G(fxn(k)—l’fxn(k)—l’fxn(k))] G( xm(k)—l’fxm(k)—l’fxm(k)>
2 [1 + G(fxn(k)—l’fxm(k)’fxn(k)>:|

[1+G(fxm(k PR EA N )] (fx ®2 S X f’%(k)

1+G<fx S X fxm(k) + G f X1 S X1 X (i) - 1)

(
{1 + G(fxm(k 1 S X1 fXn(i - )] G fxm(k)’fxm(k)’fxn(k)>

>

>

l’fxn(k))

1+G<fx ©)-0 S Xy [ X k)) +G(fxm ®)-1 S X

l’fxn(k)—l>

[1 + G(fxm(k)—l’fxm(k)—l’fxn(k)—l)] G(fxm(k)>fxm(k)>fxn(k)> }
I+ G(fxm(k)—l’fxn(k)’fxn(k)> + G(fxm(k)—l’fxm(k)—l’fxn(k)—l>
=max{e,f & & ¢ 0.0, (1+e)e . (1+£)£}=€.

2°24¢€ 2462 142’7 1+2¢

(43)

Making use of (12), (33), (43), (¢, ¥, ¢) € D, X D, X Dy,
and Lemma 17, we conclude that

€ ) G(fxm(k) S Xy ’fxn(k))
w(J (p(t)dt) = lim supy J o(t)dt
0 k—o0 0

My (X000 5% () 5o (K
< lim sup lt//(J Gt ())(p(t)dt>

k—o00 0

_¢(JMl("m(k)”‘m(k)”‘n(k))(P(t)dt>]

M1 (k) Xm(k) > n(k)
<lim supy J o(t)dt

k—o0 0

M1 (k) Xm(k)> n(k))
—hkm inf¢ J o(t)dt
—00 0

:1//< dt) —lim inf ¢

k—00
Ml( (k)X (k)X
JO

. ¢( )dt>
<1//< Ego(t)dt>,

(44)

which is ridiculous. Thus, {fx, },cy, is a G-Cauchy sequence.

Since g(X) is complete, it follows that there exists w € g(X)
such that

lim fx, =w. (45)

n—00

In light of Lemma 8 and w € g(X), there exists a € X satis-
fying ga =w and

lim G(fx,, fx,, ga) = lim G(fx,, ga, ga) = 0. (46)

Next, we prove ga = fa. Suppose that ga # fa. In view of
(12), (13), (25), (46), (¢, ¥, ¢) € @} x D, X D5, and Lemmas
12 and 17, we obtain that



lim M, (x,, x,,a) = lim max {G(gx,, gx,, ga),

[1 * G(g%w 9% £%,)|G(9% 9% f2).
2+ G(gx,, fx,.fx,)
[1 + G(gx,» 9%, [%,)|G (g4 gas fX,,)
2+ G(gxn’fxn’fa)
[1 + G(gx,» g% f%,)]G(ga> gas fx,)
2+ G(gx,, fx,, fa) '
[1+ G(gx,> 9% [ %) | G(g%,> 9%, f2)
2[L+ G(gx,s fx [%,)]
(L + G(ga, ga, fa)|G(gx,> 9%, [X,)
2[1+G(ga, fx,, fa)] ’
[L +G(ga, ga, fa)|G(g%,» g%y [X,)
2[1+G(ga, fx, fa))
[1 + G(gxn’ gxn’ ga)}G(fxn’fxn’fa)
1+G(ga, fx,, fx,) + G(gx,, gx,» ga)’
[1 + G(g%u> 9% 90)|G(f X, f%,0 f1)
1+ G(gx,, fX, fx,) + G(gx,, g%, ga)”
[1 + G(g%,> g% ga)}G(fxn,fxn,fa)}
1+ G(gx,, fa. fa) + G(gx,, gx,, ga)
= lim max {G(fx,_1,fx, 1. ga),

n—0oo

[1+G(fxp 1 X1 %) |G X1 X0 1>f“)
2+ G(fxn l’fxn’fx )

[1 + G(fxn—l’fxn—l’fxn)}c(ga’ ga’fxn)
2+ G(fxn—l’fxn’fa)

[1+ G(fx, 1, /%,1-/%,)|G(ga, gas f,)
2+ G(fx,s fx fa) ’

[1+G(fxn 1 fxn 1 fx )}G(fxn 1 fxn 1 fll)
2[4 G(f x> [ X f2,)]

