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In this research article, by introducing a mapping ¢ defined on [0,00)*, with some axioms, we define two generalized contractions
called F¥, -contractions and ¢H,-contractions. We investigate their mutual relation and establish an existence theorem addressing

F?.-contractions with some applications.

1. Introduction

Frechet gave an abstraction to the notion of distance in
Euclidean spaces by introducing metric spaces. Partial met-
rics (denoted by &) were introduced in [1] as a generaliza-
tion of the notion of metric to allow nonzero self-distance
for the purpose of modeling partial objects in reasoning
about data flow networks. The self-distance P(a, «) is to be
understood as a quantification of the extent to which « is
unknown. Matthews [1] proved an analogue of Banach’s
fixed point theorem in partial metric spaces. This remarkable
fixed point theorem led many researchers to investigate fixed
points of self-mappings in partial metric spaces (see [2-7]).

The investigation of fixed points of multivalued or set-
valued mappings was started by Nadler [8]. For this purpose,
Nadler introduced a metric function H to measure distance
between two nonempty closed and bounded sets. This metric
function is also known as the Hausdorff metric in literature.
Aydi et al. [5] generalized the Hausdorff metric to the partial
Hausdorft metric and hence generalized the Nadler fixed
point theorem. Nazam et al. [7] established various fixed
point results using the partial Hausdorff metric. Recently,
Pathak et al. [9] introduced another metric function H* to
measure the distance between two nonempty closed and
bounded sets and hence proved some fixed point results.
Nashine et al. [10] also proved some fixed points theorems
on H*'-multivalued contractions and their application to

homotopy theory. For recent research in this direction, see
[11-13].

In 1922, Banach introduced the Banach Contraction
Principle in his PhD thesis. Since then, there has been a trend
to generalize and apply it to show the existence of the solu-
tions to various mathematical models (both linear and non-
linear). A large number of research articles contain many
useful generalizations of Banach Contraction Principle. In
one such attempt, Wardowski [14] introduced F-contrac-
tions, where F represents the class of nonlinear real-valued
functions satistying three axioms (F,, F,, F;). The concept
of F-contractions proved to be a useful addition in fixed
point theory (see for instant [15-18] and references therein).
The advancement in the study of F-contraction is in prog-
ress, and in this direction recently, Abbas et al. [19] intro-
duced the Presic-type F-contraction and established a fixed
point theorem for such kind of mappings. Tomar et al. [20]
provided an existence theorem for six self-mappings under
the notion of F-contraction. Durmaz et al. [17] studied
F-contraction under the effect of a partial order. Sgroi et al.
[21] extended the notion of F-contraction to multivalued
F-contraction by combining the ideas of Wardowski and
Nadler. Durmaz et al. [22] generalized the results given
in [16, 17, 21] by introducing («, F)-contraction. Similarly,
Piri et al. [23] proved some theorems on the F-Suzuki type
inequalities under some weaker conditions, and Shukla
et al. [24] established a common fixed point theorem for
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weak F-contraction under 0-complete partial metric spaces.
Recently, Karapinar et al. [25] presented a survey paper
which encompasses almost all the results addressing F
-contractions.

The motivation to write this article is the contents of the
article [26]. In [26], authors introduced a function (called
auxiliary function) defined on [0,00)* satisfying some axioms
and used it to establish a fixed point theorem. It was then
shown that the Banach fixed point theorem, Kannan fixed
point theorem, Chatterjea fixed point theorem, Reich fixed
point theorem, Hardy and Rogers fixed point theorem, and
Ciric type fixed point theorems are particular cases of this
fixed point theorem. Since all the above mentioned fixed
point theorems have been generalized using the notion of F
-contraction both in metric spaces and partial metric spaces
(see [25]), we develop a general fixed point theorem, repre-
senting them all, in the Hausdorff partial metric spaces.

This article is organized as follows. In Section 2, some
basic notions are given. In Section 3, we give highlights of
Hausdorff p-ms. In Section 4, we introduce the FY,,-con-
tractions and ¢H,-contractions and investigate the relations
between them. We also study the existence theorem and its
consequences. And in Section 5, we derive two results regard-
ing applications by applying the existence theorem given in
Section 4. The presented existence theorem generalizes,
improves, and extends the results established by Pathak
et al. [9].

2. Basic Notions

Let partial metric spaces be denoted by p-m-s.

Matthews [1], while working on networking topologies,
noticed the nonzero self-distance (loop is the best example
to understand his point). The self-distance played a key role
in introduction of p-m-s. Matthews [1] defined the p-m-s
as follows: let J be a nonempty set, and the function 9’ )
x J — [0,00) is said to be a partial metric (p-m) on  if
for all a, B,y € S, the axioms (p,)-(p,) are satisfied.

(py) =B & P(aa) = P(a, B) = P(B, )
(p,) P(a, @) < P(a, B)

(p;) P(a, B) = P(B, @)

(py) P(a,y) < P(a, B) + P(B,y) = L(B. B)-

Some examples of (S, P) are as follows. The function
P : 3% — [0,00) defined by

(1) P(a,B)=la-pl+C;C=0foral a,feT is a (S,
%)

(2) P(a, f) =max {a, f},is a (T, P)

(3) P(a, B) =Pl + max {a, B}, is a (T, P).

It is noted that Z(a, ) =0 implies a«=p. The p-m
function P is continuous. If & is a p-m then the function
dyp : I xF — [0,00) defined by

dg(a, B) =2P(a, B) — [P(a, a) + P(B, B)] foralla, € T

(1)
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defines a metric on J. A T, topology can be defined on
(3, P) with P-open balls being its elements. The FP-open
ball centered at o, having radius ¢ is defined by Oy(0, €)
={0eS: P(0y,0) <P(0,,0,) +€}. A set G is said to be
bounded in (ST, P) if there exist 0, € § and A > 0 such that
P(oy, 1) < P(n,n) + A for all 4 € G. Also it is easy to write
1 € G (closure of G) ©%P(n, G) = P(n, 1) and G is closed in
(3, 2) if and only if G=G. If P(0,0) =lim,_ ., P(0,0,);
then we say that {o,} converges to o and conversely. If
lim, , _,%(0,,0,) is finite, then the sequence {0, } is said
to be Cauchy, and in particular, if this Cauchy sequence
converges in (J, %), then we say that the p-m-s (I, P)
is complete. Lemma 1 provides fundamental rules to work
in the p-m-s.

Lemma 1 [1].

