Research Article

BMO Functions Generated by $A_X(\mathbb{R}^n)$ Weights on Ball Banach Function Spaces

Ruimin Wu1 and Songbai Wang2

1Longqiao College of Lanzhou University of Finance and Economics, Lanzhou 730101, China
2College of Mathematics and Statistics, Chongqing Three Gorges University, Chongqing 404130, China

Correspondence should be addressed to Ruimin Wu; wrm1108@163.com

Received 5 October 2020; Accepted 8 December 2020; Published 8 January 2021

Abstract

Copyright © 2021 Ruimin Wu and Songbai Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let X be a ball Banach function space on \mathbb{R}^n. We introduce the class of weights $A_X(\mathbb{R}^n)$. Assuming that the Hardy-Littlewood maximal function M is bounded on X and X', we obtain that $\text{BMO}(\mathbb{R}^n) = \{ \alpha \ln \omega : \alpha \geq 0, \omega \in A_X(\mathbb{R}^n) \}$. As a consequence, we have $\text{BMO}(\mathbb{R}^n) = \{ \alpha \ln \omega : \alpha \geq 0, \omega \in A_{L^1}(\mathbb{R}^n) \}$, where $L^1(\mathbb{R}^n)$ is the variable exponent Lebesgue space. As an application, if a linear operator T is bounded on the weighted ball Banach function space $X(\omega)$ for any $\omega \in A_X(\mathbb{R}^n)$, then the commutator $[b, T]$ is bounded on X with $b \in \text{BMO}(\mathbb{R}^n)$.

1. Introduction

It is well known that there is a relation between $A_{\text{loc}}(\mathbb{R}^n)$ weights and $\text{BMO}(\mathbb{R}^n)$, i.e., for any $p \in (1, \infty)$,

$$\text{BMO}(\mathbb{R}^n) = \{ \alpha \ln W : \alpha \geq 0, W \in A_p(\mathbb{R}^n) \}. \quad (1)$$

See, for instance, [1] (p. 409). The purpose of this note is to reveal the relation between $\text{BMO}(\mathbb{R}^n)$ and $A_X(\mathbb{R}^n)$ weights over the ball Banach function space X.

To state our results, we begin with the definition of the ball Banach function space. Denote by the symbol $\mathcal{M}(\mathbb{R}^n)$ the set of all measurable functions on \mathbb{R}^n. For any $x \in \mathbb{R}^n$ and $r \in (0, \infty)$, let $B(x, r) = \{ y \in \mathbb{R}^n : |x - y| < r \}$ and

$$B := \{ B(x, r) : x \in \mathbb{R}^n \text{ and } r \in (0, \infty) \}. \quad (2)$$

Definition 1. A Banach space $X \subset \mathcal{M}(\mathbb{R}^n)$ is called a ball Banach function space if it satisfies that

(i) $\| f \|_X = 0$ implies that $f = 0$ almost everywhere

(ii) $|g| \leq |f|$ almost everywhere implies that $\| g \|_X \leq \| f \|_X$

(iii) $0 \leq f_m \uparrow f$ almost everywhere implies that $\| f_m \|_X \uparrow \| f \|_X$

(iv) $B \in \mathbb{B}$ implies that $1_B \in X$, where \mathbb{B} is as in (2);

(v) for any $B \in \mathbb{B}$, there exists a positive constant $C_{(B)}$, depending on B, such that, for any $f \in X$,

$$\int_B |f(x)| \, dx \leq C_{(B)} \| f \|_X \quad (3)$$

For any ball Banach function space X, the associate space (Köthe dual) X' is defined by setting

$$X' := \{ f \in \mathcal{M}(\mathbb{R}^n) : \| f \|_{X'} = \sup \{ \| fg \|_{L^1(\mathbb{R}^n)} : g \in X, \| g \|_X = 1 \} < \infty \}, \quad (4)$$

where $\| \cdot \|_{X'}$ is called the associate norm of $\| \cdot \|_X$ (see, for instance, [2] (Chapter 1, Definitions 2.1 and 2.3)).

Remark 2. By [3] (Proposition 2.3), we know that, if X is a ball Banach function space, then its associate space X' is also a ball Banach function space.
Now, we introduce the class of weights $A_X(\mathbb{R}^n)$ and recall the function space BMO. A weight ω is a locally integrable function such that $0 < \omega(x) < \infty$ almost everywhere $x \in \mathbb{R}^n$.

