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Fractional derivative is nonlocal, which is more suitable to simulate physical phenomena and provides more accurate models of
physical systems such as earthquake vibration and polymers. The present study suggested a new numerical approach for the
fractional diffusion-wave equation (FDWE). The fractional-order derivative is in the Riemann-Liouville (R-L) sense. Discussed
the theoretical analysis of stability, consistency, and convergence. The numerical examples demonstrate that the method is more
workable and excellently holds the theoretical analysis, showing the scheme’s feasibility.

1. Introduction

Nowadays, fractional calculus gains attention because of
many applications in different sciences, such as physical
and chemical phenomena [1–13]. Therefore, many numeri-
cal methods are used for the fractional differential equations
[14–21]. The fractional diffusion-wave equations (FDWE)
have many applications, for example, continuous-time ran-
dom walks, unification of diffusion, and wave propagation
phenomenon [22, 23]. To find the solution of FDWE,
different researchers used different numerical methods; for
example, Hu and Zhanga [24] implemented a higher-order
difference approach on the system of the FDWE and proved
its stability, solvability, and convergence. Their numerical
solutions reported that the high-order difference method is
more efficient than the Crank-Nicolson method. Yang et al.
[25] first converted FDWE into the integrodifferential equa-
tion and then apply the fractional multisteps method to solve
the FDWE. They discretized the transform equation’s inte-

gration term and Lubich’s fractional multistep approach for
space derivative and central difference schemes, respectively.
Also, they show that the proposed method is convergent sta-
ble and solvable for γ ∈ ð1,1:71832Þ. Brunner et al. [26] con-
sidered the numerical simulation of the 2-D time FDWE.
They introduced artificial boundary conditions to transform
the problem into the initial boundary value problem (IBVP)
and produced a stable and convergence scheme using finite
difference approximation. Sweilam et al. [27] solved two-
sided space FDWE using a finite difference method. They
studied the consistency and stability of both explicit and
implicit methods. Also, they concluded that finite difference
methods are relatively easy to use and can apply to different
fractional differential equations easily. Later, Sweilam et al.
[28] solved FDWE with the help of a weighted average
finite difference method, which is an extension of the
weighted average for the ordinary DWE. The noninteger
order derivative is discretized using RL derivative and found
that the suggested approach is stable. Liu et al. [29] used the
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novel finite difference scheme to solve the IBVPs for the
FDWE. They reported that the proposed technique is uncon-
ditionally stable and convergent, having the order of conver-
genceOðτ3−γ + h2Þ, where h and t represent the time step and
mesh size, respectively. Dehghan and Abbaszadeh [30]
applied A finite difference method to solve one and 2-D
FDWE both space and tempered fractional forms. For
fractional space derivative, they used Riemann-Liouville’s
fractional derivative. They show using error estimate that
the suggested scheme is convergence and unconditionally
stable.

Sun and Wu [31] researched the fully discrete scheme to
solve the solution of the BVP of FDWE. They determined
that the proposed numerical approach is solvable, stable,
and L∞ convergent with convergence order Oðτ3−γ + h2Þ
using the energy method. Furthermore, Du et al. [32] con-
structed a higher-order approximation to find the solution
of FDWE with the order Oðτ4−γ + h2Þ, where the fractional
derivative is approximated using Caputo fractional deriva-
tive. The numerical results show that the Caputo fractional
derivative gives convergence Oðτ4−γÞ, which can be many
apply to other fractional differential equations. Zhang et al.
[33] proposed two new schemes, namely, the Crank-
Nicolson (C-N), alternating direction implicit (ADI), and
compact ADI to get a solution of 2-D FDWE. The close
ADI scheme used the ADI approach for the time, and the rel-
ative difference technique is used for the spatial discretiza-
tions. Furthermore, they reported that the compact ADI
approach is solvable, unconditionally stable, and convergent.
The experiments confirmed that the ADI approach is com-
putationally efficient in terms of CPU timing compared to
the C-N ADI scheme for different values of γ without affect-
ing the results. Huang et al. [34] used two approximations for
the initial-boundary value time FDWEs, which is based on its
integrodifferential equations. The proposed schemes were
convergent with first and second order in temporal and spa-
tial directions, respectively. Wei [35] used the semidiscrete
strategy with the help of the finite difference method and
fully implicit discrete scheme using the local Galerkin
method for space time-fractional order derivatives, respec-
tively, for the FDWE. The proposed approach results in a
fully discrete scheme, which is convergent and uncondition-
ally stable. Ali and Abdullah [36] formulated a numerical
scheme for the fractional-order wave equation. They pro-
vided numerical solutions for the feasibility of the proposed
scheme.

