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In this research article, by introducing a mapping φ defined on ½0,∞Þ4, with some axioms, we define two generalized contractions
called Fφ

H+ -contractions and φH+
P -contractions. We investigate their mutual relation and establish an existence theorem addressing

Fφ
H+ -contractions with some applications.

1. Introduction

Frechet gave an abstraction to the notion of distance in
Euclidean spaces by introducing metric spaces. Partial met-
rics (denoted by P ) were introduced in [1] as a generaliza-
tion of the notion of metric to allow nonzero self-distance
for the purpose of modeling partial objects in reasoning
about data flow networks. The self-distance P ðα, αÞ is to be
understood as a quantification of the extent to which α is
unknown. Matthews [1] proved an analogue of Banach’s
fixed point theorem in partial metric spaces. This remarkable
fixed point theorem led many researchers to investigate fixed
points of self-mappings in partial metric spaces (see [2–7]).

The investigation of fixed points of multivalued or set-
valued mappings was started by Nadler [8]. For this purpose,
Nadler introduced a metric function H to measure distance
between two nonempty closed and bounded sets. This metric
function is also known as the Hausdorff metric in literature.
Aydi et al. [5] generalized the Hausdorffmetric to the partial
Hausdorff metric and hence generalized the Nadler fixed
point theorem. Nazam et al. [7] established various fixed
point results using the partial Hausdorff metric. Recently,
Pathak et al. [9] introduced another metric function H+ to
measure the distance between two nonempty closed and
bounded sets and hence proved some fixed point results.
Nashine et al. [10] also proved some fixed points theorems
on H+-multivalued contractions and their application to

homotopy theory. For recent research in this direction, see
[11–13].

In 1922, Banach introduced the Banach Contraction
Principle in his PhD thesis. Since then, there has been a trend
to generalize and apply it to show the existence of the solu-
tions to various mathematical models (both linear and non-
linear). A large number of research articles contain many
useful generalizations of Banach Contraction Principle. In
one such attempt, Wardowski [14] introduced F-contrac-
tions, where F represents the class of nonlinear real-valued
functions satisfying three axioms (F1, F2, F3). The concept
of F-contractions proved to be a useful addition in fixed
point theory (see for instant [15–18] and references therein).
The advancement in the study of F-contraction is in prog-
ress, and in this direction recently, Abbas et al. [19] intro-
duced the Presic-type F-contraction and established a fixed
point theorem for such kind of mappings. Tomar et al. [20]
provided an existence theorem for six self-mappings under
the notion of F-contraction. Durmaz et al. [17] studied
F-contraction under the effect of a partial order. Sgroi et al.
[21] extended the notion of F-contraction to multivalued
F-contraction by combining the ideas of Wardowski and
Nadler. Durmaz et al. [22] generalized the results given
in [16, 17, 21] by introducing ðα, FÞ-contraction. Similarly,
Piri et al. [23] proved some theorems on the F-Suzuki type
inequalities under some weaker conditions, and Shukla
et al. [24] established a common fixed point theorem for
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weak F-contraction under 0-complete partial metric spaces.
Recently, Karapinar et al. [25] presented a survey paper
which encompasses almost all the results addressing F
-contractions.

The motivation to write this article is the contents of the
article [26]. In [26], authors introduced a function (called
auxiliary function) defined on ½0,∞Þ4 satisfying some axioms
and used it to establish a fixed point theorem. It was then
shown that the Banach fixed point theorem, Kannan fixed
point theorem, Chatterjea fixed point theorem, Reich fixed
point theorem, Hardy and Rogers fixed point theorem, and
Círíc type fixed point theorems are particular cases of this
fixed point theorem. Since all the above mentioned fixed
point theorems have been generalized using the notion of F
-contraction both in metric spaces and partial metric spaces
(see [25]), we develop a general fixed point theorem, repre-
senting them all, in the Hausdorff partial metric spaces.

This article is organized as follows. In Section 2, some
basic notions are given. In Section 3, we give highlights of
Hausdorff p-ms. In Section 4, we introduce the Fφ

H+-con-
tractions and φH+

P -contractions and investigate the relations
between them. We also study the existence theorem and its
consequences. And in Section 5, we derive two results regard-
ing applications by applying the existence theorem given in
Section 4. The presented existence theorem generalizes,
improves, and extends the results established by Pathak
et al. [9].

2. Basic Notions

Let partial metric spaces be denoted by p-m-s.
Matthews [1], while working on networking topologies,

noticed the nonzero self-distance (loop is the best example
to understand his point). The self-distance played a key role
in introduction of p-m-s. Matthews [1] defined the p-m-s
as follows: let I be a nonempty set, and the function P : I
×I→ ½0,∞Þ is said to be a partial metric (p-m) on I if
for all α, β, γ ∈I, the axioms (p1)-(p4) are satisfied.

(p1) α = β⇔P ðα, αÞ =P ðα, βÞ =P ðβ, βÞ
(p2) P ðα, αÞ ≤P ðα, βÞ
(p3) P ðα, βÞ =P ðβ, αÞ
(p4) P ðα, γÞ ≤P ðα, βÞ +P ðβ, γÞ −P ðβ, βÞ:
Some examples of ðI,P Þ are as follows. The function

P : I2 → ½0,∞Þ defined by

(1) P ðα, βÞ = ∣α − β∣ + C ; C ≥ 0 for all α, β ∈I is a ðI,
P Þ

(2) P ðα, βÞ =max fα, βg, is a ðI,P Þ
(3) P ðα, βÞ = e∣α−β∣ +max fα, βg, is a ðI,P Þ.
It is noted that P ðα, βÞ = 0 implies α = β. The p-m

function P is continuous. If P is a p-m then the function
dP : I ×I→ ½0,∞Þ defined by

dP α, βð Þ = 2P α, βð Þ − P α, αð Þ +P β, βð Þ½ � for all α, β ∈I
ð1Þ

defines a metric on I. A T0 topology can be defined on
ðI,P Þ with P -open balls being its elements. The P -open
ball centered at σ0 having radius ε is defined by OP ðσ0, εÞ
= fσ ∈I : P ðσ0, σÞ <P ðσ0, σ0Þ + εg. A set G is said to be
bounded in ðI,P Þ if there exist σ0 ∈I and Δ ≥ 0 such that
P ðσ0, ηÞ <P ðη, ηÞ + Δ for all η ∈G. Also it is easy to write
η ∈ �G (closure of G) ⇔P ðη,GÞ =P ðη, ηÞ and G is closed in
ðI,P Þ if and only if G = �G. If P ðσ, σÞ = limn→∞P ðσ, σnÞ;
then we say that fσng converges to σ and conversely. If
limn,m→∞P ðσn, σmÞ is finite, then the sequence fσng is said
to be Cauchy, and in particular, if this Cauchy sequence
converges in ðI,P Þ, then we say that the p-m-s ðI,P Þ
is complete. Lemma 1 provides fundamental rules to work
in the p-m-s.

Lemma 1 [1].

(1) If the sequence σn is Cauchy sequence in ðI,P Þ, then
it is Cauchy sequence in the metric space ðI, dP Þ and
conversely

(2) The completeness of ðI,P Þ implies the completeness
of ðI, dP Þ and conversely

(3) limn→∞dP ðσ, σnÞ = 0⇔ limn→∞P ðσ, σnÞ =P ðσ, σÞ
= limn,m→∞P ðσn, σmÞ, provided ðI,P Þ is complete.

Remark 1. There are sequences which converge in p-m-s but
not in metric spaces. Indeed, for the sequence f1/n : n ∈ℕg
in I = ½0, 1� and p-m P defined by P ðρ, ςÞ = ∣ρ − ς ∣ +C
ðC ≥ 0Þ∀ρ, ς ∈I, it is easy to check that the sequence f1/ng
converges to 0 with respect to P but does not converge to 0
with respect to metric d defined by dðρ, ςÞ =P ðρ, ςÞ if ρ ≠ ς
and 0 otherwise.

3. Hausdorff Partial Metric

Let the set of nonempty closed and bounded subsets of
ðI,P Þ be denoted by CBP ðIÞ. Let P ðσ, AÞ = inf fP ðσ,
aÞ: a ∈ Ag, A ∈ CBP ðIÞ. Let ΔP : CBP ðIÞ × CBP ðIÞ→
½0,∞Þ be defined by ΔP ðX, YÞ = sup fP ða, YÞ: a ∈ Xg. Let
HP : CBP ðIÞ × CBP ðIÞ→ ½0,∞Þ be defined by

HP X, Yð Þ =max ΔP X, Yð Þ, ΔP Y , Xð Þf g: ð2Þ

Let H+
P : CBP ðIÞ × CBP ðIÞ→ ½0,∞Þ be defined by

H+
P X, Yð Þ = 1

2
ΔP X, Yð Þ + ΔP Y , Xð Þf g: ð3Þ

Since max fσ, ςg ≥ 1/2ðσ + ςÞ, HP ðX, YÞ ≥H+
P ðX, YÞ for

all X, Y ∈ CBP ðIÞ. A comprehensive study of the distance
H+ðX, YÞ with reference to metric d was presented by Pathak
et al. in [9]. We claim that

(a) H+
P ðX, YÞ and HP ðX, YÞ are topological equivalent

(b) the mapping H+
P : CBP ðIÞ × CBP ðIÞ→ ½0,∞Þ

defines a p-m on CBP ðIÞ
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(c) if the p-m-s ðI,P Þ is complete then ðCBP ðIÞ,H+
P Þ

is also complete and vice versa

(d) the mapping H+
P : CBP ðIÞ × CBP ðIÞ→ ½0,∞Þ is

continuous.