Definition 3. Let X be a ball Banach function space. We say that a weight ω belongs to $A_X(\mathbb{R}^n)$ if
\begin{equation}
\sup_{B \subset \mathbb{R}^n} \frac{\|\omega 1_B\|_X \|\omega^{-1} 1_B\|_X'}{\|1_B\|_X^2} < \infty,
\end{equation}
here and hereafter 1_B is the characteristic function for B.

Remark 4.

1. There is an immediate consequence. Let X be a ball Banach function space. If $\omega \in A_X(\mathbb{R}^n)$, then $\omega^{-1} \in A_X(\mathbb{R}^n)$

2. We recall that the definition of $A_p(\mathbb{R}^n)$. Let $p \in [1, \infty)$. A weight W belongs to $A_p(\mathbb{R}^n)$ if
\begin{equation}
\sup_{B \subset \mathbb{R}^n} \left\{ \frac{1}{|B|} \int_B W(x) \, dx \right\} \left\{ \frac{1}{|B|} \int_B W(x)^{-p'} \, dx \right\}^{p-1} < \infty
\end{equation}

By the definition of $A_X(\mathbb{R}^n)$ and $A_p(\mathbb{R}^n)$, $W \in A_p(\mathbb{R}^n)$ if and only if $\omega = W^{1/p} \in A_p(\mathbb{R}^n)$ for any $p \in [1, \infty]$.

The classical function space $BMO(\mathbb{R}^n)$ is the collection of all locally integrable functions f such that
\begin{equation}
BMO(\mathbb{R}^n) = \sup_B \left\{ \frac{1}{|B|} \int_B |f(x) - f_B| \, dx \right\},
\end{equation}
where the supremum is taking all balls B in \mathbb{R}^n and f_B is the mean value of the function f on B, namely,
\begin{equation}
f_B = \frac{1}{|B|} \int_B f(y) \, dy.
\end{equation}

By the well-known John-Nirenberg inequality, John and Nirenberg [4] proved that there exists a positive constant C such that
\begin{equation}
\|f\|_{BMO(\mathbb{R}^n)} \leq \|f\|_{BMO_{L^p(\mathbb{R}^n)}} \leq C\|f\|_{BMO(\mathbb{R}^n)},
\end{equation}
where $p \in [1, \infty)$ and
\begin{equation}
BMO_{L^p(\mathbb{R}^n)} := \sup_B \left\{ \frac{1}{|B|} \int_B |f(x) - f_B|^p \, dx \right\}^{1/p}.
\end{equation}

We also recall that the Hardy-Littlewood maximal function M is defined by setting, for any locally integrable function f and $x \in \mathbb{R}^n$,
\begin{equation}
Mf(x) := \sup_{B \ni x} \frac{1}{|B|} \int_B |f(y)| \, dy.
\end{equation}

Now, we state our result as the following theorem.

Theorem 5. Let X be ball Banach function spaces. If the Hardy-Littlewood maximal function M is bounded on X and X', then
\begin{equation}
BMO(\mathbb{R}^n) = \{ \alpha \ln \omega : \alpha \geq 0, \omega \in A_X(\mathbb{R}^n) \}.
\end{equation}

Remark 6. Let $p \in (1, \infty)$, Theorem 5 goes back to the classical result for $X = L^p(\mathbb{R}^n)$.

As an example, let $\mathcal{B} = \mathcal{B}(\mathbb{R}^n)$ be the collection of all measurable functions $p(\cdot) : \mathbb{R}^n \to [1, \infty]$. Then, the variable Lebesgue space $L^{p(\cdot)}(\mathbb{R}^n)$ is defined to be the set of all measurable functions f on \mathbb{R}^n such that
\begin{equation}
\|f\|_{L^{p(\cdot)}(\mathbb{R}^n)} = \inf \left\{ \lambda \in (0, \infty) : \int_{\mathbb{R}^n} \left[\frac{|f(x)|^p}{\lambda} \right] \, dx \leq 1 \right\} < \infty.
\end{equation}

Denote $p_- = \inf_{x \in \mathbb{R}^n} p(x)$ and $p_+ = \sup_{x \in \mathbb{R}^n} p(x)$. A measurable function $p(\cdot) \in \mathcal{B}(\mathbb{R}^n)$ is said to be globally log-Hölder continuous if there exists a $p_{\infty} \in \mathbb{R}$ such that, for any $p, q \in \mathbb{R}^n$,
\begin{equation}
|p(x) - p(y)| \leq \frac{1}{\log ((e + (1/|x - y|))},
\end{equation}
\begin{equation}
|p(x) - p_{\infty}| \leq \frac{1}{\log (e + |x|)},
\end{equation}
where the implicit positive constants are independent of x and y.