The above-cited literature means that fractional calculus
is still a novel topic and needs more efficient numerical
techniques to investigate the more feasible fractional differ-
ential equations (FDEs). This study is aimed at examining
the highly accurate and robust numerical approach for
fractional-order diffusion-wave equation. So far, the attempt
has not been made to discretize the R-L integral and imple-
ment in the Riemann-Liouville fractional order derivative
to approximate FDWE.

The remaining paper is organized as follows: Section 2
discussed the related preliminaries. Section 3 explains the
methodology of the proposed scheme. Section 4 discusses
the stability analysis. In Section 5, consistency and conver-

gence are discussed. Section 6 provides numerical results,
and finally, the conclusion is presented in Section 7.

Here, we consider the FDWE as following [36]:

∂2Y x, tð Þ
∂t2

=D2−q
t

∂2Y x, tð Þ
∂x2

 !
+ F x, tð Þ, ð1Þ

qε 1, 2�ð , xε 0, L½ �, tε 0, T½ �, ð2Þ
where the conditions are

Y x, 0ð Þ = v1 xð Þ, Yt x, 0ð Þ = v2 xð Þ, Y 0, tð Þ = Y L, tð Þ = 0, ð3Þ

where Fðx, tÞ is denoted the source term and D2−q
t repre-

sented the R-L of order q lying between 1 and 2.

2. Preliminaries

The R-L fractional order derivative is defined as follows:

D2−q
t Y x, tð Þ = 1

Γ qð Þ
d2

dt2

ðt
0

Y x, zð Þ
t − zð Þ1−q dz =

d2

dt2
Iq0Y x, tð Þ: ð4Þ

Here, the R-L integral can be defined as:

Iq0Y x, tð Þ = 1
Γ qð Þ

ðt
0

Y x, zð Þ
t − zð Þ1−q dz: ð5Þ

To approximate the Riemann-Liouville integral in
equation (5), following the approach in [37]:

Iq0Y x, tð Þ = 1
Γ qð Þ

ðtn
0
tn − zð Þq−1Y x, zð Þdz, ð6Þ

using the Jumarie property [38] as:

= 1
qΓ qð Þ

ðtn
0
Y x, zð Þ dzð Þq,

= 1
Γ 1 + qð Þ〠

n−1

k=0

ðtk+1
tk

Y x, zð Þ dzð Þq,

= 1
Γ 1 + qð Þ〠

n−1

k=0
Y x, tn−kð Þ

ðtk+1
tk

z0 dzð Þq,

ð7Þ

applying the Jumarie property
Ð t
0z

mðdzÞn = ðΓð1 +mÞΓð1 +
nÞ/Γð1 + n +mÞÞtm+n,

= τq

Γ 1 + qð Þ〠
n−1

k=0
Y x, tn−kð Þ k + 1ð Þq − kð Þqð Þ,

= τq

Γ 1 + qð Þ〠
n−1

k=0
C qð Þ
k Y x, y, tn−kð Þ,

ð8Þ

and CðqÞ
k = ðk + 1Þq − ðkÞq,k = 0, 1, 2,⋯, n − 1:
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Lemma 1. The qð0 < q < 1Þ order R-L fractional integral of
Yðx, tÞ in ½0, T� defined as:

Iq0Y xi, tnð Þ = τq

Γ 1 + qð Þ〠
n−1

k=0
C qð Þ
k Y xi, tn−kð Þ: ð9Þ

Lemma 2. The coefficient CðqÞ
k ðk = 0, 1,⋯Þ satisfies the below

properties [37]:

(i) CðqÞ
0 = 1, CðqÞ

k > 0, k = 0, 1,⋯:

(ii) CðqÞ
k−1 > CðqÞ

k , k = 1, 2,⋯:

(iii) Here, ∃ the +ve constant C1 > 0: as τ ≤ C1C
ðqÞ
k τq,

k = 1, 2,⋯:

(iv) ∑n
k=0 C

ðqÞ
k τq = ðn + 1Þq ≤ Tq

3. The Proposed Scheme

The IDS for FDWE is developed in this section. The
fractional order part is replaced by Lemma 1, and space
derivative is approximated by central difference approxima-
tion. The step for space is xi = iΔx, and the step for time is
tk = kτ, where 1 ≤ i ≤M − 1, Δx = L/M and 0 ≤ k ≤N , τ =
T/N , respectively. Using equation (4) in (1) at grid point
Yðxi, tkÞ, as follows

∂2Y xi, tkð Þ
∂t2

= d2

dt2
Iq0
δ2xY xi, tkð Þ

Δx2
+ F xi, tkð Þ: ð10Þ

Eliminating the second order time derivative by apply-
ing backward difference approximation w.r.t time and then
integrating from tk to tk+1 and using trapezoidal rule for
source term, we obtained

Yk+1
i − 2Yk

i + Yk−1
i = 1

Δx2
Iq0 δ2xY

k+1
i − 2δ2xYk

i + δ2xY
k−1
i

� �
+ τ2

2 Fk+1
i + Fk

i

� �
,

ð11Þ
substituting Lemma 1 in place of RL fractional integral
in equation (11), the simplified approximated difference
scheme is obtained for fractional diffusion-wave equation,
as follows

Yk+1
i − 2Yk

i + Yk−1
i

= S1 Yk+1
i+1 − 2Yk+1

i + Yk+1
i−1

� �
− S1 Yk

i+1 − 2Yk
i + Yk

i−1

� �

+ S1 〠
k−1

j=0
C qð Þ

j+1 − C qð Þ
j

� �
Yk−j
i+1 − 2Yk−j

i + Yk−j
i−1

� �

− S1 〠
k−1

j=1
C qð Þ

j − C qð Þ
j−1

� �
Yk−j
i+1 − 2Yk−j

i + Yk−j
i−1

� �

+ τ2

2 Fk+1
i + Fk

i

� �
,

ð12Þ

we know that Ytðx, 0Þ = v2ðxÞ, therefore
Y−1
i = Y1

i + 2τv2 xið Þ, ð13Þ

Y0
i = v1 xið Þ, Yk

0 = Yk
M = 0, ð14Þ

where S1 = τq/ðΓð1 + qÞΔx2Þ, i = 1⋯M − 1, k = 0⋯N − 1.

4. Stability

The Von Neumann technique is using to find the stability of
the suggested scheme. Let yki represent the exact solution for
equation (12), we get

yk+1i − 2yki + yk−1i

= S1 yk+1i+1 − 2yk+1i + yk+1i−1

� �
− S1 yki+1 − 2yki + yki−1

� �

+ S1 〠
k−1

j=0
C qð Þ

j+1 − C qð Þ
j

� �
yk−ji+1 − 2yk−ji + yk−ji−1

� �

− S1 〠
k−1

j=1
C qð Þ

j − C qð Þ
j−1

� �
yk−ji+1 − 2yk−ji + yk−ji−1

� �
:

ð15Þ

The error is defined as Ek
i = yki − Yk

i . And Ek
i satisfies

equation (15) as follows:

Ek+1
i − 2Ek

i + Ek−1
i

= S1 Ek+1
i+1 − 2Ek+1

i + Ek+1
i−1

� �
− S1 Ek

i+1 − 2Ek
i + Ek

i−1

� �

+ S1 〠
k−1

j=0
C qð Þ

j+1 − C qð Þ
j

� �
Ek−j
i+1 − 2Ek−j

i + Ek−j
i−1

� �

− S1 〠
k−1

j=1
C qð Þ

j − C qð Þ
j−1

� �
Ek−j
i+1 − 2Ek−j

i + Ek−j
i−1

� �
:

ð16Þ

Consider the growth factor in the form of a one Fourier
mode as

Ek
i = λke

ffiffiffiffi
−1

p
iσΔx, ð17Þ

where σ and Δx are the mode number and step size, respec-
tively. Equation (17) can be the solution of the above error
equation (16), as

λk+1e
ffiffiffiffi
−1

p
iσΔx − 2λke

ffiffiffiffi
−1

p
iσΔx + λk−1e

ffiffiffiffi
−1

p
iσΔx

= S1 λk+1e
ffiffiffiffi
−1

p
i+1σΔx − 2λk+1e

ffiffiffiffi
−1

p
iσΔx + λk+1e

ffiffiffiffi
−1

p
i−1σΔx

� �
− S1 λke

ffiffiffiffi
−1

p
i+1σΔx − 2λke

ffiffiffiffi
−1

p
iσΔx + λke

ffiffiffiffi
−1

p
i−1σΔx

� �

+ S1 〠
k−1

j=0
C qð Þ

j+1 − C qð Þ
j

� �

� λk−je
ffiffiffiffi
−1

p
i+1σΔx − 2λk−je

ffiffiffiffi
−1

p
iσΔx + λk−je

ffiffiffiffi
−1

p
i−1σΔx

� �

− S1 〠
k−1

j=1
C qð Þ

j − C qð Þ
j−1

� �

� λk−je
ffiffiffiffi
−1

p
i+1σΔx − 2λk−je

ffiffiffiffi
−1

p
iσΔx + λk−je

ffiffiffiffi
−1

p
i−1σΔx

� �
:

ð18Þ
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Dividing both sides by e
ffiffiffiffi
−1

p
iσΔx, then replace e

ffiffiffiffi
−1

p
σΔx +

e−
ffiffiffiffi
−1

p
iσΔx = 2 − 4S1sin2ðσΔx/2Þ, we obtained

λk+1 = 1
1 + 4S1sin2 σΔx/2ð Þ
� 2 + 4S1sin2

σΔx
2

� �� �
λk − λk−1 − 4S1sin2

σΔx
2

� ��

� 〠
k−1

j=0
C qð Þ

j+1 − C qð Þ
j

� �
λk−j − 〠

k−1

j=1
C qð Þ

j − C qð Þ
j−1

� �
λk−j

 !#
:

ð19Þ

Proposition 3. Suppose λk+1, k = 0, 1,⋯,N − 1 is the solution
of equation (19), then we need to prove that

∣λk+1∣ ≤ λ0
�� ��: ð20Þ

Proof. Let take k = 0 in equation (19), to prove the proposi-
tion by induction method, as

λ1 = λ0 2 + 4S1sin2 σΔx/2ð Þ	 

− λ−1

1 + 4S1sin2 σΔx/2ð Þ : ð21Þ

By utilizing equations (13) and (17), we get λ−1 = λ1 and
putting in equation (21). After simplification, the above
equation becomes

λ1 = λ0 2 + 4S1sin2 σΔx/2ð Þ	 

2 + 4S1sin2 σΔx/2ð Þ , ð22Þ

obtained the following relation

λ1
�� �� ≤ λ0

�� ��: ð23Þ

Let ∣λ1 ∣ ≤∣λ0∣ holds for k = 0, 1,⋯, n − 1:
Using equations (19) and (23) and Lemma 2, we have

λk+1
��� ��� = 1

1 + 4S1sin2 σΔx/2ð Þ

� 2 + 4S1sin2
σΔx
2

� �� �
λk
��� ��� − λk−1

��� ���
"

− 4S1sin2
σΔx
2

� �
〠
k−1

j=0
C qð Þ

j+1 − C qð Þ
j

� �
λk−j
��� ���

 