Proposition 1 [7]. Let ðI,P Þ be p-m-s. For any J , K , L ∈ C
BP ðIÞ, we have the following:

(1) ΔP ðJ , JÞ = sup fP ðu, vÞ: u, v ∈ Jg
(2) ΔP ðJ , KÞ = ΔP ðK , JÞ
(3) ΔP ðJ , KÞ = 0⇒J ⊆ K

(4) ΔP ðJ , LÞ ≤ ΔP ðJ , KÞ + ΔP ðK , LÞ − inf k∈KP ðk, kÞ:

Proposition 2. Let ðI,P Þ be p-m-s. For any J , K , L ∈ C
BP ðIÞ, we have the following:

(1) H+
P ðJ , KÞ = 0 implies J = K

(2) H+
P ðJ , JÞ ≤H+

P ðJ , KÞ
(3) H+

P ðJ , KÞ =H+
P ðK , JÞ

(4) H+
P ðJ , LÞ ≤H+

P ðJ , KÞ +H+
P ðK , LÞ − inf k∈KP ðk, kÞ:

Proof. Following the arguments given in ([5], Proposition 2.2
and Proposition 2.3), we get the result. We omit its details.

HP -contraction: Let ðI,P Þ be a p-m-s, the mapping
T : I→ CBP ðIÞ is called an HP -contraction, if there exists
k < 1 such thatHP ðTðσÞ \ fσg, TðςÞ \ fςgÞ ≤ kP ðσ, ςÞ for all
σ, ς ∈I (see [7]).

H+
P -contraction: Let ðI,P Þ be a p-m-s; the mapping

T : I→ CBP ðIÞ is called an H+
P -contraction, if (1) there

exists k < 1 such that H+
P ðTðσÞ \ fσg, TðςÞ \ fςgÞ ≤ kP ðσ, ςÞ

for all σ, ς ∈I; (2) for all σ ∈I, fςg ∈ TðσÞ, ε > 0 there exists
fξg ∈ TðςÞ such thatP ðς, ξÞ ≤H+

P ðTðσÞ, TðςÞÞ + ε (see [27]).
Since HP ðX, YÞ ≥H+

P ðX, YÞ for all X, Y ∈ CBP ðIÞ,
HP -contraction implies H+

P -contraction but not conversely
(see Example 1).

Example 1. Let I = f0, 1/7, 1g . Define the function P : I ×
I→ ½0,∞Þ by

P σ, ςð Þ =max σ, ςf g for allσ, ς ∈I: ð4Þ

Then ðI,P Þ is a p-m-s. Let T : I→ CBP ðIÞ be defined
by

T σð Þ =

0f g if σ = 0

0,
1
7

� �
if σ =

1
7

0, 1f g if σ = 1:

8>>>><
>>>>:

ð5Þ

We have three cases (Case 1: σ = 0, ς = 1/7, Case 2: σ = 0
, ς = 1, and Case 3: σ = 1/7, ς = 1).

Case 1. If σ = 0, ς = 1/7, then P ðσ, ςÞ = 1/7, HP ðTð0Þ, Rð1/
7ÞÞ = 1/7, and H+

P ðTð0Þ, Rð1/7ÞÞ = 1/14. This clearly shows
that

H+
P T 0ð Þ, R 1

7

� �� �
≤ LP 0,

1
7

� �
holds for all L ≥

1
2
, ð6Þ

whereas

HP T 0ð Þ, R 1
7

� �� �
> LP 0,

1
7

� �
for any L < 1: ð7Þ

Case 2. If σ = 0, ς = 1, then P ðσ, ςÞ = 1, HP ðTð0Þ, Rð1ÞÞ = 1,
and H+

P ðTð0Þ, Rð1ÞÞ = 1/2. This clearly shows that

H+
P T 0ð Þ, R 1ð Þð Þ ≤ LP 0, 1ð Þ holds for all L ≥ 1

2
, ð8Þ

whereas

HP T 0ð Þ, R 1ð Þð Þ > LP 0, 1ð Þ for any L < 1: ð9Þ

Case 3. If σ = 1/7, ς = 1, then P ðσ, ςÞ = 1, HP ðRð1/7Þ, Rð1ÞÞ
= 1, and H+

P ðRð1/7Þ, Rð1ÞÞ = 4/7. This clearly shows that

H+
P R

1
7

� �
, R 1ð Þ

� �
≤ LP

1
7
, 1

� �
holds for all L ≥

1
2
, ð10Þ

whereas

HP R
1
7

� �
, R 1ð Þ

� �
> LP

1
7
, 1

� �
for any L < 1: ð11Þ

Note: the inequality P ðς, ξÞ ≤H+
P ðTðσÞ, TðςÞÞ + ε also

holds for each case, and for all σ ∈I, ς ∈ TðσÞ, ξ ∈ TðςÞ.

4. Fixed Points of Fφ
H+-Contraction

Let T : I→I be a self-mapping defined on nonempty setI.
The problem “to find σ∗ ∈I such that σ∗ = Tðσ∗Þ” is called
fixed point problem. If T : I→ CBðIÞ, then the fixed point
problem turns into the form “to find σ∗ ∈I such that σ∗ ∈
Tðσ∗Þ.” For the solution of fixed point problem, generally, a
Picard iterative sequence ðfσngsuch that σn+1 = TðσnÞÞ is
proved to be a Cauchy sequence subject to contractive condi-
tion and completeness of the underlying abstract metric
space leads to such σ∗. In this section, at first, we introduce
and compare Fφ

H+-contraction and φH+
P -contraction, and

secondly, we obtain a theorem assuring unique fixed point
of Fφ

H+-contraction. We proceed with definitions of functions
F and φ associated with some axioms.

Wardowski [14] considered a nonlinear function F : ð0,
∞Þ→ℝ with the following axioms: (F1): F is strictly increas-
ing. (F2): For each sequence fσng of positive numbers,
limn→∞σn = 0 if and only if limn→∞FðσnÞ = −∞: (F3): For
each sequence fσng of positive numbers limn→∞σn = 0, there
exists θ ∈ ð0, 1Þ such that limσn→0+ðσnÞθFðσnÞ = 0. Let F = f
F : ð0,∞Þ→ℝj F satisfiesðF1Þ − ðF3Þg.
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The collection F is nonempty: f ðσÞ = ln ðσÞ, gðσÞ = σ
+ ln ðσÞ, hðσÞ = ln ðσ2 + σÞ, and kðσÞ = −1/

ffiffiffi
σ

p
are members

of this collection.
Let us consider the function φ : ½0,∞Þ4 → ½0,∞Þ satisfy-

ing the following axioms:
(C1) φ is continuous and non-decreasing in each

coordinate
(C2) if there exist σ, ς ∈ ½0,∞Þ such that σ < ς then

φðς, ς, σ, ςÞ ≤ ς
(C3) if there exists σ ∈ ½0,∞Þ such that σ ≤ φð0, 0, σ,

ðσ/2ÞÞ then φð0, 0, σ, ðσ/2ÞÞ = σ.
Let Cφ = fφ : ½0,∞Þ4 → ½0,∞Þjφ satisfies ðC1Þ − ðC3Þg.

The following examples show that the set Cφ is nonempty:

(1) φaðσ, ς, ω, θÞ =max fσ, ς, ω, θg
(2) φbðσ, ς, ω, θÞ = θ

(3) φcðσ, ς, ω, θÞ =max fσ, ς, ωg
(4) φdðσ, ς, ω, θÞ =max fς, ωg
(5) φeðσ, ς, ω, θÞ = σ

(6) φf ðσ, ς, ω, θÞ = 1/2ðς + ωÞ
(7) φgðσ, ς, ω, θÞ =max fσ, ðς + ω/2Þ, θg
(8) φZðσ, ς, ω, θÞ = aσ + bðς + ωÞ + 2cθ, a + 2b + 2c = 1

(9) φiðσ, ς, ω, θÞ = aσ + bς + cω, a + b + c = 1:

Definition 1. Let T : I→ PðIÞ and α : I ×I→ ½0,∞Þ be
two functions. A mapping T is said to be strictly α -admissi-
ble if for each σ ∈I and ς ∈ TðσÞwith αðσ, ςÞ > 1, there exists
ω ∈ TðςÞ such that αðς, ωÞ > 1.

Definition 2. Let ðI,P Þ be a p-m-s and let α : I ×I→ ½0,
∞Þ be a function. The space ðI,P Þ is said to be strictly α
-regular if for any sequence fσng ⊂I such that αðσn, σn+1Þ
> 1 for all n ∈ℕ and σn → σ as n→∞, we have αðσn, σÞ >
1 for all n ∈ℕ:

Definition 3. Let ðI,P Þ be a p-m-s. A mapping T : I→ C
BP ðIÞ is said to be a φH+

P -contraction if there exist k
∈ ½0, 1Þ and φ ∈Cφ such that

α σ, ςð ÞH+
P T σð Þ \ σf g, T ςð Þ \ ςf gð Þ

≤ kφ

P σ, ςð Þ,P σ, T σð Þ \ σf gð Þ,P ς, T ςð Þ \ ςf gð Þ,

P ς, T σð Þ \ σf gð Þ +P σ, T ςð Þ \ ςf gð Þ
2

0
BBBB@

1
CCCCA,

ð12Þ

for all σ, ς ∈I.