Definition 7 ([5], Definition 1.4.). Given an exponent function $p(\cdot) : \mathbb{R}^n \to [1, \infty]$ and a weight ω, we say that $\omega \in A_{p(\cdot)}$ if there exists a constant K such that for every ball B,
\begin{equation}
\|\omega 1_B\|_{L^{p(\cdot)}(\mathbb{R}^n)} \|\omega^{-1} 1_B\|_{L^{p'(\cdot)}(\mathbb{R}^n)} \leq K|B|,
\end{equation}
where $1/p(x) + 1/p'(x) = 1$ for almost everywhere $x \in \mathbb{R}^n$.

Remark 8. Let $p(\cdot)$ be a globally log-Hölder continuous function satisfying $1 < p_- \leq p_+ < \infty$. By [3] (Lemma 2.5 and Proposition 3.8.), for any ball $B \subset \mathbb{R}^n$, $|B| = \|1_B\|_{L^{p(\cdot)}(\mathbb{R}^n)} \|1_B\|_{L^{p'(\cdot)}(\mathbb{R}^n)}$. This shows that for $X = L^{p(\cdot)}(\mathbb{R}^n)$
\begin{equation}
A_{p(\cdot)}(\mathbb{R}^n) = A_{p(\cdot)}(\mathbb{R}^n).
\end{equation}

Let $p(\cdot)$ be a globally log-Hölder continuous function satisfying $1 < p_- \leq p_+ < \infty$. We know that M is bounded on.
bounded on \mathbb{R}^n and its duality $L^{p'}(\mathbb{R}^n)$; see, for instance, [6, 7] and their references.

Corollary 9. Let $p(\cdot)$ be a globally log-Hölder continuous function satisfying $1 < p_- \leq p_+ < \infty$. Then, $\text{BMO}(\mathbb{R}^n) = \{ \alpha \ln \omega : \alpha \geq 0, \omega \in A_{p(\cdot)}(\mathbb{R}^n) \}$.

2. Proof of Theorem 5

The following lemmas give two elementary properties of ball Banach function spaces, whose proof is similar to the one corresponding to Banach function spaces; see [2].

Lemma 10 (Holder’s inequality). Let X be a ball Banach function space with the associate space X'. If $f \in X$ and $g \in X'$, then fg is integrable and

$$
\int_{\mathbb{R}^n} |f(x)g(x)| \, dx \leq \|f\|_X \|g\|_{X'}.
$$

Lemma 11 (G. G. Lorentz, W. A. J. Luxemburg). Every ball Banach function space X coincides with its second associate space X''. In other words, a function f belongs to X if and only if it belongs to X'' and, in that case,

$$
\|f\|_X = \|f\|_{X''}.
$$

Under weak boundedness of the Hardy-Littlewood maximal operator M on X, the norm $\|\cdot\|_X$ enjoys the following property; see [8] (Lemma 2.2).

Lemma 12. Let X be a ball Banach function space and suppose that the Hardy-Littlewood maximal operator M is weakly bounded on X or X', that is, there exists a positive constant C such that

$$
\|1_{\{x \in \mathbb{R}^n : Mf(x) > \lambda\}}\|_X \leq C \lambda^{-1} \|f\|_X
$$

or

$$
\|1_{\{x \in \mathbb{R}^n : Mf(x) > \lambda\}}\|_{X'} \leq C \lambda^{-1} \|f\|_{X'}
$$

holds for all $\lambda > 0$ and all $f \in X$. Then, there exists a positive constant C such that for all balls $B \in \mathcal{B}$, $\|1_B\|_X \|1_B\|_{X'} \leq C |B|$.

Remark 13. By Lemma 10, we have $|B| \leq \|1_B\|_X \|1_B\|_{X'}$ for any ball $B \in \mathcal{B}$.