(1) If the sequence o, is Cauchy sequence in (3, P), then
it is Cauchy sequence in the metric space (3, d ) and
conversely

(2) The completeness of (3, P) implies the completeness
of (S, dy) and conversely
0 e lim

(3) limnaoodg’(o—’ Gn) = naoog)(o-’ an) = ‘@(0" 0)
=lim P(0,,0,,), provided (J, P) is complete.

1,M—00

Remark 1. There are sequences which converge in p-m-s but
not in metric spaces. Indeed, for the sequence {1/n : n € N}
in $=10,1] and p-m & defined by P(p,¢)=|p-¢c|+C
(C=0)Vp, g€, it is easy to check that the sequence {1/n}
converges to 0 with respect to & but does not converge to 0
with respect to metric d defined by d(p,¢) = P(p,¢) if p#¢
and 0 otherwise.

3. Hausdorff Partial Metric

Let the set of nonempty closed and bounded subsets of
(S, P) be denoted by CB4(ST). Let (0, A) =inf {P(o,
a):acA}, AcCB,(S). Let Ay : CB,(S) x CB,(S) —
[0,00) be defined by A,(X,Y)=sup {P(a,Y): aeX}. Let
Hg : CB4(S) x CBy() — [0,00) be defined by

Hy(X, Y) =max {Ax(X, V), Ag(Y, X)}. (2)

Let HY, : CB»(J) X CB4 () — [0,00) be defined by

1
HL(X,Y) = 2 {Ap(6 1) + A5 X)) (3)
Since max {0, ¢} > 1/2(0 +¢), Hp(X, Y) = HL(X, Y) for
all X,Y € CB4(S). A comprehensive study of the distance

H*(X, Y) with reference to metric d was presented by Pathak
et al. in [9]. We claim that

(a) H(X,Y) and Hy, (X, Y) are topological equivalent

(b) the mapping HY, : CB4(ST) x CB4(S) —
defines a p-m on CBL@( )

[0,00)
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(c) if the p-m-s (T, P) is complete then (CB,(S), HY,)
is also complete and vice versa

(d) the mapping H}, : CB» () x CB4(J) —
continuous.

[0,00) is

Proposition 1 [7]. Let (J, P) be p-m-s. For any J,K,L€C
B(S3), we have the following:

(1) Ag(J,]) =sup {P(u,v): u,ve]}

(2) 8,1, K) = A (K. )

(3) Ax(],K)=0=] <K

(4) Ap(J,L) < Ag(J,K) + Agy(K, L) — inf,  P(k, k).

Proposition 2. Let (S, %) be p-m-s. For any J,K,LeC
B (), we have the following:

(1) H,(J, K) = 0 implies ] =K

(2) Hy,(1.7) < H5 (1K)

(3) Hy(1.K) = Hy (K. ])

(4) HY,(J, L) < H (], K) + H (K, L) — inf,  P(k k).

Proof. Following the arguments given in ([5], Proposition 2.2
and Proposition 2.3), we get the result. We omit its details.

H g-contraction: Let (J, %) be a p-m-s, the mapping
T : S — CB4(S) is called an H g-contraction, if there exists
k<1 suchthat Hy(T (o) \ {0}, T(c) \ {¢}) <kP(o,¢) forall
0,6 €S (see [7]).

H,-contraction: Let (T, %) be a p-m-s; the mapping
T : S — CBx(S) is called an H,-contraction, if (1) there
exists k < 1 such that H,(T (o) \ {0}, T(¢) \ {¢}) <kP(0,¢)
forallo,¢eS; (2) forall o € G, {¢} € T(0), € > 0 there exists
{&} € T(c) such that (¢, &) < HL(T(0), T(s)) + € (see [27]).

Since Hy,(X,Y)>HE(X,Y) for all X,Y e CB,(S),
H 5-contraction implies H,-contraction but not conversely
(see Example 1).

Example 1. Let § = {0, 1/7, 1} . Define the function P : J x
— [0,00) by

P(0,6) =max {o,¢} forallo,c €. (4)
Then (F, P) isap-m-s. Let T : F — CB,(S) be defined
by
{0} ifo=0
1 1
T(o)= {0, ;} ifo= > (5)
(0,1} ifo=1.

We have three cases (Case 1: 0 =0,¢=1/7, Case 2: 0 =0
,¢=1,and Case 3: 0 =1/7,¢=1).

Case 1. If 0=0,¢=1/7, then P(0,¢)=1/7, Hu(T(0), R(1/
7)) =1/7, and H},(T(0), R(1/7)) = 1/14. This clearly shows
that

1 1 1
HY, (T(O), R(;)) <LP (0, ;) holds forall L > 3 (6)

whereas

b (0. (2) ) 12 (0 Jaami 1. )

1, then 2(0,¢) = 1, H,,(T(0), R(1)) = 1,

Case 2. If 0=0,¢6=
R(1)) = 1/2. This clearly shows that

and H%,(T(0),
H3,(T(0), R(1)) < LP(0, 1) holds forall L > % (8)
whereas
Ho(T(0), R(1)) > LP(0, 1) forany L < 1. (9)

Case 3. If 0 =1/7,6=1, then P(0,6) =1, Hx(R(1/7), R(1))
=1, and HY,(R(1/7), R(1)) = 4/7. This clearly shows that

HY, (R(;),R(l)) sL@(;, 1) holds forall L > %, (10)

whereas

b ((2) 00 5151 Yooy Lcr.

Note: the inequality 2(s,&) <HS(T(0), T(c)) +¢ also
holds for each case, and for all 0 € §, ¢ € T(0), & € T(g).

4, Fixed Points of F? ,-Contraction

Let T : § — S be a self-mapping defined on nonempty set 3.
The problem “to find 0 € S such that o* = T(c*)  is called
fixed point problem. If T : § — CB(S), then the fixed point
problem turns into the form “to find 0* € § such that 0™ €
T(0*).” For the solution of fixed point problem, generally, a
Picard iterative sequence ({o,}suchthato,,,=T(c,)) is
proved to be a Cauchy sequence subject to contractive condi-
tion and completeness of the underlying abstract metric
space leads to such ¢*. In this section, at first, we introduce
and compare F%-contraction and @H,-contraction, and
secondly, we obtain a theorem assuring unique fixed point
of FY,.-contraction. We proceed with definitions of functions
F and ¢ associated with some axioms.

Wardowski [14] considered a nonlinear function F : (0,
00) — R with the following axioms: (F,): F is strictly increas-
ing. (F,): For each sequence {o,} of positive numbers,
lim, .0, =0 if and only if lim,_,  F(o,) =—00. (F,): For
each sequence {0, } of positive numbers lim,_, o, =0, there

n—-oo-n

exists 6 € (0, 1) such that limoﬁm(an)eF( ) =0.Let F={
F : (0,00) — R| Fsatisfies(F;) — (F;)}.