Let A∗ = fðσ, ςÞ ∈I2 ∣ αðσ, ςÞ ≥ 1andH+ðTðσÞ \ fσg, T
ðςÞ \ fςgÞ > 0g:

Definition 4. Let ðI,P Þ be a p-m-s. A mapping T : I→ C
BP ðIÞ is said to be an Fφ

H+-contraction if

(a) there exist φ ∈Cφ, τ > 0 and F ∈F such that

τ + F α σ, ςð ÞH+
P T σð Þ \ σf g, T ςð Þ \ ςf gð Þð Þ

≤ F φ

P σ, ςð Þ,P σ, T σð Þ \ σf gð Þ,P ς, T ςð Þ \ ςf gð Þ,

P ς, T σð Þ \ σf gð Þ +P σ, T ςð Þ \ ςf gð Þ
2

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA,

ð13Þ

for all σ, ς ∈A∗.

(b) For every ε > 0, σ ∈I, and ς ∈ TðσÞ, there exists ξ ∈
TðςÞ such that

P ς, ξð Þ ≤H+
P T σð Þ, T ςð Þð Þ + ε: ð14Þ

Remark 2. In particular if P ðσ, σÞ = 0, then for φe ∈Cφ, the
inequality (13) turns into H+ -contraction [9] for FðσÞ = ln
ðσÞ.

Proposition 3. Every φH+
P -contraction is an Fφ

H+-contrac-
tion, but the converse may not be true.

Proof. Let T : I→ CBP ðIÞ be a φH+
P -contraction defined

on ðI,P Þ; then for all σ, ς ∈I there exist k ∈ ½0, 1Þ and φ ∈
Cφ such that

α σ, ςð ÞH+
P T σð Þ \ σf g, T ςð Þ \ ςf gð Þ

≤ kφ
�
P σ, ςð Þ,P σ, T σð Þ \ σf gð Þ,P ς, T ςð Þ \ ςf gð Þ,

P ς, T σð Þ \ σf gð Þ +P σ, T ςð Þ \ ςf gð Þ
2

�
:

ð15Þ

This can be written as

ln
1
k

� �
+ ln α σ, ςð ÞH+

P T σð Þ \ σf g, T ςð Þ \ ςf gð Þð Þ

≤ ln
�
P σ, ςð Þ,P σ, T σð Þ \ σf gð Þ,P ς, T ςð Þ \ ςf gð Þ,

P ς, T σð Þ \ σf gð Þ +P σ, T ςð Þ \ ςf gð Þ
2

�

�
�
φ P σ, ςð Þ,P σ, T σð Þ \ σf gð Þ,P ς, T ςð Þ \ ςf gð Þ,ð

P ς, T σð Þ \ σf gð Þ +P σ, T ςð Þ \ ςf gð Þ
2

��
:

ð16Þ

Let F ∈F be defined by FðσÞ = ln ðσÞ for all σ > 0 and
put τ = ln ð1/kÞ. The inequality (16) leads to
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τ + F α σ, ςð ÞH+
P T σð Þ \ σf g, T ςð Þ \ ςf gð Þð Þ

≤ F φ

P σ, ςð Þ,P σ, T σð Þ \ σf gð Þ,P ς, T ςð Þ \ ςf gð Þ,

P ς, T σð Þ \ σf gð Þ +P σ, T ςð Þ \ ςf gð Þ
2

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA:

ð17Þ

The following example (Example 2) shows that an Fφ
H+

-contraction needs not to be a φH+
P -contraction.

Example 2. Let φa ∈Cφτ = 1 and F ∈F defined by FðσÞ =
ln ðσÞ + σ where φa = φaðu, r, s, tÞ: ðu =P ðσ, ςÞ, r =P ðσ,
TðσÞ \ fσgÞ, s =P ðς, TðςÞ \ fςgÞ, t =P ðς, TðσÞ \ fσgÞ +P ð
σ, TðςÞ \ fςgÞ/4Þ. Let I = f0, 1, 2,⋯g equipped with p-m
P : I ×I→ ½0,∞Þ defined by

P σ, ςð Þ = σ + ς forall σ ≤ ς: ð18Þ

Then, ðI,P Þ is a p-m-s. Define the mapping T : I
→ 2I by

R σð Þ =
0f g ifσ ∈ 0, 1f g ;
0, σ − 1f g ifσ ≥ 2,

(

α σ, ςð Þ =
0 ifσ, ς∈ −∞,0ð Þ ;
eP σ,ςð Þ ifσ, ς ∈ 0, 1, 2,⋯f g:

( ð19Þ

The mapping T is α-admissible, closed, and bounded.
We show that this mapping satisfies inequality (13) for
all σ, ς ∈I. We observe that H+

P ðTðσÞ, TðςÞÞ > 0 if and
only if σ ≥ 2 and ς > 0. Also for all σ, ς ∈I with ς ∈ TðσÞ
and taking ζ = 0 ∈ TðςÞ, we have

α σ, ςð ÞH+
P T σð Þ, T ςð Þð Þ = α σ, ςð ÞP ς, ζð Þ

= α σ, ςð Þς < α σ, ςð Þ σ + ςð Þ = α σ, ςð ÞP σ, ςð Þ, ð20Þ

and thus

α σ, ςð ÞH+
P T σð Þ, T ςð Þð Þ − φa u, r, s, tð Þ

≤ α σ, ςð ÞH+
P T σð Þ, T ςð Þð Þ −P σ, ςð Þ ≤ −2:

ð21Þ

Consequently,

α σ, ςð ÞH+
P T σð Þ, T ςð Þð Þ

φa u, r, s, tð Þ eα σ,ςð ÞH+ T σð Þ,T ςð Þð Þ−φa u,r,s,tð Þ ≤ e−1:

ð22Þ

Hence,

1 + F α ς, ωð ÞH+
P T σð Þ \ σf g, T ςð Þ \ ςf gð Þð Þ

≤ F φ

P σ, ςð Þ,P σ, T σð Þ \ σf gð Þ,P ς, T ςð Þ \ ςf gð Þ,

P ς, T σð Þ \ σf gð Þ +P σ, T ςð Þ \ ςf gð Þ
2

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA:

ð23Þ

Similarly, for every member of Cφ, the mapping T is

Fφ
H+-contraction. However, the mapping T is not φH+

P

-contraction: for φe ∈Cφ and σ ≠ ς = 0, we have

α σ, 0ð ÞH+
P T σð Þ, T 0ð Þð Þ ≤ kφe u, r, s, tð Þ⇒ eσ σ − 1ð Þ ≤ kσ,

ð24Þ

which then gives eσðσ − 1Þ/σ ≤ k, and limσ→∞eσðσ − 1Þ/σ
≤ k implies k ≥∞, a contradiction. Hence, T is not φ
H+

P -contraction for this particular member of Cφ. Simi-
larly, for φbðu, r, s, tÞ = t ∈Cφ and σ ≠ ς = 1, we have

α σ, 1ð ÞH+
P T σð Þ, T 1ð Þð Þ ≤ kφb u, r, s, tð Þ does not exist: ð25Þ

Hence, T is not φH+
P -contraction for this member of

Cφ. The mapping T has similar nature for other members
of Cφ.

The following theorem (Theorem 1) gives the proof of all
particular problems corresponding to members of Cφ in one
attempt.

Theorem 1. Let ðI,P Þ be a complete p-m-s and T : I→ B
CP ðIÞ be an Fφ

H+-contraction such that

(1) T is a strictly α-admissible mapping

(2) ∃σ0 and σ1 ∈ Tðσ0Þ in I such that αðσ0, σ1Þ > 1

(3) I is a strictly α-regular space

(4) F is continuous.

Then, there exists x∗ ∈I such that x∗ ∈ Tðx∗Þ.