[1+G(ga, ga, fa)|G(fX1> f %10 [X0)
2[1 + G(ga, fx,, fa)] ’

[1 + G(ga’ ga’fa)}G(fxn—l’fxn—l’fxn)
2[1+G(ga, fx,, fa)]

[1+ G(fx15 [ X1 9| G(f % X0 f0)

L+ G(ga’fxn’fxn) + G(fxn—l’fxn—l’ gtl) ’
[L+G(fx,1, fX,1, 90)|G(f X, fX,, f0)
L+ G(fxy 1o fX0 f2,) + G(f%,1s f2,10 g)
1+ G(f x5 f X1 99)|G(f %o f X0 f0) }

L+ G(fxn—l’fa’fa) + G(fxn—l’fxn—l’ ga)

= max {0, 7G(ga> 94.fa) ,0,0,

>

>

>

>

>

2
w, 0,0, G(ga, ga, fa), G(ga, ga, fa),
G(ga, ga,. fa) | _
W} =G(ga, ga, fa)
(47)

G(ga.ga.fa) G(fxfxpfa)
w(J (p(t)dt) =lim supw(J (p(t)dt)
0 n—o0 0
Ml (xn’xn’a)
<lim sup [1// (J (p(t)dt)

n—o00

()
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M (x,,,%,,,2) M (x,%,,,)
< lim supy (j (p(t)dt) —lim inf ¢ <J (p(t)dt)
0

n—0oo n—00 0

G(ga.ga.fa) M (x,,,2)

:w(J (p(t)dt) —lim inf¢ <J go(t)dt)
0 n—00 0
G(ga.ga.fa)

<y <J (p(t)dt> ,

(48)

which is absurd. Consequently, w = ga = fa, that is, w is a
point of coincidence of f and g.

Lastly, we certify that f and g have a unique point of
coincidence in X. Assume that there exists b € X with fb=
gb # fa. In terms of (13), (G2), and Lemma 13, we receive
that

_ [1 +G(ga, ga, fa)|G(ga, ga, fb)
M, (a, a, b) = max {G(ga, ga, gb), 2+ Glga, fa. fa)
[1+G(ga, ga. fa)|G(gb, gb. fa) [1+G(ga, ga, fa)|G(gb, gb, fa)
2+G(ga, fa, fb) ’ 2+ G(ga, fa, fb) ’
[1+G(ga ga fa)|G(ga ga, fb) [1+G(gb, gb, fb)|G(ga, ga, fa)
2[1+G(ga. fa, fa)] 2[1+G(gb, fa, fb)]
[1 +G(gb, gb, fb)|G(ga, ga, fa) (1 +G(ga, ga, gb)|G(fa, fa, [b)
2[1+ G(gb, fa, fb)] P14+ G(gb, fa, fa) + G(ga, ga, gb) ?
[1 +G(ga, ga, gb)|G(fa, fa, fb)  [1+G(ga, ga, gb)|G(fa, fa, fb) }
1+ G(ga, fa, fa) + G(ga, ga, gb)’ 1+ G(ga, fb, fb) + G(ga, ga, gb)

_ G(fafa.fb)  G(fb.fb.fa)
- max {G(f“’f“’fb>’ 2 2+G(fafafb)
GUb.fb.fa) G(afafb)
2+ G(fa far fb)’ 2 0P
[L+G(fa,fa fb)]G(fa. fa, fb)
1+2G(fa, fa, fb) » Gfa fa.fb).
[1+G(fa.fa,fb)]G(fa. fa, fb)

L r G o by s gty ~OUnS0 00

(49)

According to (12), (49), (¢, v, ¢) € O, x D, x O;, and
Lemma 18, we gain that

o) o[ )
1/’< fafafb) ) ¢( G(fa,fa,fb) ()dt)

G(fa,fa,fb)
<1//< o(t) dt)

(50)

which is contradictive. Therefore, f and g have a unique
point of coincidence in X. Moreover, if f and g are weakly
compatible mappings, by Lemma 16, we know that f and g
have a unique common fixed point in X. This completes
the proof.

Similar to the argument of Theorem 19, we derive the fol-
lowing result and omit its proof.