The collection & is nonempty: f(o)=In (o), g(o)=0
+1In (0), h(0) =In (6? + 0), and k(o) = —1/y/0 are members
of this collection.

Let us consider the function ¢ : [0,00)* —
ing the following axioms:

(C;) ¢ is continuous and non-decreasing in each
coordinate

(C,) if there exist o,¢€[0,00) such that o <¢ then
¢(6,6,0,6) <¢

(C,) if there exists o €[0,00) such that o <¢(0,0,0,
(0/2)) then ¢(0,0,0,(0/2))=0

Let €,={¢: [0,00)* — [0,00) |, satisfies (C;) — (C5)}-
The following examples show that the set €, is nonempty:

[0,00) satisfy-

=max {0,¢, w,0}

(5) ¢,(0,6,w,0)=0

(6) ¢s(0,6,w,0) =1/2(¢ + w)

(7) 0,(0,6,0,6) = max {0, (¢ + w/2), 6}

(8) ¢,(0,6,w,0)=a0+b(c+w) +2c6,a+2b+2c=1

9) ¢,(0,6,w,0)=ao +bs+cw,a+b+c=1.

Definition 1. Let T : § — P(S) and a: I x F — [0,00) be
two functions. A mapping T is said to be strictly o -admissi-
ble if for each 0 € S and ¢ € T (o) with a(0, ¢) > 1, there exists
w € T(g) such that a(¢, w) > 1.

Definition 2. Let (3, P) be a p-m-s and let a : FxJ — [0,
00) be a function. The space (S, &) is said to be strictly «
-regular if for any sequence {o,} ¢ S such that a(0,,0,,;)
> 1 for all n € N and 0, — 0 as n — oo, we have a(c,, o) >
1 for all n e IN.

Definition 3. Let (S, &) be a p-m-s. A mapping T : § — C
B,(S) is said to be a ¢HY, -contraction if there exist k
€[0,1) and ¢ € €, such that

(0, §)H(T(0) \ {0}, T(¢) \ {¢})

P(0,6), (0, T(0)\ {o}), P(6, T(6)\ {6},

< kg )

P(6 T(o) \ {o}) + F(0, T(s) \ {<})
2

(12)
for all 0,¢c€S.

Let " ={(0,6)¢€
(©)\{c}) >0}

$? | a(0,6) = 1landH*(T(0) \ {0}, T
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Definition 4. Let (J, P) be a p-m-s. A mapping T : - C
B () is said to be an F¥.-contraction if

(a) there exist ¢ € ‘5 7> 0 and F € & such that
T+ F(a(0,6)H5(T(0) \ {0}, T(c) \ {s}))
P(0,0), P(0, T(0) \{0}), (6, T() | {c})»

P26 T(0) \{o}) + P(0, T(s) \ {s})
2

(13)
for all o,¢c e ™.

(b) For every >0, 0 ¢
T(g) such that

S, and ¢ € T(0), there exists & €

P(6§) <HL(T(0), T(c)) +¢. (14)

Remark 2. In particular if (0, 0) = 0, then for ¢, € €, the
inequality (13) turns into H* -contraction [9] for F(¢) =1n

(0).

Proposition 3. Every ¢H,-contraction is an Fﬁwcontmc-
tion, but the converse may not be true.

Proof Let T : § — CB, () be a pH},-contraction defined
n (3, 2); then for all 0, ¢ € 3 there exist k€ [0,1) and ¢ €
‘gq, such that

H3(T(0)\ {0}, T(6) \ {5})
skp(2(0.6) 20, T\ D, 26 TOVED: (15
PleT)\ (o) (e T\ eD)

2

a(0,¢)

This can be written as
in (1) +1n (0. OH(T(0) 03, 706)\ ()

sm(%m¢@@T@\w»@@n0w¢x
@wn@\wn+@@T@\&»>

2

' ((P(g’(m ¢)#(0:T(0) \{o}), 2(¢: T(c) \ {<}),
P(6 T(o)\ {o}) + (0. T(5) \ {s}) )) _

2
(16)

Let F € # be defined by F(o) =1n (o) for all 0 >0 and
put 7 =In (1/k). The inequality (16) leads to
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7+ F(a(o,6)Hz(T(0) \ {0}, T(s) \ {c}))
P(0,6), P(0, T(0) \{}), 2(c. T(¢) \ {c}),

P(6. T(o) \{o}) + P(0. T(5) \ {s})
2

(17)

The following example (Example 2) shows that an FY,,
-contraction needs not to be a ¢ H/,-contraction.

Example 2. Let ¢, € €,7=1 and F € F defined by F(0) =
In (o) + 0 where ¢, =¢,(u,1,5,t): (u=P(0,6), r=2(o,
T(o)\{o}),s=2(c, T(c)\ {¢}), t = P(c, T(0) \ {0}) + P(
0, T(¢)\{c})/4). Let I={0,1,2,--} equipped with p-m
P xF — [0,00) defined by

P(0,6) =0 +¢forallo <g. (18)

Then, (3, ) is a p-m-s. Define the mapping T : 3
— 23 by

0 ifo € {0,1};
AT (0.1
{0,0-1} ifo>2,
(19)
ifo, g€(~00,0) ;

0
a(0,¢) = P(08)

ifo, ¢ € {0,1,2,---}.

The mapping T is a-admissible, closed, and bounded.
We show that this mapping satisfies inequality (13) for
all 0,6€J. We observe that Hf,(T (o), T(¢)) >0 if and
only if 0>2 and ¢>0. Also for all 0,¢€ S with ¢e T(0)
and taking { =0 € T(g), we have

a(0,6)H(T(0), T(s)) = a(0,6)P(c. ()

(20)
=a(0,6)s < a(0,6)(0 +¢) = a(0,6)P(0,5),

and thus

a(0, ) HY(T(0), T(c)) ~ ¢, (11,5, 1) o
<a(0,6)H(T(0), T(5)) — P(0,6) < 2.

