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In the present study, we investigate a universality of neural networks, which concerns a density of the set of two-layer neural
networks in function spaces. There are many works that handle the convergence over compact sets. In the present paper, we
consider a global convergence by introducing a norm suitably, so that our results will be uniform over any compact set.

1. Introduction

Neural network is a function that models a neuron system of
a biological brain and is defined as alternate compositions of
an affine map and a nonlinear map. The nonlinear map in a
neural network is called the activation function. The neural
networks have been playing a central role in the field of
machine learning with a vast number of applications in the
real world in the last decade. We refer to [1] and [2] for
example.

We focus on a two-layer feed-forward neural network
with ReLU (rectified linear unit) activation, which is a func-
tion f : ℝ⟶ℝ of the form of f ðxÞ =∑r

i=1 ciReLUðaix + biÞ
for some a1, b1, c1,⋯, ar , br , cr ∈ℝ. Here, the function ReLU
is called the rectified linear unit defined by

ReLU xð Þ≔max x, 0ð Þ x ∈ℝð Þ: ð1Þ

The ReLU is one of the most popular activation func-
tions for feed-forward neural networks in practical machine
learning tasks for real-world problems.

We consider the space of two-layer feedforward neural
networks defined by the following linear space

X ≔ Span ReLU a · +bð Þ: a ≠ 0, b ∈ℝf gð Þ

= 〠
N

j=1
λjReLU aj · +bj

� �
: N ∈ℕ, λ j, aj, bj

� �� �N

j=1 ⊂ℂ ×ℝn ×ℝ

( )
:

ð2Þ

Then, it is natural to ask ourselves whether X spans a
dense subspace of a function space (topological linear space),
which is called universality of X . Historically, the density
property of X in the space CðℝÞ of continuous functions
on ℝ is investigated by several authors ([3–5]) since it is
important to guarantee the existence of a feed-forward
neural network f ∈X that well approximates an unknown
continuous function. Here, the topology of CðℝÞ is gener-
ated by the seminorms h⟼ sup

x∈K
jhðxÞj, where K ranges over

all compact sets in ℝ. Thus, the approximation property of
two-layer feed-forward neural networks makes sense only
on a local domain.
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In this study, we prove an approximation property of X
in a global sense. More precisely, we prove the space X is
dense in the Banach subspace of CðℝÞ defined as

Y ≔ f ∈ C ℝð Þ lim
x⟶±∞

f xð Þ
1 + xj j exists and it is finite

� �
, ð3Þ

equipped with the norm

fk kY ≔ sup
x∈ℝ

f xð Þj j
1 + xj j : ð4Þ

Note that any element in Y , divided by 1 + j·j, is a con-
tinuous function over �ℝ≔ℝ ∪ f±∞g. Our main result in
this paper is as follows:

Theorem 1. The linear subspace X is dense in Y .

Our main results claim that any function f ∈X is close
to a linear function both at ∞ and at −∞. Near the origin,
X approximates any continuous functions.

Before we conclude this section, we will offer some
words on some existing results. See [6] for the L2-approxi-
mation over the real line. Other attempts have been made
to grasp the neural network by the use of the Radon trans-
form [7] or by considering some other topologies [5, 8].

2. Proof of the Main Theorem

Definition 2. We define a linear operator A : f ∈Y ⟼ f /1
+ j·j ∈ BCð�ℝÞ.

Lemma 3. The operator A : Y ⟶ BCð�ℝÞ is an isomorphism
from Y to BCð�ℝÞ.

A tacit understanding here is that we extend f /1 + j·j, which
is initially defined over ℝ, continuously to �ℝ.

Thus, any continuous functional on Y is realized by a
Borel measure over �ℝ.

Our theorem can recapture the case where the underly-
ing domain is bounded. Indeed, if the domainΩ is contained
in ½−R, R� for some R > 0, then, we have

fk kL∞ Ωð Þ ≤ 1 + Rð Þ fk kY f ∈Yð Þ, ð5Þ

which will give results by Cybenko [3] and Funahashi [4].
Now we start the proof of Theorem 1. As Cybenko did in

[3], take any measure μ over �ℝ such that μ annihilates X .
We will show that μ = 0. Once this is proved, from the Riesz
representation theorem, we conclude that the only linear
functional that vanishes on X is zero. Using the Hahn-
Banach theorem, we see that X is dense in Y .

Remark that

max 1 − x − 1j j, 0ð Þ = ReLU xð Þ + ReLU x − 2ð Þ
− 2ReLU x − 1ð Þ x ∈ℝð Þ: ð6Þ

Thus, any element in CcðℝÞ can be approximated by a
function X in the L∞-norm. Since μ annihilates CcðℝÞ, it
follows that μ is not supported on ℝ. Or equivalently, μ is
supported on ±∞. It remains to show that μðf±∞gÞ = 0.
Consider

f xð Þ = ReLU xð Þ − ReLU x − 1ð Þ x ∈ℝð Þ: ð7Þ

Remark that

0 =
ð

�ℝ
f xð Þdμ xð Þ = μ ∞f gð Þ: ð8Þ

Likewise, if we test the condition on g = f ð−·Þ, we obtain
μðf−∞gÞ = 0.

Thus, we conclude that X is dense in Y .

Remark 4. The set f f , gg ∪ CcðℝÞ spans a dense subspace in
Y , where f and g are functions given in the above proof.
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