Journal of Function Spaces

Theorem 20. Let (X, G) be a G-metric space, f and g : X —» X
be two mappings satisfying

Gl fxfyf2) M, (x7.2) M, (xy.2)
w([ <p(t)dt> sw([ <p(t)dt> —rp([ <p(t)dt), Vx,y,z€X,
Jo Jo Jo

(51)
where (¢, v, ¢) € O, X D, x O; and

M,(x, y,2) = max {G(gx, 99> 9%) 1 G(‘Zﬁg’gf;g}ig;f 217,
[1+G(gy. [y f)|G(gz fx fx) [1+G(gz f2 fz)|G(g% £y, fy)
2+ G(gx gy, fy) ’ 2+G(gy, g f2) ’

[1+G(gx fx [x)|G(gy. fz.fz) [1+G(gy.fy.fy)|G (g% fz fz)

2[1 +G(gx, gz, fx)] ' 2[1+G(gy, gz f)] '
[1+G(g2.f2 f2)|G(gy. fx. fx) [1+G(g% gy, g2)|G(fx. fy, f2)

2[1+G(gx, gz f)] " 1+ G(gz g2, fy) + G(gx, g7, 92)
[1+G(gx. gy, 92)|G(fx: £y fz)  [1+G(gx gy, 92)|G(fx. [y f2) }
1+G(gy, gy. fx) + G(gx. gy, gz) " 1+ G(gx, gx. fz) + G(gx. gy, 92) ||

(52)

If f(X) € g(X) and g(X) is a complete subset of X, then f
and g have a unique point of coincidence in X. Furthermore,
if f and g are weakly compatible mappings, then f and g have
a unique common fixed point in X.

Remark 21. In case w(t) =t,¢(t) = (1 - A)t,Vt € R* and L €
(0,1) is a constant, then Theorems 19 and 20 reduce to
results, which include Theorem 5 as a special case. The fol-
lowing example shows that Theorems 19 and 20 generalize
substantially Theorem 5 and differ from Theorem 4.

Example 22. Let X=10,2]. Define f,g: X - X, ¢, y,¢,1
:R*—>R"and G: X x X xX — R" by

0, Vxel0,1], x, Vxel0,1],
fx=1¢1 gx=4q7

~, Wxe(1,2), L, wxe(1,2),

6 6
@(t)=2t,y(t)=3t,(t) =t,n(t) =2t, VteR",
G(x,y,2)=|x—y|+|y—z| + |z —x|.Vx, y,z € X. (53)

Clearly, (X, G) is a G-metric space, (@, ¥, ¢) € O, X D,
x @,, f and g are weakly compatible mappings, f(X) € g(
X) and g(X) is complete, #(t) = w(t) — ¢(¢), Vt € R* and #
is nondecreasing in R*. Let x,y,z€X. In order to verify
(12) and (51), we consider the following seven cases:

Case 1. x,y,z€[0,1] or x, ¥,z € (1, 2]. It follows that

7 (J:(fx’fy’lep(f)dt) =0<n (JTX(W'Z)Mt)dQ =y (Kdl(x’y%(t)dt)
M;(x,,2)
—</>(L (p(t)dt), Vie{1,2}.

(54)

Case 2. x,y € ]0,1] and z € (1, 2]. It follows that

N [1 +Glgy, 99, 12))G(g2 92 f%)
Mi(s2.2) 2 2+G(gy. fy. f2)

1+ G(»,0)]G(7/6,716,0)
B 2+G(y,0,1/6)
(73 (1+2y)

C2+y+ 16+ [y-1/6]

[1+G(gy. fy:1y)1G(g2 fx fx)
Ma(xy.2)2 2+ G(gx gy fy)

_ [1+G(3,0,0)]G(7/6,0,0)
B 2+ G(x,9,0)
73)(1+2y) 7

=7 ) s
2+x+y+lx—y| 12

It is easy to see that

M;(x,y,2) 2
49

G(fx.fy.fz) d 1/3
(], )], e g
7/12 i(x9:2)
n(J p(t dt)<f1<J o[t )df>
0 0
M;(x,,2)
{0
0
M;(x,9,2)
- (J (p(t)dt>, Vie{1,2}.
0

(56)

7
12°
1
3°

Case 3. x,z €[0,1] and y € (1, 2]. It follows that

[1 + G(gz> 92 2)|G(9y> gy f )
M2 22 3 Glga fy. 2)
_ [1+G(2,2,0)]G(7/6,7/6,0)
N 2[1 + G(z, 1/6,0)]
(713)(1 + 22) 7

= > —
2(1+1/6+z+|z—1/6]) ~ 8’