Consequently,

a(0,¢)H5 (T (0), T(c)) Q) H (T(0).T(6)) =, (wrst) < =1
@, (u,1,5,1) T

(22)

5

Hence,

1+ F(a(s, w)Hg(T(0) \ {o}, T(c) \ {c}))
P(0,6), P(0, T(0)\ {0}), P(6, () \ {&}),
<Flo
P(6, T(0)\{a}) + P(0,T(5) \ {s})
2

(23)

Similarly, for every member of &, the mapping T is

F¥.-contraction. However, the mapping T is not ¢HY,
-contraction: for ¢, € ¢, and o #¢=0, we have

«(0,0)Hy,(T(0), T(0)) <kg,(u,1,s,t) = €’ (0 — 1) < ko,
(24)

which then gives ¢’(0 —1)/o <k, and lim,_, e’ (0 —1)/o
<k implies k>o00, a contradiction. Hence, T is not ¢
HZ,-contraction for this particular member of &,,. Simi-

larly, for ¢, (u,r,s,t)=t¢ ‘gq, and o #¢=1, we have
a(o, 1)H(T(0), T(1)) < kg, (u, 1, s, t) does not exist. (25)

Hence, T is not pH},-contraction for this member of
€, The mapping T has similar nature for other members
of €,

The following theorem (Theorem 1) gives the proof of all
particular problems corresponding to members of €, in one
attempt.

Theorem 1. Let (T, P) be a complete p-m-s and T : § — B
C() be an FY,,-contraction such that

(1) T is a strictly a-admissible mapping

(2) 3o, and o, € T(0,) in S such that a(cy,0;) > 1

(3) S is a strictly a-regular space

(4) F is continuous.

Then, there exists x* € § such that x* € T(x*).

Proof. By assumption (2), there exist 0, and o, € T(0,) in &
such that a(o,,0,) > 1. Note that if 6, € T(0,), then o, is a
fixed point of T, and if o, € T(0,), then o, is a fixed point
of T as required. We proceed by assuming o, ¢ T(o,)
and o, ¢ T(0,); thus, 0y, 0, € Z*. Given a(g,,0,)>1 and
T(0,), T(0,) are nonempty, closed, and bounded sets, so,
by Definition 4(b), there exists o, € T(0,) such that

P(01,0,) SHg(T(0g), T(0y)) + . (26)



Letting & = (a(0, 01) — 1)HE,(T(

P(01,0,) SHG(T(0), T(0,))
+ (a(og,0,) = 1)H,(T(0y), T(07)) (27)
=a(0g,01)H(T(0), T(0y)).

By (F;), (13) and (C,), we have

0,), T(0,)), we have

F(P(0y,0,)) < F(a(og, 01)H" (T (), T(04)))
P(04,01), P00, T(0y)), P(01, T(01))s

P(oy, T(ay)) + P(00: T(01))

2
~02 (o Powa). Pona,). 20,0,

w»q.

(28)
By the triangular inequality, we have
P(09,0,) + P(0,,0,) < P(0y,0,) + P(01,0,).  (29)

We claim that (0, 0,) < P(0,, 0,). On the contrary,
if P(0y,0,)=P(0y,0,), then due to (29), we get P(0,,
0,) <2%(0,,0,). The inequality (28) implies

F(P(01,0,)) <F(9(P(01,0,), P(0y,01), P(01,0,), P(01,0,))).
(30)
By (C,), we have ¢(P(0},0,), P(0y,0,), P(0,0,),

P(0y,0,)) <P(0,,0,), and by axiom (F;), the inequality
(30) reduces to

F(P(01,03)) < E(P(01,0,))- (31)

This is an absurdity. This indicates that our claim is
valid. Thus, P(0,,0,) < P(0y,0,). Let P, =P(0,,0,,,)
for all positive integers n, and by inequality (28) we obtain

F(P) S F(9(Py, Py P1s Py)) — T (32)

Applying (C,) and (F,) consecutively, we have

F(P,) < F(Py) 1. (33)

Since T is a strictly a-admissible mapping, «(o,,0,)
>1 implies a(oy,0,) > 1; thus, 0,0, € & (assume o, ¢
T(o,)). Since, T(o,),T(o,) are nonempty, closed, and
bounded sets. By Definition 4(b), there exists o5 € T(0,)
such that

P03, 03) <Hgz(T(0), T(03)) +e. (34)
Letting ¢ = (a(0,, 0,) — 1)H,(T(0,), T(0,)), we have

P(03,03) <Hy(T(0,), T(0,))
+(a(oy,0,) = 1)H(T(0,), T(0,)) (35)
=a(01,0,)H5(T(0,), T(0y)).
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By (F;), (13) and (C,), we have

F(P(0y,03)) < F(a(oy, Uz)H (T(01), T(03)))
P(0,03), P(01, T(01)), P(03, T(03))s

<Flo¢
P02 T(0)) + P(01, T(0,))
2
-r2 P 20000, 201.02) 210y o), T TOR)) )

(36)
By the triangular inequality, we have
P(01,03) + P(05,0,) < P(0,,0,) + P(0,05).  (37)
We claim that %(0,,05) < P(0,,0,). On the contrary,
if P(0,,05)=P(0,,0,), then by (37), we get P(0,,05)
<2%(0,,0,). The inequality (36) implies

F(P(0,,03)) <F(p(P(0,,03), P(01,0,), (04, 03), P(0,,03))) — T.
(38)

By (C,), 9(£(0,,03), P(01,0,), P(0,,03), P(0,,03))
<P(0,,0,). By (F;) and (38), we have

F(P(0,,03)) < F(P(0,,03)). (39)

This is an absurdity. Thus,
(36), we obtain

P(0y,04) < P(0,,0,). By

F(P,) < F(9(Py, Py Py, Py)) — T (40)

Again applying the condition (C,) followed by (F;),

we have
F(P,) < F(P,) -t < F(P,) - 2. (41)
Similarly, there exists o, € T(03)(05 ¢ T(05)), such that
F(P;) < F(P,)) -1 < F(P,) - 3. (42)

Thus, we are able to construct an iterative sequence
{0,} ¢ X such that

0,€T(0,),0
P <P,

n— 1¢T( )
, foralln € Nand

(Gn 1’0 )>1’

F(2,)) < F(%,)) —nr. (44)

n—»ooF(‘@n) = —00, bY (FZ) we
P, =0, and by (F;), there exists k€ (0,1)

By (44), we obtain lim
have lim,_,

such that

lim ((2,)"F(,)) =0. (45)

Following (44), for all n € N, we obtain

(P (E(P,) - F(Py) <~(P,)nr <0, (46)
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Letting n — 0o, in (46), we have lim,_ (n(2,)") =
thus, there exists n; € N, such that n(2,)" <1 for all n
>n,, that is P, < (1/n'/*)foralln > n,.