Proof. By assumption (2), there exist σ0 and σ1 ∈ Tðσ0Þ in A

such that αðσ0, σ1Þ > 1. Note that if σ0 ∈ Tðσ0Þ, then σ0 is a
fixed point of T , and if σ1 ∈ Tðσ1Þ, then σ1 is a fixed point
of T as required. We proceed by assuming σ0 ∉ Tðσ0Þ
and σ1 ∉ Tðσ1Þ; thus, σ0, σ1 ∈A

∗. Given αðσ0, σ1Þ > 1 and
Tðσ0Þ, Tðσ1Þ are nonempty, closed, and bounded sets, so,
by Definition 4(b), there exists σ2 ∈ Tðσ1Þ such that

P σ1, σ2ð Þ ≤H+
P T σ0ð Þ, T σ1ð Þð Þ + ε: ð26Þ
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Letting ε = ðαðσ0, σ1Þ − 1ÞH+
P ðTðσ0Þ, Tðσ1ÞÞ, we have

P σ1, σ2ð Þ ≤H+
P T σ0ð Þ, T σ1ð Þð Þ

+ α σ0, σ1ð Þ − 1ð ÞH+
P T σ0ð Þ, T σ1ð Þð Þ

= α σ0, σ1ð ÞH+
P T σ0ð Þ, T σ1ð Þð Þ:

ð27Þ

By ðF1Þ, (13) and ðC1Þ, we have

F P σ1, σ2ð Þð Þ ≤ F α σ0, σ1ð ÞH+ T σ0ð Þ, T σ1ð Þð Þð Þ

≤ F φ

P σ0, σ1ð Þ,P σ0, T σ0ð Þð Þ,P σ1, T σ1ð Þð Þ,

P σ1, T σ0ð Þð Þ +P σ0, T σ1ð Þð Þ
2

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA

− τ, ≤ F φ P σ0, σ1ð Þ,P σ0, σ1ð Þ,P σ1, σ2ð Þ, P σ1, σ1ð Þ +P σ0, σ2ð Þ
2

� �� �
− τ:

ð28Þ

By the triangular inequality, we have

P σ0, σ2ð Þ +P σ1, σ1ð Þ ≤P σ0, σ1ð Þ +P σ1, σ2ð Þ: ð29Þ

We claim that P ðσ1, σ2Þ <P ðσ0, σ1Þ. On the contrary,
if P ðσ1, σ2Þ ≥P ðσ0, σ1Þ, then due to (29), we get P ðσ0,
σ2Þ ≤ 2P ðσ1, σ2Þ. The inequality (28) implies

F P σ1, σ2ð Þð Þ < F φ P σ1, σ2ð Þ,P σ0, σ1ð Þ,P σ1, σ2ð Þ,P σ1, σ2ð Þð Þð Þ:
ð30Þ

By ðC2Þ, we have φðP ðσ1, σ2Þ,P ðσ0, σ1Þ,P ðσ1, σ2Þ,
P ðσ1, σ2ÞÞ ≤P ðσ1, σ2Þ, and by axiom ðF1Þ, the inequality
(30) reduces to

F P σ1, σ2ð Þð Þ < F P σ1, σ2ð Þð Þ: ð31Þ

This is an absurdity. This indicates that our claim is
valid. Thus, P ðσ1, σ2Þ <P ðσ0, σ1Þ. Let P n =P ðσn, σn+1Þ
for all positive integers n, and by inequality (28) we obtain

F P 1ð Þ ≤ F φ P 0,P 0,P 1,P 0ð Þð Þ − τ: ð32Þ

Applying ðC2Þ and ðF1Þ consecutively, we have

F P 1ð Þ ≤ F P 0ð Þ − τ: ð33Þ

Since T is a strictly α-admissible mapping, αðσ0, σ1Þ
> 1 implies αðσ1, σ2Þ > 1; thus, σ1, σ2 ∈A∗ (assume σ2 ∉
Tðσ2Þ). Since, Tðσ1Þ, Tðσ2Þ are nonempty, closed, and
bounded sets. By Definition 4(b), there exists σ3 ∈ Tðσ2Þ
such that

P σ2, σ3ð Þ ≤H+
P T σ1ð Þ, T σ2ð Þð Þ + ε: ð34Þ

Letting ε = ðαðσ1, σ2Þ − 1ÞH+
P ðTðσ1Þ, Tðσ2ÞÞ, we have

P σ2, σ3ð Þ ≤H+
P T σ1ð Þ, T σ2ð Þð Þ

+ α σ1, σ2ð Þ − 1ð ÞH+
P T σ1ð Þ, T σ2ð Þð Þ

= α σ1, σ2ð ÞH+
P T σ1ð Þ, T σ2ð Þð Þ:

ð35Þ

By ðF1Þ, (13) and ðC1Þ, we have

F P σ2, σ3ð Þð Þ ≤ F α σ1, σ2ð ÞH+
P T σ1ð Þ, T σ2ð Þð Þð Þ

≤ F φ

P σ1, σ2ð Þ,P σ1, T σ1ð Þð Þ,P σ2, T σ2ð Þð Þ,

P σ2, T σ1ð Þð Þ +P σ1, T σ2ð Þð Þ
2

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA

− τ, ≤ F φ P σ1, σ2ð Þ,P σ1, σ2ð Þ,P σ2, σ3ð Þ, P σ2, σ2ð Þ +P σ1, σ3ð Þ
2

� �� �
− τ:

ð36Þ

By the triangular inequality, we have

P σ1, σ3ð Þ +P σ2, σ2ð Þ ≤P σ1, σ2ð Þ +P σ2, σ3ð Þ: ð37Þ

We claim that P ðσ2, σ3Þ <P ðσ1, σ2Þ. On the contrary,
if P ðσ2, σ3Þ ≥P ðσ1, σ2Þ, then by (37), we get P ðσ1, σ3Þ
≤ 2P ðσ2, σ3Þ. The inequality (36) implies

F P σ2, σ3ð Þð Þ < F φ P σ2, σ3ð Þ,P σ1, σ2ð Þ,P σ2, σ3ð Þ,P σ2, σ3ð Þð Þð Þ − τ:

ð38Þ

By ðC2Þ, φðP ðσ2, σ3Þ,P ðσ1, σ2Þ,P ðσ2, σ3Þ,P ðσ2, σ3ÞÞ
≤P ðσ2, σ3Þ. By ðF1Þ and (38), we have

F P σ2, σ3ð Þð Þ < F P σ2, σ3ð Þð Þ: ð39Þ

This is an absurdity. Thus, P ðσ2, σ3Þ <P ðσ1, σ2Þ. By
(36), we obtain

F P 2ð Þ ≤ F φ P 1,P 1,P 2,P 1ð Þð Þ − τ: ð40Þ

Again applying the condition ðC2Þ followed by ðF1Þ,
we have

F P 2ð Þ ≤ F P 1ð Þ − τ ≤ F P 0ð Þ − 2τ: ð41Þ

Similarly, there exists σ4 ∈ Tðσ3Þðσ3 ∉ Tðσ3ÞÞ, such that

F P 3ð Þ ≤ F P 2ð Þ − τ ≤ F P 0ð Þ − 3τ: ð42Þ

Thus, we are able to construct an iterative sequence
fσng ⊂ X such that

σn ∈ T σn−1ð Þ, σn−1 ∉ T σn−1ð Þ, α σn−1, σnð Þ > 1,
P n <P n−1 for all n ∈ℕ and

ð43Þ

F P nð ÞÞ ≤ F P 0ð ÞÞ − nτ: ð44Þ
By (44), we obtain limn→∞FðP nÞ = −∞, by ðF2Þ we

have limn→∞P n = 0, and by ðF3Þ, there exists κ ∈ ð0, 1Þ
such that

lim
n→∞

P nð ÞκF P nð Þð Þ = 0: ð45Þ

Following (44), for all n ∈ℕ, we obtain

P nð Þκ F P nð Þ − F P 0ð Þð Þ ≤ − P nð Þκnτ ≤ 0: ð46Þ
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Letting n→∞, in (46), we have limn→∞ðnðP nÞκÞ = 0;
thus, there exists n1 ∈ℕ, such that nðP nÞκ ≤ 1 for all n
≥ n1, that is P n ≤ ð1/n1/κÞforalln ≥ n1.

For m > n ≥ n1,

P σn, σmð Þ ≤P σn, σn+1ð Þ +P σn+1, σn+2ð Þ +P σn+2, σn+3ð Þ
+⋯+P σm−1, σmð Þ

≤ 〠
m−1

i=n
P σi, σi+1ð Þ ≤ 〠

∞

i=n
P σi, σi+1ð Þ ≤ 〠

∞

i=n

1
i1/k

:

ð47Þ

Since the series∑∞
i=nð1/i1/κÞ on the right hand side is con-

vergent and by definition of metric dP defined on I, we
know that dP ðσn, σmÞ ≤ 2P ðσn, σmÞ; thus, limn,m→∞dP ðσn,
σmÞ = 0. This implies fσng is a Cauchy sequence in ðI, dP Þ
. Since ðI,P Þ is complete, so by Lemma 1(2), the metric
space ðI, dP Þ is complete. Thus, there exists x∗ ∈I such that
σn → x∗ as n→∞ with respect to metric dP . Then Lemma
1(3) implies

lim
n→∞

P x∗, σnð Þ =P x∗, x∗ð Þ = lim
n,m→∞

P σn, σmð Þ: ð48Þ

This shows that fσng is a Cauchy sequence in ðI,P Þ.
Now, we show that x∗ ∈ Tðx∗Þ, and to do so, we claim that
P ðx∗, Tðx∗ÞÞ = 0. If on the other hand P ðx∗, Tðx∗ÞÞ > 0,
then there exists n1 ∈ℕ such that P ðσn, Tðx∗ÞÞ > 0 for each
n ≥ n1. By assumption (3), αðσn, x∗Þ > 1. By (13),

F P σn+1, T x∗ð Þð Þð Þ ≤ F α σn, x∗ð ÞH+ T σnð Þ, T x∗ð Þð Þð Þ
≤ F
�
φ

�
P σn, x∗ð Þ,P σn, T σnð Þð Þ,P x∗, T x∗ð Þð Þ,

P x∗, T σnð Þð Þ +P σn, T x∗ð Þð Þ
2

��

− τ ≤ F
�
φ

�
P σn, x∗ð Þ,P σn, σn+1ð Þ,

P x∗, T x∗ð Þð Þ, P x∗, σn+1ð Þ +P σn, T x∗ð Þð Þ
2

��
− τ:

ð49Þ

Thus,

F P σn+1, T x∗ð Þð Þð Þ < F
�
φ

�
P σn, x∗ð Þ,P σn, σn+1ð Þ,P x∗, T x∗ð Þð Þ,

P x∗, σn+1ð Þ +P σn, T x∗ð Þð Þ
2

��
:

ð50Þ

Since φ is a coordinate-wise continuous function, letting
n→∞ in the above inequality, we obtain

F P x∗, T x∗ð Þð Þð Þ < F φ 0, 0,P x∗, T x∗ð Þð Þ, P x∗, T x∗ð Þð Þ
2

� �� �
:

ð51Þ

By ðC3Þ, we have

F P x∗, T x∗ð Þð Þð Þ < F P x∗, T x∗ð Þð Þð Þ: ð52Þ

This is an absurdity and consequently P ðx∗, Tðx∗ÞÞ = 0;
thus, we have P ðx∗, Tðx∗ÞÞ =P ðx∗, x∗Þ which implies that
x∗ ∈ �Tðx∗Þ = Tðx∗Þ. Hence, x∗ is a fixed point of T .