[1+G(gx, fx fx)]G(gy, [z f2)
Maly,2) 2 max { A+ Glom gofn)]

[1+ G(gz>fz,f2)]G(gy>fx>fx)}

2[1+ G(gx, gz, fz)]
) [1+G(x,0,0)]G(7/6,0,0)
- { AM+Gx20)]
[1+ G(z,0,0)|G(7/6, 0, 0)
21+ G(x2,0)] }
(7/3)(1 + 2x)
- {2(1+x+z+lx—z|)’

=

2(1+x+z+lx—z|)

(713)(1 + 22) }

v
[ NN

(57)
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It is obvious that

( Uit N 19
o], o) J S
) . 64

M(xyz
=w< ¢(f) dt>

0

<JM 1(x.0,2)
0

Case 4. y,z €[0,1] and x € (1, 2]. It follows that

o(t )dt) Vie{l,2}.
(58)

[1+G(gy: 9. 17)]G(gx: gx. f )
M2 2= 3 Gy, o )
1+ G(»,,0)]G(7/6,716,0)
- 2[1+ G(y, 1/6,0)]
(713)(1 +2y) 7
S 2(1+y+16+]y-1/6)) =y

[1+G(g2 f2 f2)|G(gx. [y f7)

M bl bl 2
22 2+ G(gy 92 f2)
[1+G(2.0,0)]G(7/6,0,0)  (7/3)(1+22)
- 2+G(y,2,0) C2+y+ztly-z|
7
> —.
12

(59)

It is apparent that
1/3 49
31 2td —
CONIIEERS
7112 (xp:2)
o df> (o
0 0
i(x,,2)
(J o(t )dt) Vie{1,2}.
0

(60)
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Case 5. x € [0, 1] and y, z € (1, 2]. It follows that

(1 +G(g2 92.f2)|G(9y 9y> f )
M2 92 o Glge fr. 17
1+ G(7/6,716,1/6)]G(716,716,0)
- 2[1+ G(716, 1/6, 1/6)]
_(7B3)(1+2) 7

- o2(1+2) 6

My(x.y.2) > [1+G(gy- [y, 1y)|G(g2 fx fx)
2+ G(gx, 9y 1)
 [1+G(716,1/6,1/6)]G(7/6,0,0)
- 2+ G(x,7/6,1/6)
~ (713)(1 +2) L2
2+ 1+x—7/6]+|x—1/6| ~ 13

(61)

It is distinct that

[©)NIRN

>

M;(x,y,2z) 2
49

o o)
(Fon) ol o)
o{[ o)

<JM(xyZ)go(t)dt>, Vie {1,2}.

0

<2

w|>—-
UJ

(62)
Case 6. y € [0, 1] and x, z € (1, 2]. It follows that

[1+G(gy, 9y, fy)|G(gx, gx, fz)
M2 2 0 Glgy. f )
_ [1+G(y,,0)]G(7/6,7/6,1/6)
B 2[1+ G(y, 1/6,0)]
2(1+2y) 3

= >7
2(1+y+1/6+[y-1/6)) 4

1+ G(gy. fy,fy)|G(gz fx, fx
M) 2 (2 + G(gx,)iay,(fy) :
_ [1+G(y,0,0)]G(7/6, 1/6,1/6)
2+ G(7/6,,0)
2(1+2y) 6

= > —.
2+y+7/6+ly—-7/6] ~ 13

(63)
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It is clear that

6 G(fx.fy.fz) 173
M;(x,y,2) 2 E,w(J (p(t)dt) = 3J 2tdt
0 0

_ % <2. % — (E“S(p(t)dt) <n (Jri(x’y’z)<p(t)dt)
—y (J:Az(x,yﬂ)(p(t)dt) —¢ (J.OMl(x’y’Z)(p(t)dO , Vie{1,2}.
(64)

Case 7. z € [0,1] and x, y € (1, 2]. It follows that

[1+G(gy, 97, 17)]G(g% g%, f2)
M 22 o Gl o )
_ [1+G(716,716,1/6)]G(716,7/6,0)
- 2[1+ G(7/6,1/6,1/6)]
_(73)(1+2) 7

2(1+2) 6

[1+G(gy.fy:fy)G(gx. 2z fz)
2[1+G(gy» g2, 1)

 [1+G(7/6,1/6,1/6)]G(76,0,0)

- 2[1+G(7/6,2,1/6)]