Form>n>n,,

‘@( ) < ‘@( n+1) + g(anﬂ’ an+2) + ‘@(UnJrZ’ 0n+3)
+-- +9’( me1>Opm)
m—1 00 1
< ‘@ z+1 Z ‘@ z+1) < Z 11? .
i=n i=n
(47)

Since the series Y>> (1/i'/*) on the right hand side is con-
vergent and by definition of metric dg, defined on G, we
know that d(0,,0,) <2%(0,,0,,); thus, lim,, , ,  d%(0,,
0,,) =0. This implies {o, } is a Cauchy sequence in (S, d)
. Since (S, P) is complete, so by Lemma 1(2), the metric
space (3, d) is complete. Thus, there exists x* € § such that
0, — x* as n — oo with respect to metric d.. Then Lemma
1(3) implies

lim P(x*,0,)=P(x",x")= lim P(0,,0,). (48)

n—00 n,m—-0o0

This shows that {o,} is a Cauchy sequence in (I, P).
Now, we show that x* € T(x*), and to do so, we claim that
P(x*, T(x*)) =0. If on the other hand P(x*, T(x*)) >0,
then there exists n, € N such that (o, T(x*)) > 0 for each
n = n,. By assumption (3), a(o,, x*) > 1. By (13),

x)H'(T(0,), T(x")))

(o
(‘P <9“(0w x'), P (0, T(0,)), P T(xY)),
P T(0,)) + P(0,, T(x")) ))

F(P(0,41, T(x"))) < F
<F

Thus,

F((G 0, T( (v)(g’ o P00 P T()),

P 0n+1)+29’(0 »T(x )))).

(50)

Since ¢ is a coordinate-wise continuous function, letting
n — 00 in the above inequality, we obtain

F(P(x, T(x))) < F(<P (0’ 0,9, 1)), LD

By (C;), we have

F(P(x", T(x*))) < F(P(x", T(x"))). (52)

This is an absurdity and consequently &(x*, T(x*)) = 0;
thus, we have P(x*, T(x*)) = P(x*, x*) which implies that
x* € T(x")=T(x*). Hence, x* is a fixed point of T.

The following example explains Theorem 1.

Example 3. Consistent with ([28], Example 3.3), let ¢, € (g(’,
where

0, =, (u, 1,5 1t): (u =P(0,6),r=P(0,T(0)),s=2L(s, T(c)),
;- 26 T(0)) + P(o, T(<))>
2 ,

(53)

7=1 and F € F defined by F(G):ln( )+o0. Let =

{0,1,2,--} equipped with p-m & : F x F — [0,00) defined
by
P(0,6) =0 +¢forallo #¢. (54)

Then, (F, %) is a complete p-m-s. Define the mapping
T:3—-2% by
0 ifoe{0,1};
xor [ © fo.1)
{0,0-1} ifo=2,
(55)
if 0, 6€(~00,0) ;

0
a(0,¢) = P(05)

if 7,6 €{0,1,2,}.

The mapping T is strict a-admissible, closed, and
bounded. We show that T is FY-contraction. We observe
that H*(T(o), T(c)) > 0 if and only if 0 >2 and ¢ > 0. Also
for all 0,¢€ S with ¢€T(0) and taking {=0€ T(c), we
have

a(0,¢)H (T(0), T(5)) = ¢”) (s, )
=70 < ¢7(7%) (0+5)
= e9<“">9(0, ¢),and thus,

ﬂ“”H%T(»T@» Paltt7,5.1)

(56)
e”IH (T(0), T(5)) — P(0,6) < 2.
Consequently,
eQ(U)C)H+(T(G)’ T(C)) eew”")H*(T(a),T(c))—(pa(u,r,s,t) < el (57)

Pu 7,5, 1)
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Hence,
1+ F(a(o,6)H(T(0), T(c)))
P(0,6), P(0,T(0)), P(6: T(<)),
<F|lo

(58)

Similarly, for every member of €, the mapping T sat-
isfies all assumptions in Theorem 1. As it is clear from
Proposition 3 that F?.-contraction needs not to be pH?,
-contraction, and hence, it is not H{,-contraction. Conse-
quently, F¥.-contraction needs not to be H*-contraction.
Thus, the results in [9, 10, 27] are not applicable in this
case.

Remark 3. In the following section, we obtain the corollaries
of Theorem 1. To simplify the expression of the corollaries,
we consider the three conditions below.

Let

(A1) there exist o, in § such that a(oy, T(0)) > 1

(A2) F be a strictly a-regular space

(A3) F be continuous.

Corollary 1. Let (3, &) be a complete p-m-s and T :  — B
C4(S3) be a strictly a-admisible mapping. Assume that

T+ E(a(0, ) (T(0) \ {0}, T(6) \ {6})) < F(P(0,)),

forallo,¢ € d*, and for everye>0,0 €S, and ¢ € T(0),
there exists & € T(¢) such that

P(68) <H(T(0), T(<)) +&. (60)

Then, the mapping T has a fixed point provided (A1)-
(A3) hold.

Proof. Defining ¢ : [0,00)* — [0,00) by

¢Gﬂm%9@T@\wH@@NQHG%

26T0)\ (o)) + (o U\“”) P(0,¢)

(61)

and following the proof of Theorem 1, we obtain the result.

Corollary 2. Let (3, P) be a complete p-m-s and T : § — B
C»(S3) be a strictly a-admisible mapping. Assume that

7+ F(a(0,¢)H"(T(0) \ {0}, T() \ {c}))
< F(max {#(0,¢), #(0, T(0) \ {0}), Z(s,
(62)

T(©)\{sh})
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forallo,¢ce d”, and for everye >0, 0 €S, and ¢ € T(0),
3 € T(g) such that

P(6,&) <HL(T(0), T(s)) +e. (63)
Then, T admits a fixed point provided (A1)-(A3) hold.

Proof. Defining ¢ : [0,00)* — [0,00) by

¢Gmm¢@mT@\w»@@T@\&»
(6 T(0) \ fo}) + 2(0:T(0) V(s

2
=max {#(0,¢), P(0, T(0) \ {0}), P(

T()\{s})}
(64)

and following the proof of Theorem 1, we obtain the
result.

Corollary 3. Let (3, %) be a complete p-m-s and T : S — B
C»(Q) be a strictly a-admissible mapping. Assume that

T+ F(a(o,¢)H" (T(0) \ {0}, T(c) \ {s})) (65)
< F(max {P(0, T(0) \ {0}), 2(¢, T(¢) \ {¢})})s

forallo,¢ed”, and for every e>0,0 €S, and ¢ € T(0),
there exists & € T(g) such that

P(c,£) < Hy(T(0), T(c) + (66)
Then, T admits a fixed point provided (A1)-(A3) hold.