The following example explains Theorem 1.

Example 3. Consistent with ([28], Example 3.3), let φa ∈Cφ

where

φa = φa u, r, s, tð Þ:
�
u =P σ, ςð Þ, r =P σ, T σð Þð Þ, s =P ς, T ςð Þð Þ,

t =
P ς, T σð Þð Þ +P σ, T ςð Þð Þ

2

�
,

ð53Þ

τ = 1 and F ∈F defined by FðσÞ = ln ðσÞ + σ. Let I =
f0, 1, 2,⋯g equipped with p-m P : I ×I→ ½0,∞Þ defined
by

P σ, ςð Þ = σ + ςforallσ ≠ ς: ð54Þ

Then, ðI,P Þ is a complete p-m-s. Define the mapping
T : I→ 2I by

R σð Þ =
0f g if σ ∈ 0, 1f g ;
0, σ − 1f g if σ ≥ 2,

(

α σ, ςð Þ =
0 if σ, ς∈ −∞,0ð Þ ;
eP σ,ςð Þ if σ, ς ∈ 0, 1, 2,⋯f g:

( ð55Þ

The mapping T is strict α-admissible, closed, and
bounded. We show that T is Fφ

H+-contraction. We observe
that H+ðTðσÞ, TðςÞÞ > 0 if and only if σ ≥ 2 and ς > 0. Also
for all σ, ς ∈I with ς ∈ TðσÞ and taking ζ = 0 ∈ TðςÞ, we
have

α σ, ςð ÞH+ T σð Þ, T ςð Þð Þ = eP σ,ςð ÞP ς, ζð Þ
= eP σ,ςð Þς < eP σ,ςð Þ σ + ςð Þ
= eP σ,ςð ÞP σ, ςð Þ, and thus,

eP σ,ςð ÞH+ T σð Þ, T ςð Þð Þ − φa u, r, s, tð Þ
≤ eP σ,ςð ÞH+ T σð Þ, T ςð Þð Þ −P σ, ςð Þ ≤ −2:

ð56Þ

Consequently,

eP σ,ςð ÞH+ T σð Þ, T ςð Þð Þ
φa u, r, s, tð Þ ee

P σ,ςð ÞH+ T σð Þ,T ςð Þð Þ−φa u,r,s,tð Þ ≤ e−1: ð57Þ
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Hence,

1 + F α σ, ςð ÞH+ T σð Þ, T ςð Þð Þð Þ

≤ F φ

P σ, ςð Þ,P σ, T σð Þð Þ,P ς, T ςð Þð Þ,

P ς, T σð Þð Þ +P σ, T ςð Þð Þ
2

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA:

ð58Þ

Similarly, for every member of Cφ, the mapping T sat-
isfies all assumptions in Theorem 1. As it is clear from
Proposition 3 that Fφ

H+-contraction needs not to be φH+
P

-contraction, and hence, it is not H+
P -contraction. Conse-

quently, Fφ
H+-contraction needs not to be H+-contraction.

Thus, the results in [9, 10, 27] are not applicable in this
case.

Remark 3. In the following section, we obtain the corollaries
of Theorem 1. To simplify the expression of the corollaries,
we consider the three conditions below.

Let
(A1) there exist σ0 in I such that αðσ0, Tðσ0ÞÞ > 1
(A2) I be a strictly α-regular space
(A3) F be continuous.

Corollary 1. Let ðI,P Þ be a complete p-m-s and T : I→ B
CP ðIÞ be a strictly α-admisible mapping. Assume that

τ + F α σ, ςð ÞH+ T σð Þ \ σf g, T ςð Þ \ ςf gð Þð Þ ≤ F P σ, ςð Þð Þ,
ð59Þ

for all σ, ς ∈A∗, and for every ε > 0, σ ∈I, and ς ∈ TðσÞ,
there exists ξ ∈ TðςÞ such that

P ς, ξð Þ ≤H+
P T σð Þ, T ςð Þð Þ + ε: ð60Þ

Then, the mapping T has a fixed point provided (A1)-
(A3) hold.

Proof. Defining φ : ½0,∞Þ4 → ½0,∞Þ by

φ

�
P σ, ςð Þ,P σ, T σð Þ \ σf gð Þ,P ς, T ςð Þ \ ςf gð Þ,

P ς, T σð Þ \ σf gð Þ +P σ, T ςð Þ \ ςf gð Þ
2

�
=P σ, ςð Þ

ð61Þ

and following the proof of Theorem 1, we obtain the result.

Corollary 2. Let ðI,P Þ be a complete p-m-s and T : I→ B
CP ðIÞ be a strictly α-admisible mapping. Assume that

τ + F α σ, ςð ÞH+ T σð Þ \ σf g, T ςð Þ \ ςf gð Þð Þ
≤ F max P σ, ςð Þ,P σ, T σð Þ \ σf gð Þ,P ς, T ςð Þ \ ςf gð Þf gð Þ,

ð62Þ

for all σ, ς ∈A∗, and for every ε > 0, σ ∈I, and ς ∈ TðσÞ,
∃ξ ∈ TðςÞ such that

P ς, ξð Þ ≤H+
P T σð Þ, T ςð Þð Þ + ε: ð63Þ

Then, T admits a fixed point provided (A1)-(A3) hold.

Proof. Defining φ : ½0,∞Þ4 → ½0,∞Þ by

φ

�
P σ, ςð Þ,P σ, T σð Þ \ σf gð Þ,P ς, T ςð Þ \ ςf gð Þ,
P ς, T σð Þ \ σf gð Þ +P σ, T ςð Þ \ ςf gð Þ

2
Þ

=max P σ, ςð Þ,P σ, T σð Þ \ σf gð Þ,P ς, T ςð Þ \ ςf gð Þf g
ð64Þ

and following the proof of Theorem 1, we obtain the
result.

Corollary 3. Let ðI,P Þ be a complete p-m-s and T : I→ B
CP ðIÞ be a strictly α-admissible mapping. Assume that

τ + F α σ, ςð ÞH+ T σð Þ \ σf g, T ςð Þ \ ςf gð Þð Þ
≤ F max P σ, T σð Þ \ σf gð Þ,P ς, T ςð Þ \ ςf gð Þf gð Þ, ð65Þ

for all σ, ς ∈A∗, and for every ε > 0, σ ∈I, and ς ∈ TðσÞ,
there exists ξ ∈ TðςÞ such that

P ς, ξð Þ ≤H+
P T σð Þ, T ςð Þð Þ + ε: ð66Þ

Then, T admits a fixed point provided (A1)-(A3) hold.

Proof. Defining φ : ½0,∞Þ4 → ½0,∞Þ by

φ

�
P σ, ςð Þ,P σ, T σð Þ \ σf gð Þ,P ς, T ςð Þ \ ςf gð Þ,

P ς, T σð Þ \ σf gð Þ +P σ, T ςð Þ \ ςf gð Þ
2

�
=max P σ, T σð Þ \ σf gð Þ,P ς, T ςð Þ \ ςf gð Þf g

ð67Þ

and following the steps given in the proof of Theorem 1,
we obtain the result.

Corollary 4. Let ðI,P Þ be a complete p-m-s and T : I→ B
CP ðIÞ be a strictly α-admissible mapping. Assume that

τ + F α σ, ςð ÞH+ T σð Þ \ σf g, T ςð Þ \ ςf gð Þð Þ

≤ F max

P σ, ςð Þ,P σ, T σð Þ \ σf gð Þ,P ς, T ςð Þ \ ςf gð Þ,

P ς, T σð Þ \ σf gð Þ +P σ, T ςð Þ \ ςf gð Þ
2

8>>>><
>>>>:

9>>>>=
>>>>;

0
BBBB@

1
CCCCA,

ð68Þ

for all σ, ς ∈A∗, and for every ε > 0, σ ∈I, and ς ∈ TðσÞ,
there exists ξ ∈ TðςÞ such that
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P ς, ξð Þ ≤H+
P T σð Þ, T ςð Þð Þ + ε: ð69Þ

Then, T admits a fixed point provided (A1)-(A3) hold.