~ (7/3)(1+2) 21

©2(L+ 1+]z - 7/6]+|z - 1/6] ) =20

My(x, 3, 2)

I\

(65)

It is easy to obtain that

M > 21
‘xa ’Z = S~

G(fx.fy.fz) 1/3 441
y/(J t)dt) SJ 2td —<2 —
0 0 400
21/20 M, (x,y,2)
=n< (1) dt) n(J so(t)dt)
0 0
M xyz
UL
0
i(x.:2)
( dt> Vie{1,2}.
(66)

Therefore, (12) and (51) hold. That is, the conditions of
Theorems 19 and 20 are fulfilled. It follows from each of The-
orems 19 and 20 that f and g have a unique common fixed
point in X.

However, Theorem 4 cannot be applied to testify the exis-
tence of fixed points of the mapping f in X. Suppose that
there exists y, ¢ € O, satisfying the conditions of Theorem

11

4. In virtue of (4), we infer that

o) (el ) ()
(e02) () )0

which is a contradiction.

Now we claim that Theorem 5 is useless in proving the
existence of common fixed points of the mappings f and g
in X. Suppose that there exist « € [0, 1) and ¢ € @, satisfying
the conditions of Theorem 5. Taking advantage of (5), we
receive that

1/3 G(f1,f2,f2) G(g1,92,92)
J (p(t)dt:J go(t)dtgocJ p(t)dt
0 0 0 (68)

= aJ1/3go(t)dt < Jm(p(t)dt,

0 0
which is impossible.

4. Applications

In this section, we study the existence and uniqueness of
common solutions for the below functional equations (72)
and nonlinear Volterra integral equations (94) by using the
results obtained in Section 3.

Let U and V denote two Banach spaces; SCU and DC V
signify the state and decision spaces, respectively. B(S) indi-
cates the Banach space of all bounded functions in S with
norm

||kl = sup {|h(x)|: x €S}, VheB(S). (69)

Define G : (B(S))’ — R* by
G(x, 3, 2) = Vx, y,z € B(S).
(70)

It is clear that (B(S), G) is a complete G-metric space.
Consider the functional equations arising in dynamic
programming;:

() =sup{utn) + Hp flaley))} - Vees
g(x)=sup{v(x.y) + L(x p g(b(x )} VxeS (7

yeD

whereu,v: SxD— R, a,b:SxD—S, and H,L: SxDx
R — R are mappings. Put

fh(x) =supfu(x,y) + H(x,y, h(a(x.y)))},  V(x.h) € SxB(S),

yeD

(73)
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gh(x) =sup{v(x,y) + L(x, y, h(b(x. 7)) }>

yeD

V(x, h) € Sx B(S).

(74)

Theorem 23. Let u,v:SXxD—-R, a,b:SxD— S, and H,
L:SxDxR— R satisfy that

(C1) u, v, H, and L are bounded;

(C2) fgh = gfh for each h € B(S) with fh= gh;

(C3) f(B(S)) < g(B(S)) and g(B(S)) is complete;

(C4) for each i€{1,2,3},x€S,yeD, and h;, h, h;€
B(S)

[H (xyhi(a(x.p)))=H(xp.hy, (a(x)))] Mj Mj
o] otae) < [ owar) o] "otar).
0 0 0

(75)
where (@, y,$) € O; X Dy x D3, hy=h, and
M3y s ) = ma {Glghy, gh ghy),
[1+G(ghy> ghys fh)]G(ghy» ghys fhs)
2+G(ghy, fhys fhy) ’
[1+G(gh;, ghy, fh,)|G(ghs, ghs, fh,)
2+ G(ghy, fhy, fhs) ’
[1+G(ghy, ghys fh,)]G(ghs, ghs, fhy)
2+ G(ghy, fhy fhs) ’
[1+G(gh,, ghys fh,)IG(ghys ghys fhs)
2[1+G(ghy fhy, fhy)] ’
[1+G(ghs, ghs: fh3)|G(ghy» ghys fhy)
2[1+ G(ghs, fh,, fhs)] )
[1+ G(ghs, ghs, fh3)|G(ghy» ghys fhy)
2[1+G(ghs, fhy, fhs)] ,
[1+G(ghy> ghys ghs)|G(fhys fhy fhs)
1+ G(ghs, fhy, fhs) + G(ghy, ghy, ghs)’
[1+G(ghy> ghys ghs)|G(fhy, fhy, f13)
1+ G(ghy fhy, fh;) + G(ghy, ghs, ghs)’
[1+G(ghy> ghys ghs)|G(fhy, fhy, fhs) }
1+ G(ghy, fhs, fhs) + G(gh;» gha, ghs) |
(76)

Then, the functional equations (72) have a unique
common bounded solution h* € B(S).