Proof. Defining ¢ : [0,00)* — [0,00) by

<P<9’(0) 6),#(0: T(0) \{0}), Z(¢: T(c) \ {s});

P(6 T(o) \{o}) + F(0. T(5) \ {C})) (67)
2
=max {Z(0, T(0) \ {0}), P(c, T() \ {s})}

and following the steps given in the proof of Theorem 1,
we obtain the result.

Corollary 4. Let (3, P) be a complete p-m-s and T : § — B
C4(S3) be a strictly a-admissible mapping. Assume that

7+ F(a(o,¢)H' (T(0) \ {0}, T(<) \ {s}))

P(0,6), P(0, T(0) \ {0}), P(6: T(5) \ {}):

< F| max

Z(6 T(0) \{o}) + P(0, T(5) \ {s})
2

(68)

forall o, e d”, and for every e>0,0 €S, and ¢ € T(0),
there exists & € T(g) such that
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P(c,£) < Hy(T(0), T(c) + . (69)
Then, T admits a fixed point provided (A1)-(A3) hold.

Proof. Defining ¢ : [0,00)* — [0,00) by

‘P(@(G’ 6) (0, T(0) \{o}), (¢ T(c) \ {s}),
Z(6 T(o) \{o}) + P(0. T(5) \ {C})>

2

= max {9’(0, o), P(0,T(0) \ {0}), (6, T() \ {&})»

Z(6 T(o)\ {o}) + (0. T(5) \ {s}) }
5 ,

(70)

and following the proof of Theorem 1, we obtain the
result.

Corollary 5. Let (3, P) be a complete p-m-s and T :  — B
C4(S3) be a strictly a-admissible mapping. Assume that

7+ F(a(o, ¢)H' (T (o) \ {0}, T(5)\ {5}))
B F<9’(<) T(o)\{o}) +P(a,T(s)\ {c}>>, (71)

2

forallo,¢ e d*, and for every e>0,0 €S, and ¢ € T(0),
there exists & € T(g) such that

P(6,§) <H(T(0), T(©)) +e. (72
Then, T admits a fixed point provided (A1)-(A3) hold.

Proof. Defining ¢ : [0,00)* — [0,00) by

so(@(a, o), P(0, T(0) \ {0}), (6, T() \ {&}),
P(5 T(0) \ {o}) + P(0, T() \ {5}) ) 73)

2

_ P T(0)\{o}) + P(0: T(c) \ {s})
2

in the proof of Theorem 1, we get the result.

Corollary 6. Let (3, P) be a complete p-m-s and T : § — B
C»(Q) be a strictly a-admissible mapping. Assume that

7+ F(a(o,¢)H" (T(0) \ {0}, T(c) \ {¢}))

. (@(o, T(0)\ {o}) + P(6, T(c) \ {c})), (74)
2

forallo,¢ed*, and for every e>0,0 €S, and ¢ e T(o),
there exists & € T(g) such that

P(6, &) <HL(T(0), T(g)) +e. (75)
Then, T admits a fixed point provided (A1)-(A3) hold.

Proof. Defining ¢ : [0,00)* — [0,00) by

go(g)(o, o), P(0, T(0) \ {0}), (6, () \ {&}),
P T(0) \ {o}) + P(0, T(5) \ {<}) ) 76)

2

_ P, T(0) \{o}) + Z(6. T(¢) \ {s})
2

in the proof of Theorem 1, we get the result.

Corollary 7. Let (3, %) be a complete p-m-s and T : § — B
C4(S3) be strictly a-admissible mapping. Assume that

T+ F(a(0,)H" (T(0)\ {6}, T(c) \ {c}))
P(0,9), P(a,T(0)\ {U})2+ P T(6)\ {¢}) ’

< F| max

Z(6:T(0) \{o}) + P(0. T(5) \ {s})
2

(77)

forallo,¢ € d*, and for every e>0,0 €S, and ¢ € T(0),
there exists & € T(¢) such that

P(¢, &) <H,(T(0), T(q)) +e. (78)
Then, T admits a fixed point provided (A1)-(A3) hold.

Proof. Defining ¢ : [0,00)* — [0,00) by

<P<9‘”((” 6), P(0,T(0)), P(6: T(5))s Ze 1oy ; A Tw))

P(0,T(0)) +P(s T(5)) P(sT(0)) +P(0, T(C))}
2 ’ 2

= max {9‘5(0, %)
(79)

and following the proof of Theorem 1, we obtain the
result.

Corollary 8. Let (3, P) be a complete p-m-s and T : § — B
C4(S3) be strictly a-admisible mapping. Assume that there
exist a>0,b >0, c >0 satisfying a + 2b + 2c = 1, such that

7+ F(a(o, ) H'(T(0) \ {0}, T(5) \ {6}))
aP(0,6) +b(P(0, T(0) \ {0}) + P(6, T() \ {6}))

+e(#(6: T(0) \ {o}) + P(0. T(¢) \ {s}))
(80)

forallo,¢e d”, and for everye >0, 0 €S, and ¢ € T(0),
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there exists & € T(g) such that
P(6.8) <H(T(0), T(s)) +=. (81)
Then, T admits a fixed point provided (A1)-(A3) hold.

Proof. Defining ¢ : [0,00)* — [0,00) by

s0<9’(0, ¢ #(0:T(0) \{o}), 2(¢: T(c) \ {<}),
P(6: T(o)\ {o}) + (0, T(5) \ {s}) )

2
= a(0,¢) + (P(0, T(0) \ {o}) + (5 T(5) \ {6})

Z(6 T(o){o}) + P(0, T(5){s})
2

(82)

+2c

>

in the proof of Theorem 1, we obtain the result.
Corollary 9. Let (3, &) be a complete p-m-s and T :  — B

C» () be a strictly a-admissible mapping. Assume that there
exist a>0,b> 0, c >0 satisfying a+ b + ¢ = 1, such that

7+ F(a(o, ) H'(T(0) \ {0}, T(6) \ {6}))
< F(a(0,¢) +bP(0, T(0) \ {0}) + (5 T(5) \ {6})
(83)

forallo,¢ed*, and for everye>0,0 €S, and ¢ € T(o),
there exists & € T() such that

Pl 8) < H(T(0), T(c)) +e. (84)
Then, T admits a fixed point provided (A1)-(A3) hold.