Lemma 14. Let $\varphi \in L^1_{\text{loc}}(\mathbb{R}^n)$ and X be a ball Banach function space. Suppose that the Hardy-Littlewood maximal operator M is weakly bounded on X. Then, $e^{\varphi} \in A_X(\mathbb{R}^n)$ if and only if there exists a positive constant C such that for any ball $B \in \mathcal{B}$

\begin{equation}
\frac{\|e^{\varphi} - \varphi\|_X}{\|1_B\|_X} \leq C,
\end{equation}

\begin{equation}
\frac{\|e^{\varphi} - \varphi\|_{X'}}{|B|} \leq C.
\end{equation}

Proof. We first prove the sufficiency. In fact, by the definition of $A_X(\mathbb{R}^n)$, we have

$$
\frac{\|e^{\varphi}1_B\|_X}{\|1_B\|_X} \leq \frac{\|e^{\varphi} - \varphi\|_X}{\|1_B\|_X} \leq C,
$$

$$
\frac{\|e^{\varphi}1_B\|_{X'}}{|B|} \leq \frac{\|e^{\varphi} - \varphi\|_{X'}}{|B|} \leq C.
$$

Conversely, suppose that $e^{\varphi} \in A_X(\mathbb{R}^n)$. Then by Lemmas 10 and 12

$$
\frac{\|e^{\varphi}1_B\|_X}{\|1_B\|_X} \leq \frac{1}{|B|} \int_B e^{\varphi(x)} \, dx \leq \frac{1}{|B|} \int_B e^{\varphi}\, dx \leq C.
$$

Also,

$$
\frac{\|e^{\varphi}1_B\|_{X'}}{|B|} \leq \frac{1}{|B|} \int_B e^{\varphi}\, dx \leq \frac{1}{|B|} \int_B e^{\varphi}\, dx \leq C.
$$

The John-Nirenberg inequality for ball Banach function spaces X was established by Izuki et al. ([9], Theorem 3.1).

Lemma 15. Let X be a ball Banach function space such that M is bounded on X' and write $C_0 := \|M\|_X^{1-\alpha}$. Then, there exists a positive constant C_1 such that for all balls $B, f \in \text{BM}_O(\mathbb{R}^n)$ and $\lambda \geq 0$,

$$
\|1_{\{x \in B : |f| > \lambda\}}\|_X \leq C_1 2^{\lambda(1 + \alpha/C_0)} \|f\|_{\text{BMO}} \|1_B\|_X.
$$

As a consequence of Lemma 15, we have the following inequality.

Lemma 16. Let X be a ball Banach function space. Suppose that M is bounded on X'. Suppose that $\varphi \in \text{BMO}$. Then for any $\alpha \in [0, (\ln 2)(2^{2\alpha^2} + 2^{2\alpha^2} + C_0)\|f\|_{\text{BMO}})$, and ball $B \in \mathcal{B}$, we have

$$
\|e^{\varphi}1_B\|_X \leq C_1 \left(1 + 2^{\alpha^2} 2^{(2\alpha^2 + C_0)\|f\|_{\text{BMO}}} + 2^{2\alpha^2 + C_0} \|f\|_{\text{BMO}}\right) \|1_B\|_X.
$$

where C_1 is as in Lemma 15.
Proof. By Lemma 15, we have
\[
\|e^{i\phi(x)\varphi}1_B\|_X \leq \sum_{k=0}^{\infty} \|1_{\{x \in \mathbb{R}^n : k \geq |\varphi - \varphi_x|\}} e^{i\phi(x)\varphi}1_B\|_X \\
\leq \sum_{k=0}^{\infty} e^{(k+1)} 1_{\{x \in \mathbb{R}^n : |\varphi - \varphi_x| \geq k\}} 1_B\|_X \\
\leq \sum_{k=0}^{\infty} C_1 e^{2(k+1)} \|1_{\{x \in \mathbb{R}^n : |\varphi - \varphi_x| \geq k\}} 1_B\|_X \\
= \sum_{k=0}^{\infty} C_1 e^{2(k+1)} \left(\frac{\|\varphi\|_{L^1(\mathbb{R}^n)}}{\|\varphi\|_{L^1(\mathbb{R}^n)}}\right)\|1_B\|_X \\
\leq C_1 \left(1 - 2^{\alpha/(\ln 2)} - \left(\frac{1}{(2^{\alpha}+1+2^{\alpha+1}\|\varphi\|_{L^1(\mathbb{R}^n)}}\right)\right) \cdot 2^{\alpha/(\ln 2)} \left(\frac{1}{(2^{\alpha}+1+2^{\alpha+1}\|\varphi\|_{L^1(\mathbb{R}^n)}}\right)\|1_B\|_X.
\] (27)

Lemma 17. Let X be a ball Banach function space. If \(\omega \in A_X(\mathbb{R}^n)\), then \(\ln \omega \in BMO(\mathbb{R}^n)\).