Proof. By virtue of (C1) and (73), we obtain that fh and gh
are bounded for each h € B(S), which yields that f and g

are self mappings in B(S). It follows from ¢ € @, that for each
&> 0 there exists 6 > 0 such that

J o(dt<e, VCCR' withm(C)<o,  (77)
C

where m denotes the Lebesgue measure. Put x € Sand h;, h,
,hy € B(S). (73) means that there exist y,, y, € D such that

fhi(x) <u(xy,) + H(xy hy(a(x ) +6, (78)
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Jhy(x) <u(x, y,) + H(x, 5, hy(a(x, ,))) + 9, (79)
Jhy(x) Zu(x,y,) + H(x, y,, hy (a(x. ,)))s (80)
Fhy(x) zu(x, yy) + H(x, yy, hy(a(x, 1)) (81)

In terms of (78) and (81), we gain that

fhi(x) = fhy(x) <H(x, yy5 by (a(x, 31)))
—H(x, yp, hy(a(x, y,))) + 6 < [H(x, yy, hy(a(x, y1)))
— H(x, yp, by(a(x, y,)))| +6.
(82)

On account of (79) and (80), we derive that

fhy(x) = fhy (%) <H(xp5, by (a(x,7,)))
~H(xy,, I (a(x.,))) + 0 < [H(% y, hy(a(x,3,)))
—H(x,y,, by (a(x.y,)))| +6.
(83)

In light of (82) and (83), we get that
|fhy(x) = fhy(x)| <max {T}, T,} +9, (84)
where

Ty = [H(x yy, by (a(x31))) =
Ty = [H(% 3 hy(a(x.3,))) -

H(x, y1> hy(a(x, 31)))l;

H(x, y5, hy(a(x,3,)))]-
(85)

It follows from (75), (84), and (@, y, ¢) € O, x D5 x O,
that

o)
ool )
 max {w(([:'(p(r)dr ; j:ww(t)dt),w

(o)
< max {w([ Cptr) + w(([:ww)dt) v
(o)
o oo o)

oo (] ) o] o)
w([ w(t)dr)—qs(‘[o (0t +v(e).

(86)

Taking ¢ — 0" in the above inequalities and using y € @,
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and (70), we infer that

o o) ([ v0) o).
o7 ) o) o)

Similarly, we deduce that

o) o)
w(ﬂfhrfh‘"goa)dt) < w(jfso(t)dt) - ¢(Jf¢(t>dt).

It follows that

G(fhyfhyfhs) max {[[fh,=fh, . Ifhy=fhs I fhs=fhy I}
o ) o)
0

'° s fo( [ )
() o[ )}
=+(] v

o (J.Micp(t)dt>, Vhy, hy, hy € B(S).

0

(89)

Consequently, the conditions of Theorem 19 are satisfied.
It follows from Theorem 19 that f and g have a unique com-
mon fixed point h* € B(S), that is, the functional equations
(72) have a unique common bounded solution h* € B(S).
This completes the proof.

As in the proof of Theorem 23, we obtain similarly the
following result and omit its proof.

Theorem 24. Let u,v:SxD—R, a,b:SxD—S, and H,
L:SxDx R — R satisfy (C1)-(C3) and (C5) for each i € {1
,2,3},x€8,yeDand hy, hy, hy € B(S)

0

[H(xp:hi(a(xy)))~H(xphy (a(xp)))] M3 M3
v/(J fP(f)dt> sw([ «z(t)dt) —¢( | so(t)dr),