Proof. If we define ¢ : [0,00)* — [0,00) by

so(@(a, Q) 2(0, T(0)\ {0}), (6, T() \ {6}),
P(5T(0)\ {o}) + P(0,T(9) \ {c}) )
2
= a(0,6) + bP(0, T(0) \ {0}) + ¢P(6 T(5) \ {6}),
(85)

in the proof of Theorem 1, then the result follows.
Let

J* = {(o, )€ S| a(0,6) > 1landP(T(0), T(g)) > 0}.
(86)

For a single-valued self-mapping, Theorem 1 can be
stated as follows:

Theorem 2. Let (T, P) be a complete p-m-s and T : > F
be a 9 F-contraction, that is, there exist ¢ € €, and F € F such
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that
r+ F(o(0, ) 2(T(0), T(c))
P(0,6), 2(0, T(0)), P(, T(<)

Z(5 I(0)) + P(0, T(5))
2

forallo,¢ eSS and

(1) T is a strictly a-admissible mapping
(2) there exists 0, in S such that a(o,, T(0,)) > 1
(3) S is a strictly a-regular space

(4) F is continuous.

Then, T admits a fixed point.
We omit its proof as it is a mere repetition of the proof of
Theorem 1 with some minor modifications.

5. Applications of Theorem 2

5.1. Applications to Fractional Differential Equations. Lacroix
(1819) introduced and investigated several applicable prop-
erties of fractional differentials. Recently, various new models
involving Caputo-Fabrizio derivative (CFD) were discovered
and analyzed in [29-31]. We investigate one of these models
in p-m-s. We introduce some notations as follows:

Let €, ={f|f: [0, 1] = Randf is continuous}. Define
the metric function d : €, x €,, — [0,00) by

d(f.9)=1lf 9l = o [f(v) =g(v)|. forallf, g € €.
(88)

Then, the space (%, d) is a complete metric space. The
function a : €, x 6,; — (1,00) by

a(r,t) = el forallr, t € €y, . (89)

Let K; : [0,1]x R— R be a continuous function. We
shall investigate the following CFDE:

CDBf(v) = Ky (v, f(¥) (90)
with boundary conditions
0(0)=0,I0(1) =0" (0). (91)

Here, “DF denotes CFD of order 8 defined by

DKL) = g | - K ) dn (92

I'(n-p)J,
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where

n—1<p<nandn=[f]+]1, (93)

and IPK, is given by

IPK,(v) = LJ:(v—n)ﬁ_lKl(r]) dn, withf>0.  (94)

Then, the equation (90) can be modified to
£ = 1 |, v =) Ko )
r(p)Jo '

+ f(mjj"(n — )UK (s f (1))

Theorem 3. Equation (90) admits a solution in G, ; provided
(I) there exists T > 0 such that for all 0,6 € G, ;, we have

e Ir(B+1)

K o)) =K () < —5 5~ o) = ()

(96)

(II) there exists 0, € G, such that for all v €0, 1], we

have
ao<v>sif(v—n)ﬁ'IKI(n,ao(n))dn
@ ), o)
2v (1 —u)f! u u))du
+WUOM VK, (1,00 (1)) ducl.

Proof. Consistent with the notations introduced above and
defining the mapping R : €, — 6, by

1 'V
R(o(v)) = ——= | (v=n)F"K,(n,0(n))dn
3. o9

+ % JOJZM - u)'B’lK1 (u, 0(u)) dudy.

By (II), there exists 0 € €, such that o, = t"(0,)). The
continuity of function K, leads to the continuity of mapping
t on 6. It is easy to verify the assumptions (1)-(4) in The-
orem 2. In the following, we verify the contractive condition
(87) of Theorem 2.

11
ﬁﬂww)w (. 0(m))
% |< — K, () iy
[R(a(v)) = R(s(v))| = 1 ( implies

RN 'va—n)ﬁ*(am) —q(n))dn

[(B) a0

et 11

e me | =0t =)

1 e T(B+1)

I(B) 4a(o,c)
2 eT(P-Te)

I(B) 4a(a: ) (@) T(B+1)

. eI(B) - T(B+1)
o= < <4a(a, L) T(B+ 1))
)T
I

-d(o,6)+2¢"B(f+1,1) 1
o

0

vV

~d(0,6) - J (v—n)f"dn

0

-d(o,¢)

e*T —T

d(o,¢) +

-d(o,6) < 320, 9)

where B is the beta function. The last inequality can be
written by that

a(0,6)d(R(0),R(c)) < e "d(o,¢). (100)
Let us define the metric d on €, by
P(o,6)=|0—¢|, +1(120) ifo#g
d(o,¢) =
0 ifo=c.
(101)
Thus, (100) can be written as
a(0,6)P(R(0),R(s)) <e " P(0,¢). (102)

Define the functions ¢ € €, and F by
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0(210.0, P(a.1(0)), 9(c 1)), TN L)

— max {93(0, 0, (02 H0)), P(e 1(<)), 2& D) > (0 16) )},

(103)

F(o(v))=In (o(v)) forall o, ¢ € ;. Under these defini-
tions, the inequality (102) gets the form

7+ F(a(0,0) P(R(0), R()))
P(0,6), P(0,T(0)), P(6 T(s)),
(104)

P(6,T(0)) + P(0, T(c)
2

Hence, by Theorem 2, the self-mapping t admits a fixed
point, and hence, the equation (90) has a solution.

5.2. Applications to the Matrix Equations. In this section, by
Theorem 2, we shall investigate study the existence of the
solutions to

1 < * < *
X=D+ m+9<;wixw,.+ ZG,-XG,),

i=1

(105)

where 0 € (0,1), D € 2™ (set of m x m positive definite
matrices), and W;, G; are arbitrary m x m matrices for each
i and are entries of block matrices given by

(106)

Let W, e Z (m) (set of m x m Hermitian matrices) be an
arbitrary matrix; then, its eigenvalues e, e,, €5, ---e,, are real.

Moreover, if W, € Z{™), then the eigenvalues are nonnega-
tive. Let the functional ||.|,, : Z"™ — R be defined by

m
W, = D lel- (107)
i=1

Let Xe 2™ be arbitrary and define Wyl x =
|X2W, X[, . By ([32], Theorem 1X.2.2), (Z", |.||,.x)
is a Banach space (see also [33-35]). Hence, ($<m),d) isa

complete metric space. The induced metric d : Z™ x Z™
— R is defined by

d(W,, G,) = |W, - G|, (forallW,, G, € Z").  (108)

To establish the existence result we need the following
lemma.
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Lemma 2 [35]. fW,, G, € Z\"), then
0<Tr(W,Gy) < ||W, || Tr(Gy). (109)

Define the operator & : Z" — Z™ by

EU)=G+

<Z W, UW, + ) G} U@,) forallU € Z(").
i=1

i=1

m+0

(110)

Remark 4. Since E(U) - G € 2™ for all U € ™), in partic-
ular, we have &(G) — G € 2" The operator & is continuous
on ",

The solution of the matrix equation (105) is the fixed
point of the operator &.