Proof. Defining φ : ½0,∞Þ4 → ½0,∞Þ by

φ

�
P σ, ςð Þ,P σ, T σð Þ \ σf gð Þ,P ς, T ςð Þ \ ςf gð Þ,

P ς, T σð Þ \ σf gð Þ +P σ, T ςð Þ \ ςf gð Þ
2

�

=max
�
P σ, ςð Þ,P σ, T σð Þ \ σf gð Þ,P ς, T ςð Þ \ ςf gð Þ,

P ς, T σð Þ \ σf gð Þ +P σ, T ςð Þ \ ςf gð Þ
2

�
,

ð70Þ

and following the proof of Theorem 1, we obtain the
result.

Corollary 5. Let ðI,P Þ be a complete p-m-s and T : I→ B
CP ðIÞ be a strictly α-admissible mapping. Assume that

τ + F α σ, ςð ÞH+ T σð Þ \ σf g, T ςð Þ \ ςf gð Þð Þ
≤ F

P ς, T σð Þ \ σf gð Þ +P σ, T ςð Þ \ ςf gð Þ
2

� �
,

ð71Þ

for all σ, ς ∈A∗, and for every ε > 0, σ ∈I, and ς ∈ TðσÞ,
there exists ξ ∈ TðςÞ such that

P ς, ξð Þ ≤H+
P T σð Þ, T ςð Þð Þ + ε: ð72Þ

Then, T admits a fixed point provided (A1)-(A3) hold.

Proof. Defining φ : ½0,∞Þ4 → ½0,∞Þ by

φ

�
P σ, ςð Þ,P σ, T σð Þ \ σf gð Þ,P ς, T ςð Þ \ ςf gð Þ,
P ς, T σð Þ \ σf gð Þ +P σ, T ςð Þ \ ςf gð Þ

2

�

=
P ς, T σð Þ \ σf gð Þ +P σ, T ςð Þ \ ςf gð Þ

2

ð73Þ

in the proof of Theorem 1, we get the result.

Corollary 6. Let ðI,P Þ be a complete p-m-s and T : I→ B
CP ðIÞ be a strictly α-admissible mapping. Assume that

τ + F α σ, ςð ÞH+ T σð Þ \ σf g, T ςð Þ \ ςf gð Þð Þ
≤ F

P σ, T σð Þ \ σf gð Þ +P ς, T ςð Þ \ ςf gð Þ
2

� �
,

ð74Þ

for all σ, ς ∈A∗, and for every ε > 0, σ ∈I, and ς ∈ TðσÞ,
there exists ξ ∈ TðςÞ such that

P ς, ξð Þ ≤H+
P T σð Þ, T ςð Þð Þ + ε: ð75Þ

Then, T admits a fixed point provided (A1)-(A3) hold.

Proof. Defining φ : ½0,∞Þ4 → ½0,∞Þ by

φ

�
P σ, ςð Þ,P σ, T σð Þ \ σf gð Þ,P ς, T ςð Þ \ ςf gð Þ,
P ς, T σð Þ \ σf gð Þ +P σ, T ςð Þ \ ςf gð Þ

2

�

=
P σ, T σð Þ \ σf gð Þ +P ς, T ςð Þ \ ςf gð Þ

2

ð76Þ

in the proof of Theorem 1, we get the result.

Corollary 7. Let ðI,P Þ be a complete p-m-s and T : I→ B
CP ðIÞ be strictly α-admissible mapping. Assume that

τ + F α σ, ςð ÞH+ T σð Þ \ σf g, T ςð Þ \ ςf gð Þð Þ

≤ F max

P σ, ςð Þ, P σ, T σð Þ \ σf gð Þ +P ς, T ςð Þ \ ςf gð Þ
2

,

P ς, T σð Þ \ σf gð Þ +P σ, T ςð Þ \ ςf gð Þ
2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

0
BBBBB@

1
CCCCCA,

ð77Þ

for all σ, ς ∈A∗, and for every ε > 0, σ ∈I, and ς ∈ TðσÞ,
there exists ξ ∈ TðςÞ such that

P ς, ξð Þ ≤H+
P T σð Þ, T ςð Þð Þ + ε: ð78Þ

Then, T admits a fixed point provided (A1)-(A3) hold.

Proof. Defining φ : ½0,∞Þ4 → ½0,∞Þ by

φ P σ, ςð Þ,P σ, T σð Þð Þ,P ς, T ςð Þð Þ, P ς, T σð Þð Þ +P σ, T ςð Þð Þ
2

� �

=max P σ, ςð Þ, P σ, T σð Þð Þ +P ς, T ςð Þð Þ
2

,
P ς, T σð Þð Þ +P σ, T ςð Þð Þ

2

� �

ð79Þ

and following the proof of Theorem 1, we obtain the
result.

Corollary 8. Let ðI,P Þ be a complete p-m-s and T : I→ B
CP ðIÞ be strictly α-admisible mapping. Assume that there
exist a ≥ 0, b ≥ 0, c ≥ 0 satisfying a + 2b + 2c = 1, such that

τ + F α σ, ςð ÞH+ T σð Þ \ σf g, T ςð Þ \ ςf gð Þð Þ

≤ F

aP σ, ςð Þ + b P σ, T σð Þ \ σf gð Þ +P ς, T ςð Þ \ ςf gð Þð Þ

+c P ς, T σð Þ \ σf gð Þ +P σ, T ςð Þ \ ςf gð Þð Þ

0
BBB@

1
CCCA,

ð80Þ

for all σ, ς ∈A∗, and for every ε > 0, σ ∈I, and ς ∈ TðσÞ,
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there exists ξ ∈ TðςÞ such that

P ς, ξð Þ ≤H+
P T σð Þ, T ςð Þð Þ + ε: ð81Þ

Then, T admits a fixed point provided (A1)-(A3) hold.

Proof. Defining φ : ½0,∞Þ4 → ½0,∞Þ by

φ

�
P σ, ςð Þ,P σ, T σð Þ \ σf gð Þ,P ς, T ςð Þ \ ςf gð Þ,
P ς, T σð Þ \ σf gð Þ +P σ, T ςð Þ \ ςf gð Þ

2

�
= aP σ, ςð Þ + b P σ, T σð Þ \ σf gð Þ +P ς, T ςð Þ \ ςf gð Þð

+ 2c
P ς, T σð Þ σf gð Þ +P σ, T ςð Þ ςf gð Þ

2
,

ð82Þ

in the proof of Theorem 1, we obtain the result.

Corollary 9. Let ðI,P Þ be a complete p-m-s and T : I→ B
CP ðIÞ be a strictly α-admissible mapping. Assume that there
exist a ≥ 0, b ≥ 0, c ≥ 0 satisfying a + b + c = 1, such that

τ + F α σ, ςð ÞH+ T σð Þ \ σf g, T ςð Þ \ ςf gð Þð Þ
≤ F aP σ, ςð Þ + bP σ, T σð Þ \ σf gð Þ + cP ς, T ςð Þ \ ςf gð Þð Þ,

ð83Þ

for all σ, ς ∈A∗, and for every ε > 0, σ ∈I, and ς ∈ TðσÞ,
there exists ξ ∈ TðςÞ such that

P ς, ξð Þ ≤H+
P T σð Þ, T ςð Þð Þ + ε: ð84Þ

Then, T admits a fixed point provided (A1)-(A3) hold.

Proof. If we define φ : ½0,∞Þ4 → ½0,∞Þ by

φ

�
P σ, ςð Þ,P σ, T σð Þ \ σf gð Þ,P ς, T ςð Þ \ ςf gð Þ,

P ς, T σð Þ \ σf gð Þ +P σ, T ςð Þ \ ςf gð Þ
2

�
= aP σ, ςð Þ + bP σ, T σð Þ \ σf gð Þ + cP ς, T ςð Þ \ ςf gð Þ,

ð85Þ

in the proof of Theorem 1, then the result follows.
Let

I∗ = σ, ςð Þ ∈I2 ∣ α σ, ςð Þ > 1andP T σð Þ, T ςð Þð Þ > 0
� �

:

ð86Þ

For a single-valued self-mapping, Theorem 1 can be
stated as follows:

Theorem 2. Let ðI,P Þ be a complete p-m-s and T : I→I

be a φF-contraction, that is, there exist φ ∈Cφ and F ∈F such

that

τ + F α σ, ςð ÞP T σð Þ, T ςð Þð Þð Þ

≤ F φ

P σ, ςð Þ,P σ, T σð Þð Þ,P ς, T ςð Þð Þ,

P ς, T σð Þð Þ +P σ, T ςð Þð Þ
2

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA,

ð87Þ

for all σ, ς ∈I∗ and

(1) T is a strictly α-admissible mapping

(2) there exists σ0 in I such that αðσ0, Tðσ0ÞÞ > 1

(3) I is a strictly α-regular space

(4) F is continuous.

Then, T admits a fixed point.
We omit its proof as it is a mere repetition of the proof of

Theorem 1 with some minor modifications.