Proof. Let \(\varphi = \ln \omega\). Then, \(\omega = e^\varphi\). By Lemmas 10, 12, and 14, we obtain that
\[
\|\varphi\|_{BMO(\mathbb{R}^n)} \leq C \sup_{x \in X} \left| \frac{1}{|B|} \int_B e^{\varphi(x)\omega} dx \right| \\
\leq C \sup_{x \in X} \left| \frac{1}{|B|} \int_{\{x \in B : \varphi - \varphi_x \geq 0\}} e^{\omega(x)\varphi} dx \right| \\
+ \left| \int_{\{x \in B : \varphi - \varphi_x > 0\}} e^{-\varphi(x)\varphi} dx \right| \\
\leq C \sup_{x \in X} \left| \frac{1}{|B|} \left[\|\varphi\|_{BMO(\mathbb{R}^n)} \right|^2 \right| \\
+ \left| \|\varphi\|_{BMO(\mathbb{R}^n)} \right|^2 < \infty.
\] (28)

Proof of Theorem 18. By Lemma 17, for any \(\omega \in A_X(\mathbb{R}^n)\) and \(\alpha \geq 0, \varphi = \alpha \ln \omega \in BMO(\mathbb{R}^n)\). Conversely, suppose that \(\varphi \in BMO(\mathbb{R}^n)\). Since M is bounded on \(X'\), by Lemma 16, we know that there exist \(\beta_1 \in [0, \ln 2/(2^{\alpha+1}+1+2^{\alpha+4}\|M\|_{L^\infty(\mathbb{R}^n)}\|\varphi\|_{BMO(\mathbb{R}^n)})\) and \(C_3 \in (0, \infty)\) such that, for any ball \(B \in \mathbb{B}\),
\[
\|e^{i\beta_1(x)\varphi(x)\omega}1_B\|_{X'} \leq C_3.
\] (29)

Similarly, since M is bounded on X, by Lemmas 11 and 16, we know that there exist \(\beta_2 \in [0, \ln 2/(2^{\alpha+1}+1+2^{\alpha+4}\|M\|_{L^\infty(\mathbb{R}^n)}\|\varphi\|_{BMO(\mathbb{R}^n)})\) and \(C_4 \in (0, \infty)\) such that, for any ball \(B \in \mathbb{B}\),
\[
\|e^{i\beta_2(x)\varphi(x)\omega}1_B\|_{X} \leq C_4.
\] (30)

Taking \(\alpha = \min \{\beta_1, \beta_2\}\) and \(C = \max \{C_3, C_4\}\) and applying Lemma 14, we get the desired result.

3. Applications

In this section, we will show that the boundedness of the commutator of a linear operator \(T\) on X with the BMO function can be derived from the weighted boundedness of \(T\) on \(X\). We first establish the following Minkowskity inequality.

Lemma 19. Let X be a Banach function space and F a measurable function on \(\mathbb{R}^n \times X\). If, for almost every \(x \in \mathbb{R}^n\), \(F(x, \cdot) \in L^1(\mathbb{R}^m)\) and, for almost every \(y \in \mathbb{R}^m\), \(F(\cdot, y) \in X\), then
\[
\|\int_{\mathbb{R}^m} F(\cdot, y) \|_X \leq \int_{\mathbb{R}^m} \|F(\cdot, y)\|_X dy.
\] (31)

Proof. By Lemma 11, we have
\[
\|\int_{\mathbb{R}^m} F(\cdot, y) \|_X = \|\int_{\mathbb{R}^m} F(\cdot, y) \|_X^* \leq \sup \left\{ \left| \int_{\mathbb{R}^m} F(\cdot, y) \|g(y)\|_X \right| : g \in X' \text{ such that } \|g\|_{X'} = 1 \right\}.
\] (32)

From the Fubini theorem and Lemma 10, it follows that
\[
\left| \int_{\mathbb{R}^m} \int_{\mathbb{R}^n} F(x, y) \|g(y)\|_X dx \right| \leq \left| \int_{\mathbb{R}^m} \int_{\mathbb{R}^n} F(x, y) \|g(y)\|_X dy dx \right| \\
\leq \int_{\mathbb{R}^m} \int_{\mathbb{R}^n} |F(x, y)| \|g(y)\|_X dy dx \\
\leq \int_{\mathbb{R}^m} \|F(\cdot, y)\|_X \|g\|_X, dy \\
= \int_{\mathbb{R}^m} \|F(\cdot, y)\|_X, dy,
\] (33)

which implies the desired conclusion. This finishes the proof of Lemma 19.