Theorem 4. Let X and Y be two positive definite matrices such
that Y1" W;XW, < 1/2X and Y ,G;XG,; < 1/2X. Then, the
operator & has a fixed point in ™.

Proof. Let U and V be any matrices in 2", We observe that
the operator & and the space (Z,|.|, ) fulfill the

assumptions (1)-(4) in Theorem 2. To prove that & is an ¢
F-contraction, we proceed with

[E(V) = EU)ll,x = tr(X*(E(V) - 8(0))X"?)
1

i

o

3
M=

Il
=3
e
-
fes)
M=

3
+
fes)
M=

0

3
T

{X"(W} (V- U)W, + G} (V - U)G,.)X“Z}>

i

1

% 1 < *
) {X"Z (W; (V- U)W, X"} + % ;{X”ZG,. (V- U)G,.)XW}>

m
tr(X"2W; (V - U)WX"2 + X2G; (V- U)G X'2) = ! D

'\T
3
i
5

.
(W (v - D) i (X761 (V- 0)6x0) ) = S

1

12y\py* 1/2
(W (V- WX

s

tr(X'?G; (V- U)G,X"?)

i=1

1 1 ¢ 1
XGH(V - =
" L M(GXGH(V-U) D

s

tr(WXWE (V - U)) +

i i=1 i=1

1

. (wiXW;X—UZXl/Z(V_ U)XIIZX—IIZ) + o

tr

M=

—~ 3

T

. (Gixﬁ;ﬁxfllle/Z(V_ U)XI/ZX71/2) - r

m+04&

i

1
m+ 04
1

C(XTPWXW XX (V- U)X + tr

M=

. (X—I/ZGIXG;«X—IIZXI/Z(V_ U)XI/Z) — ; tr
m

m
1
. (ZX"’ZWiXWfX"’ZX"Z(V— U)X”z) 1
m+0

i=1

& 1
. X*]/ZGvXG‘*Xfl/ZXI/Z V-U Xl/2 <
(Z e ( ) m+0

i=1

m

—1/2 * y—1/2
> XTI XWX
i=1

1 < —1/2 *y—1/2
AV =Ullpx + mH;X GXG/X

_ 1
T m+0

[V = U, x by Lemma2

>HV— Ullsrx:

(111)

m
+|| Y X6 XG X

i=1

m
Z X*l/ZWiXW;«X71/2

i=1
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Given Y WIXW, < 1/2X, Y G'XG,; < 1/2X, and let-
ting K be a number such that

K=Y X"PWxw X2+ (1Y X6 XGr X1
i=1 i=1
<1, wehave
18V =8Ol < 5V -Vl (12)
Thus,
m+0
7 d(8(V),&(U))<Kd(V,U). (113)
We define a : £ x ™ — (1,00) by
a(U,V)=m+0forallU, Ve Z™ andOe (0,1), (114)

and the metric d on Z™ by

i=1

'" 1 o 1

PW,G,) ifW,#G;; Y WXW,<-Xand ¥ GXG, < -X

dW,, G;) = { ( ) 2 2 Zl 2
0 ifW, =G,

(115)

In view of the metric defined above, the inequality (113)
can be written as

(m+0)P(E(V), B(U))

= <P(V,U)
a(U, V)P(8(V), E(U)) (116)
In ( = ) <In (2(V,U)).

Define the functions ¢ € €, and F by

%, (WL V), 2(U, 8(U)), AV, 8(v)), T EUN PO, g“’”)

2
PV, 8U))+PU, T(V))}

= max {@(U, V), P(U, &(U)), P(V, E(V)), .

(117)

F(o)=1n (o) for all 0 € (0,00), respectively. Under these
definitions, we have

T+ F(a(U, V)P(&(V), €(U))) < F(P(V, U))putr =In (K™')

< #(max {2(0.v), 20, 5(V)), (7. (), T AL ZEEDN),

(118)

By Theorem 2, the operator & has a fixed point, and
hence, the matrix equation (105) has a solution.

Remark 5. The numerical explanation of the conditions
YEWIXW, < 1/2X and Y G; XG; < 1/2X imposed in The-

13
orem 4 for i =2 and taking 4 x 4 matrices is as follows:
(0.1 0.05 0.05 0.05
0.05 0.1 0.05 0.05
letW, = W,
0.05 0.05 0.1 0.05
0.05 0.05 0.05 0.1
- (119)
0.5 -0.02 -0.02 -0.02
-0.02 05 -0.02 -0.02
-0.02 -0.02 0.5 -0.02
L-0.02 -0.02 -0.02 0.5
Then, for a matrix
1 02 02 02
02 1 02 02
X = , (120)
02 02 1 02
02 02 02 1
we have
0.2662 0.0479 0.0479 0.0479
2 0.0479 0.2662 0.0479 0.0479 1
> WrXW, = <X
i=1 0.0479 0.0479 0.2662 0.0479 2
0.0479 0.0479 0.0479 0.2662
[0.01 0.001 0.01 0.01
0.001 0.01 0.01 0.001
Similarly, letG, = G,
0.01 0.001 0.001 0.01
L0.001 0.01 0.001 0.001
[ 0.1413 0.008294  0.1413  0.1413
0.008294  0.0997 0.008294 0.1413
0.1413  0.008294  0.1413  0.0997
L 0.1109 0.1413  0.008294 0.0997
(121)
Then, for a matrix
1 02 02 02
02 1 02 02
X = , (122)

02 02 1 02
02 02 02 1
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we have
0.0744 0.0359 0.0570 0.0.0760
2 0.0359 0.0376 0.0191 0.0491 1
Y G;XG, = <X
i=1 0.0570 0.0191 0.0502 0.0579 2
0.0760 0.0491 0.0579 0.0.0946
(123)

6. Conclusion

The introduced contractions encompass the F-contractions
and multivalued contractions and hence the Banach contrac-
tions, Kannan contractions, Chatterjea contractions, Reich
contractions, Hardy-Rogers contractions, and Ciric-type
contractions (both metric and p-m versions). It is a real gen-
eralization of Matthews contractions and F-contractions.
The theorems give general criteria for the existence of the
uniqueness of the fixed point.
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