5. Applications of Theorem 2

5.1. Applications to Fractional Differential Equations. Lacroix
(1819) introduced and investigated several applicable prop-
erties of fractional differentials. Recently, various new models
involving Caputo-Fabrizio derivative (CFD) were discovered
and analyzed in [29–31]. We investigate one of these models
in p-m-s. We introduce some notations as follows:

Let C0,1 = f f ∣ f : ½0, 1�→ℝ and f is continuousg. Define
the metric function d : C0,1 ×C0,1 → ½0,∞Þ by

d f , gð Þ = f − gk k∞ = max
ν∈ 0,1½ �

f νð Þ − g νð Þj j, for all f , g ∈C0,1:

ð88Þ

Then, the space ðC0,1, dÞ is a complete metric space. The
function α : C0,1 ×C0,1 → ð1,∞Þ by

α r, tð Þ = e r+tk k∞ for all r, t ∈C0,1: ð89Þ

Let K1 : ½0, 1� ×ℝ→ℝ be a continuous function. We
shall investigate the following CFDE:

CDβ f νð Þ = K1 ν, f νð Þð Þ, ð90Þ

with boundary conditions

σ 0ð Þ = 0, Iσ 1ð Þ = σ′ 0ð Þ: ð91Þ

Here, CDβ denotes CFD of order β defined by

CDβK1 νð Þ = 1
Γ n − βð Þ

ðν
0
ν − ηð Þn−β−1Kn

1 ηð Þ
	
dη, ð92Þ
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where

n − 1 < β < nandn = β½ � + 1, ð93Þ

and IβK1 is given by

IβK1 νð Þ = 1
Γ βð Þ

ðν
0
ν − ηð Þβ−1K1 ηð Þ dη, withβ > 0: ð94Þ

Then, the equation (90) can be modified to

f νð Þ = 1
Γ βð Þ

ðν
0
ν − ηð Þβ−1K1 η, f ηð Þð Þ dη

+
2ν
Γ βð Þ

ð1
0

ðη
0
η − uð Þβ−1K1 u, f uð Þð Þ dudη,

ð95Þ

Theorem 3. Equation (90) admits a solution in C0,1 provided

(I) there exists τ > 0 such that for all σ, ς ∈C0,1, we have

K1 η, σ ηð Þð Þ − K1 η, ς ηð Þð Þj j ≤ e−τΓ β + 1ð Þ
4α σ, ςð Þ σ ηð Þ − ς ηð Þj j

ð96Þ

(II) there exists σ0 ∈C0,1 such that for all ν ∈ ½0, 1�, we
have

σ0 νð Þ ≤ 1
Γ βð Þ

ðν
0
ν − ηð Þβ−1K1 η, σ0 ηð Þð Þ dη

+
2ν
Γ βð Þ

ð1
0

ðη
0
η − uð Þβ−1K1 u, σ0 uð Þð Þ dudη:

ð97Þ

Proof. Consistent with the notations introduced above and
defining the mapping R : C0,1 →C0,1 by

R σ νð Þð Þ = 1
Γ βð Þ

ðν
0
ν − ηð Þβ−1K1 η, σ ηð Þð Þ dη

+
2ν
Γ βð Þ

ð1
0

ðη
0
η − uð Þβ−1K1 u, σ uð Þð Þ dudη:

ð98Þ

By (II), there exists σ0 ∈C0,1 such that σn = tnðσ0ÞÞ. The
continuity of function K1 leads to the continuity of mapping
t on C0,1. It is easy to verify the assumptions (1)-(4) in The-
orem 2. In the following, we verify the contractive condition
(87) of Theorem 2.

R σ νð Þð Þ − R ς νð Þð Þj j =

1
Γ βð Þ

ðν
0
ν − ηð Þβ−1K1 η, σ ηð Þð Þ dη

−
1

Γ βð Þ
ðν
0
ν − ηð Þβ−1K1 η, ς ηð Þð Þ dη

+
2ν
Γ βð Þ

ð1
0

ðη
0
η − uð Þβ−1K1 u, σ uð Þð Þ dudη

−
2ν
Γ βð Þ

ð1
0

ðη
0
η − uð Þβ−1K1 u, ς uð Þð Þ dudη











































implies

R σ νð Þð Þ − R ς νð Þð Þj j ≤
ðν
0

1
Γ βð Þ ν − ηð Þβ−1K1 η, σ ηð Þð Þ
�





−
1

Γ βð Þ ν − ηð Þβ−1K1 η, ς ηð Þð Þ
�
dη






+
ð1
0

ðη
0

2
Γ βð Þ η − uð Þβ−1K1 η, σ ηð Þð Þ
�





−
2

Γ βð Þ η − uð Þβ−1K1 u, ς uð Þð Þ
�
dudη






≤

1
Γ βð Þ

e−τΓ β + 1ð Þ
4α σ, ςð Þ ·

ðν
0
ν − ηð Þβ−1 σ ηð Þ − ς ηð Þð Þ dη

+
2

Γ βð Þ
e−τΓ β + 1ð Þ
4α σ, ςð Þ ·

ð1
0

ðη
0
η − uð Þβ−1 ς uð Þ − σ uð Þð Þ dudη

≤
1

Γ βð Þ
e−τΓ β + 1ð Þ
4α σ, ςð Þ · d σ, ςð Þ ·

ðν
0
ν − ηð Þβ−1 dη

+
2

Γ βð Þ
e−τΓ βð Þ · Γ β + 1ð Þ

4α σ, ςð ÞΓ αð Þ · Γ β + 1ð Þ · d σ, ςð Þ

·
ð1
0

ðη
0
η − uð Þβ−1 dudη ≤ e−τΓ βð Þ · Γ β + 1ð Þ

4α σ, ςð ÞΓ βð Þ · Γ β + 1ð Þ
� �

· d σ, ςð Þ + 2e−τB β + 1, 1ð Þ Γ βð Þ · Γ β + 1ð Þ
4α σ, ςð ÞΓ βð Þ · Γ β + 1ð Þ

· d σ, ςð Þ ≤ e−τ

4α σ, ςð Þ d σ, ςð Þ + e−τ

2α σ, ςð Þ d σ, ςð Þ,

ð99Þ

where B is the beta function. The last inequality can be
written by that

α σ, ςð Þd R σð Þ, R ςð Þð Þ ≤ e−τd σ, ςð Þ: ð100Þ

Let us define the metric d on C0,1 by

d σ, ςð Þ =
P σ, ςð Þ = σ − ςk k∞ + l l ≥ 0ð Þ if σ ≠ ς

0 if σ = ς:

(

ð101Þ

Thus, (100) can be written as

α σ, ςð ÞP R σð Þ, R ςð Þð Þ ≤ e−τP σ, ςð Þ: ð102Þ

Define the functions φ ∈Cφ and F by
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φa P σ, ςð Þ,P σ, t σð Þð Þ,P ς, t ςð Þð Þ, P ς, t σð Þð Þ +P σ, t ςð Þð Þ
2

� �

=max P σ, ςð Þ,P σ, t σð Þð Þ,P ς, t ςð Þð Þ, P ς, t σð Þð Þ +P σ, t ςð Þð Þ
2

� �
,

ð103Þ

FðσðνÞÞ = ln ðσðνÞÞ for all σ, ς ∈C0,1. Under these defini-
tions, the inequality (102) gets the form

τ + F α σ, ςð ÞP R σð Þ, R ςð Þð Þð Þ

≤ F φ

P σ, ςð Þ,P σ, T σð Þð Þ,P ς, T ςð Þð Þ,

P ς, T σð Þð Þ +P σ, T ςð Þð Þ
2

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA:

ð104Þ

Hence, by Theorem 2, the self-mapping t admits a fixed
point, and hence, the equation (90) has a solution.

5.2. Applications to the Matrix Equations. In this section, by
Theorem 2, we shall investigate study the existence of the
solutions to

X =D +
1

m + θ
〠
m

i=1
W∗

i XWi + 〠
m

i=1
G∗
i XGi

 !
, ð105Þ

where θ ∈ ð0, 1Þ, D ∈P ðmÞ (set of m ×m positive definite
matrices), and Wi,Gi are arbitrary m ×m matrices for each
i and are entries of block matrices given by

W =

W1

W2

W3

⋮

Wm

2
666666664

3
777777775
G =

G1

G2

G3

⋮

Gm

2
666666664

3
777777775
: ð106Þ

Let WZ ∈Z
ðmÞ (set of m ×m Hermitian matrices) be an

arbitrary matrix; then, its eigenvalues e1, e2, e3,⋯em are real.
Moreover, if WZ ∈Z

ðmÞ
+ , then the eigenvalues are nonnega-

tive. Let the functional k:ktr : ZðmÞ →ℝ be defined by

WZk ktr = 〠
m

i=1
eij j: ð107Þ

Let X ∈P ðmÞ be arbitrary and define kWZktr,X =
kX1/2WZX

1/2ktr . By ([32], Theorem IX.2.2), ðZðmÞ, k:ktr,XÞ
is a Banach space (see also [33–35]). Hence, ðZðmÞ, dÞ is a
complete metric space. The induced metric d : ZðmÞ ×ZðmÞ

→ℝ is defined by

d WZ ,GZð Þ = WZ −GZk ktr,X forallWZ ,GZ ∈Z
mð Þ: ð108Þ

To establish the existence result we need the following
lemma.