Let \(T\) be a linear operator defined by
\[
Tf(x) = \int_{\mathbb{R}^n} K(x, y)f(y)dy.
\] (34)

Given a symbol \(b\), we define the commutator \([b, T]f = bTf - T(bf)\).

Let \(\omega\) be a weight. Define \(X(\omega) = \{f \in \mathcal{M}(\mathbb{R}^n) : \omega f \in X\}\) and \(\|f\|_X = \|f\|_{X,\omega}\). We say that \(T\) is bounded on \(X(\omega)\) if there exists a positive constant \(C\) such that for all \(f \in X(\omega)\),
\[
\|(Tf)\omega\|_X \leq C\|f\|_X.
\] (35)

Theorem 20. Let X be a ball Banach function space. Suppose that M is bounded on X and X'. If, for any \(\omega \in A_X(\mathbb{R}^n)\), T is
bounded on \(X(\omega) \) then, for all \(b \in \text{BMO}(\mathbb{R}^n) \), \([b, T]\) is bounded on \(X \), i.e.,

\[
\| [b, T]f \|_X \leq C \| f \|_X, \tag{36}
\]

where \(C \) is independent of \(f \).

Proof. We adapt the idea from [10, 11]. Without loss of generality, we assume that \(b \neq 0 \) in \(\text{BMO}(\mathbb{R}^n) \). By Theorem 5, there exists an \(\alpha \in (0, \infty) \) such that \(e^{ab} \in A_X(\mathbb{R}^n) \). As well known, for every \(\theta \in [0, 2\pi) \), \(b \cos \theta \in \text{BMO}(\mathbb{R}^n) \) and \(\| b \cos \theta \|_{\text{BMO}(\mathbb{R}^n)} = \| b \|_{\text{BMO}(\mathbb{R}^n)} \). Thus,

\[
e^{ab \cos \theta} \in A_X(\mathbb{R}^n). \tag{37}
\]

For any \(z \in \mathbb{C} \), define \(g(z) = e^{a(b(x)-h(y))} \). Then, \(g(z) \) is analytic on \(\mathbb{C} \) and the Cauchy integral formula implies that

\[
b(x) - b(y) = \frac{g'(0)}{\alpha} = \frac{1}{2\pi i} \int_{|z|=1} \frac{g(z)}{|z|^2} \, dz
\]

\[
= \frac{1}{2\pi i} \int_0^{2\pi} e^{i\theta} |g(h(x) - b(y))| e^{-i\theta} \, d\theta. \tag{38}
\]

For any \(\theta \in [0, 2\pi) \), set \(h_\theta(x) = f(x) e^{-ab(x) e^{i\theta}} \). Since \(f \in X \), we have

\[
\| h_\theta \|_{X(e^{ab} e^{i\theta})} = \left\| f(x) e^{-ab(x) e^{i\theta}} \right\|_X = \| f \|_X. \tag{39}
\]

By this and (38), we conclude that

\[
[b, T]f(x) = \int_{\mathbb{R}^n} K(x, y) \left[\frac{1}{2\pi} \int_0^{2\pi} e^{i\theta} |g(h(x) - b(y))| e^{-i\theta} \, d\theta \right] f(y) \, dy
\]

\[
= \frac{1}{2\pi} \int_0^{2\pi} T(h_\theta)(x) e^{ab(x) e^{i\theta}} e^{-i\theta} \, d\theta. \tag{40}
\]

Applying Lemma 19 and the weighted boundedness of \(T \), we have

\[
\| [b, T]f \|_X \leq \frac{1}{2\pi i} \int_0^{2\pi} \| T(h_\theta) \|_{X(e^{ab} e^{i\theta})} \, d\theta \leq C \| f \|_X. \tag{41}
\]

We complete the proof of Theorem 20.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This project is supported by the Scientific Research Fund of Young Teachers in Longqiao College (Grant No. LQKJ2020-01).

References