13

where (¢, v, ¢) €@, X s X Dy, hy=h, and

M3 (hy, by, hs) = max {G(gh;, gh;, ghs),
[1+G(ghy fhys fhy)]G(ghss fhy, fhy)
2+ G(ghy, ghy, fhy)
[1+ G(ghy fhy, fh,)]G(ghs, fhy, fhy)
2+ G(ghy, ghy, fhy)
[1+ G(ghs, fhs, fh3)|G(ghy, fhy, fhy)
2+ G(ghy, ghs, fhs)
[1+G(ghy fhys fhy)]G(ghys fhs, fhs)
21+ G(ghy, ghs, fhy)]
[1+G(ghy fhy, fh,)]G(ghy, fhs, fhs)
2[1+ G(ghy, ghs, fh;))]
[1+ G(ghs, fhs, fhs)|G(ghy fhys fhy)
2[1+ G(ghy> ghs, fhs)]
[1+ G(gh;> ghy, gh3)|G(fhy, fhy, fhs)
1+ G(ghs, ghs, fh,) + G(gh,, gh,, ghs)’
[1+G(ghy» ghy, ghs)|G(fhys fhy, fhs)
1+ G(ghy, ghy, fhy) + G(gh,, ghy, ghs)’
[1+G(ghy> ghys ghs)IG(fhys fhy, fhs) }
1+ G(ghy, ghy, fhs) + G(ghy, gh,, ghs) |
o1)

>

>

>

>

>

>

Then, the functional equations (72) have a unique com-
mon bounded solution h* € B(S).

Let C([0, T], R) denote the Banach space of all continu-
ous functions in [0, T| with norm

x| =sup {Ix(t)| : t [0, T]}, VxeC([0, T}, R). (92)

Put X = C([0, T], R) and define G : X x X x X —» R* by

Gy 2) =[xyl + |y —2| +[lz-x[l. Vxy zeX.

(93)

It is obvious that (X, G) is a complete G-metric space.
Consider the nonlinear Volterra integral equations:

x(t)=p,(t) + JtKl(t, s, x(s))ds,vt € [0, T}, y(t)
; (94)

t

=p,(t) + JOKz(t, s, y(s))ds,Vt € [0, T),

where T>0 is a constant, p;,p, : [0, T] > R and K|, K,

: [0, T]> x R — R are given functions.
Put

t

70 =pu(0) + | Kifo5 50

0

V(L x) € [0, T] X X,

(95)
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t

9+(0)=p,(0) + | Kyft 5 x(6)ds

0

V(t, x) € [0, T x X.
(96)

Theorem 25. Let K, K, : [0, T]" x R = R and p,, p, : [0, T]
— R satisfy that

(d1) K, K,, p;» and p, are continuous;

(d2) fgx = gfx for each x € X with fx = gx;

(d3) f(X) < g(X) and g(X) is complete;

(d4) there exists a continuous function Q : [0, T| x [0, T]
— R* such that

Ky (85, x(5)) = K (85, 9(5))| < Q1 5)[9x(s) = gy(s)|  VH.s€[0, T]x, y € X.

(97)
(d5) sup,( 1y ff)Q(t, s)ds<1/2.

Then, the nonlinear Volterra integral equations (94) have
a unique common continuous solution in X.

Proof. Define ¢, v, ¢ : R* — R* by

o(t)=1,y(t)=2t,¢(t)=t, VteR". (98)

Clearly, (¢, v, ¢) € @, x @, X @,. On account of (d1) and
(95), we deduce that for each x € X, fx and gx are continuous
functions in [0, T], that is, f and g are mappings from X into
itself. By means of (93), (95), (97), and (d5), we obtain that

(G(fx.fy.fz) G(fx.fy.fz)
o[ o) =2 T gtnde=26(p5. 1552
“ 2=yl + Iy - f + Iz~ fxl)

<2 ( sup J‘[ K, (t:s,x(s)) = K, (t, 5, y(s))|ds
t 1Jo

€[0,T

Ki(tsy(s)) = Ki(6:5,2(s))|ds

+
7
[=
ae)

S
—
&

s [ K05 26) <Ko ax(s))ds)
<2 ( sup | Q(1.9lgx(s) - ay(91ds
 sup [ QU1 9]a6) - 92091
+ sup [ Q1919209 - gx(s)ld5>
<2 (tsug]fau, s)ds) (g%~

+1lgy - gz|| + |19z - gx||) < G(gx gy, 97)
M, (x,,2)
< M,(x.3.2) =w(j <p<t>dt) ¢
0

M;(x,:2)
. ([ (p(t)dt), Vx,y,z€X,i€{l,2},
Jo

(99)
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where M, (x,y,z) and M,(x,y,z) are defined by (13) and
(52), respectively. That is, the conditions of Theorems 19
and 20 are fulfilled. Therefore, each of Theorems 19 and 20
guarantees that f and g have a unique common fixed point
x € X, which is a unique common continuous solution of
the nonlinear Volterra integral equations (94) in X. This
completes the proof.
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