Lemma 2 [35]. If WZ ,GZ ∈Z
ðmÞ
+ , then

0 ≤ Tr WZGZð Þ ≤ WZk kTr GZð Þ: ð109Þ

Define the operator E : ZðmÞ →ZðmÞ by

E Uð Þ =G +
1

m + θ
〠
m

i=1
W∗

i UWi + 〠
m

i=1
G∗
i UGi

 !
, forallU ∈Z mð Þ:

ð110Þ

Remark 4. Since EðUÞ −G ∈P ðmÞ for all U ∈ZðmÞ, in partic-
ular, we have EðGÞ −G ∈P ðmÞ. The operator E is continuous
on ZðmÞ.

The solution of the matrix equation (105) is the fixed
point of the operator E.

Theorem 4. Let X and Y be two positive definite matrices such
that ∑m

i=1W
∗
i XWi ≺ 1/2X and ∑m

i=1G
∗
i XGi ≺ 1/2X. Then, the

operator E has a fixed point in ZðmÞ.

Proof. Let U and V be any matrices in P ðmÞ. We observe that
the operator E and the space ðZðmÞ, k:ktr,XÞ fulfill the
assumptions (1)-(4) in Theorem 2. To prove that E is an φ
F-contraction, we proceed with

E Vð Þ −E Uð Þk ktr,X = tr X1/2 E Vð Þ −E Uð Þð ÞX1/2� �
= tr

1
m + θ

〠
m

i=1
X1/2 W∗

i V −Uð ÞWi +G∗
i V −Uð ÞGið ÞX1/2� � !

= tr
1

m + θ
〠
m

i=1
X1/2 W∗

i V −Uð ÞWiX
1/2� �

+
1

m + θ
〠
m

i=1
X1/2G∗

i V −Uð ÞGi

� �
X1/2

( ) !

=
1

m + θ
〠
m

i=1
tr X1/2W∗

i V −Uð ÞWiX
1/2 + X1/2G∗

i V −Uð ÞGiX
1/2� �

=
1

m + θ
〠
m

i=1

� tr X1/2W∗
i V −Uð ÞWiX

1/2� �
+ tr X1/2G∗

i V −Uð ÞGiX
1/2� �� �

=
1

m + θ
〠
m

i=1
tr

� X1/2W∗
i V −Uð ÞWiX

1/2� �
+

1
m + θ

〠
m

i=1
tr X1/2G∗

i V −Uð ÞGiX
1/2� �

=
1

m + θ
〠
m

i=1
tr WiXW

∗
i V −Uð Þð Þ + 1

m + θ
〠
m

i=1
tr GiXG

∗
i V −Uð Þð Þ = 1

m + θ
〠
m

i=1
tr

� WiXW
∗
i X

−1/2X1/2 V −Uð ÞX1/2X−1/2� �
+

1
m + θ

〠
m

i=1
tr

� GiXG
∗
i X

−1/2X1/2 V −Uð ÞX1/2X−1/2� �
=

1
m + θ

〠
m

i=1
tr

� X−1/2WiXW
∗
i X

−1/2X1/2 V −Uð ÞX1/2� �
+

1
m + θ

〠
m

i=1
tr

� X−1/2GiXG
∗
i X

−1/2X1/2 V −Uð ÞX1/2� �
=

1
m + θ

tr

� 〠
m

i=1
X−1/2WiXW

∗
i X

−1/2X1/2 V −Uð ÞX1/2

 !
+

1
m + θ

tr

� 〠
m

i=1
X−1/2GiXG

∗
i X

−1/2X1/2 V −Uð ÞX1/2

 !
≤

1
m + θ

〠
m

i=1
X−1/2WiXW

∗
i X

−1/2














� V −Uk ktr,X +
1

m + θ
〠
m

i=1
X−1/2GiXG

∗
i X

−1/2












 V −Uk ktr,X by Lemma2

� = 1
m + θ

〠
m

i=1
X−1/2WiXW

∗
i X

−1/2












 + 〠

m

i=1
X−1/2GiXG

∗
i X

−1/2














 !
V −Uk ktr,X :

ð111Þ
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Given ∑m
i=1W

∗
i XWi ≺ 1/2X, ∑m

i=1G
∗
i XGi ≺ 1/2X, and let-

ting K be a number such that

K = 〠
m

i=1
X−1/2WiXW

∗
i X

−1/2












 + 〠

m

i=1
X−1/2GiXG

∗
i X

−1/2














< 1, we have

E Vð Þ −E Uð Þk ktr,X ≤
K

m + θ
V −Uk ktr,X : ð112Þ

Thus,

m + θ

K
d E Vð Þ,E Uð Þð Þ ≤ Kd V ,Uð Þ: ð113Þ

We define α : ZðmÞ ×ZðmÞ → ð1,∞Þ by

α U , Vð Þ =m + θ for allU , V ∈Z mð Þ and θ ∈ 0, 1ð Þ, ð114Þ

and the metric d on ZðmÞ by

d Wi,Gið Þ =
P Wi,Gið Þ if Wi ≠Gi ; 〠

m

i=1
W∗

i XWi ≺
1
2
X and 〠

m

i=1
G∗

i XGi ≺
1
2
X

0 if Wi =Gi,

8><
>:

ð115Þ

In view of the metric defined above, the inequality (113)
can be written as

m + θð ÞP E Vð Þ,E Uð Þð Þ
K

≤P V ,Uð Þ

ln
α U , Vð ÞP E Vð Þ,E Uð Þð Þ

K

� �
≤ ln P V ,Uð Þð Þ:

ð116Þ

Define the functions φ ∈Cφ and F by

φa P U , Vð Þ,P U ,E Uð Þð Þ,P V ,E Vð Þð Þ, P V ,E Uð Þð Þ +P U ,E Vð Þð Þ
2

� �

=max P U , Vð Þ,P U ,E Uð Þð Þ,P V ,E Vð Þð Þ, P V ,E Uð Þð Þ +P U , T Vð Þð Þ
2

� �
,

ð117Þ

FðσÞ = ln ðσÞ for all σ ∈ ð0,∞Þ, respectively. Under these
definitions, we have

τ + F α U ,Vð ÞP E Vð Þ, E Uð Þð Þð Þ ≤ F P V ,Uð Þð Þputτ = ln K−1� �
≤ F max P U ,Vð Þ,P U , E Uð Þð Þ,P V , E Vð Þð Þ, P V ,E Uð Þð Þ +P U , E Vð Þð Þ

2

� �� �
:

ð118Þ

By Theorem 2, the operator E has a fixed point, and
hence, the matrix equation (105) has a solution.

Remark 5. The numerical explanation of the conditions
∑m

i=1W
∗
i XWi ≺ 1/2X and∑m

i=1G
∗
i XGi ≺ 1/2X imposed in The-

orem 4 for i = 2 and taking 4 × 4 matrices is as follows:

letW1 =

0:1 0:05 0:05 0:05

0:05 0:1 0:05 0:05

0:05 0:05 0:1 0:05

0:05 0:05 0:05 0:1

2
6666664

3
7777775
W2

=

0:5 −0:02 −0:02 −0:02

−0:02 0:5 −0:02 −0:02

−0:02 −0:02 0:5 −0:02

−0:02 −0:02 −0:02 0:5

2
6666664

3
7777775
:

ð119Þ

Then, for a matrix

X =

1 0:2 0:2 0:2

0:2 1 0:2 0:2

0:2 0:2 1 0:2

0:2 0:2 0:2 1

2
666664

3
777775, ð120Þ

we have

〠
2

i=1
W∗

i XWi =

0:2662 0:0479 0:0479 0:0479

0:0479 0:2662 0:0479 0:0479

0:0479 0:0479 0:2662 0:0479

0:0479 0:0479 0:0479 0:2662

2
666664

3
777775 ≺

1
2
X:

Similarly, letG1 =

0:01 0:001 0:01 0:01

0:001 0:01 0:01 0:001

0:01 0:001 0:001 0:01

0:001 0:01 0:001 0:001

2
6666664

3
7777775
G2

=

0:1413 0:008294 0:1413 0:1413

0:008294 0:0997 0:008294 0:1413

0:1413 0:008294 0:1413 0:0997

0:1109 0:1413 0:008294 0:0997

2
6666664

3
7777775
:

ð121Þ

Then, for a matrix

X =

1 0:2 0:2 0:2

0:2 1 0:2 0:2

0:2 0:2 1 0:2

0:2 0:2 0:2 1

2
666664

3
777775, ð122Þ
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we have

〠
2

i=1
G∗

i XGi =

0:0744 0:0359 0:0570 0:0:0760

0:0359 0:0376 0:0191 0:0491

0:0570 0:0191 0:0502 0:0579

0:0760 0:0491 0:0579 0:0:0946

2
666664

3
777775 ≺

1
2
X:

ð123Þ

6. Conclusion

The introduced contractions encompass the F-contractions
and multivalued contractions and hence the Banach contrac-
tions, Kannan contractions, Chatterjea contractions, Reich
contractions, Hardy-Rogers contractions, and Ciric-type
contractions (both metric and p-m versions). It is a real gen-
eralization of Matthews contractions and F-contractions.
The theorems give general criteria for the existence of the
uniqueness of the fixed point.
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