− 〠
k−1

j=1
C qð Þ

j − C qð Þ
j−1

� �
λk−j
��� ���

!#
, λk+1
��� ���

≤
1

1 + 4S1sin2 σΔx/2ð Þ

� 2 + 4S1sin2
σΔx
2

� �� �
λ0
�� �� − λ0

�� ��"

− 4S1sin2
σΔx
2

� �
〠
k−1

j=0
C qð Þ

j+1 − C qð Þ
j

� �
λ0
�� �� 

− 〠
k−1

j=1
C qð Þ

j − C qð Þ
j−1

� �
λ0
�� ��Þ

#
,

≤
1

1 + 4S1sin2 σΔx/2ð Þ

� 2 + 4S1sin2
σΔx
2

� �
− 1 − 4S1sin2

σΔx
2

� �"

� 〠
k−1

j=0
C qð Þ

j+1 − C qð Þ
j

� �
− 〠

k−1

j=1
C qð Þ

j − C qð Þ
j−1

� � !#
λ0
�� ��,

≤
1

1 + 4S1sin2 σΔx/2ð Þ

� 1 + 4S1sin2
σΔx
2

� �
− 4S1sin2

σΔx
2

� ��

� C qð Þ
1 − C qð Þ

k−1

� �
− C qð Þ

1 − C qð Þ
k−2

� �� ��
λ0
�� ��,

≤
1

1 + 4S1sin2 σΔx/2ð Þ

� 1 + 4S1sin2
σΔx
2

� �
− 4S1sin2

σΔx
2

� ��

� C qð Þ
k−2 − C qð Þ

k−1

� ��
λ0
�� ��: ð24Þ

From Lemma 2, the value 0 < CðqÞ
k−2 − CðqÞ

k−1Þ < 1, so it is
clear that the value

0 <
1 + 4S1sin2 σΔx/2ð Þ − 4S1sin2 σΔx/2ð Þ C qð Þ

k−2 − C qð Þ
k−1

� �
1 + 4S1sin2 σΔx/2ð Þ < 1,

λk+1
��� ��� ≤ λ0

�� ��:
ð25Þ

Here, jλk+1j ≤ jλ0j, also jEk+1
i j ≤ jE0

i j, so it can written as
kEk+1

i k2 ≤ kE0
i k2. It shows that the suggested approach is

unconditionally stable.

5. Consistency

To find the consistency analysis, supposew is the closed form
solution, and W is the approximated solution, and the func-
tion YðWÞ = 0 is the approximated scheme for the proposed
equation at the mesh point ðxi, tkÞ. Then, YðWÞ = Tk

i
denoted the local truncation error at ðxi, tkÞ.

Theorem 4. The local transcation error Tðx, tÞ for the
suggested scheme is Tk

i =OðΔt2Þ +OðΔxÞ2:
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Proof. The obtained difference scheme in equation (12), can
also be written as:

Tk+1
i = Yk+1

i − 2Yk
i + Yk−1

i

− S1 〠
k

j=0
C qð Þ

j uk−j+1i+1 − 2uk−j+1i + uk−j+1i−1

� �

− 2〠
k−1

j=0
C qð Þ

j uk−ji+1 − 2uk−ji + uk−ji−1

� �

+ 〠
k−2

j=0
C qð Þ

j uk−j−1i+1 − 2uk−j−1i + uk−j−1i−1

� �
,

ð26Þ

using Taylor series, we obtained

Tk+1
i = uki + Δtð Þ ∂u∂t

����
k

i

+ Δtð Þ2
2!

∂2u
∂t2

k
i +

Δtð Þ3
3!

∂3u
∂t3

�����
�����
k

i

+⋯

0
@

1
A

− 2uki − uki − Δtð Þ ∂u∂t
����
k

i

+ Δtð Þ2
2!

∂2u
∂t2

k
i −

Δtð Þ3
3!

∂3u
∂t3

�����
�����
k

i

+⋯

0
@

1
A

− S1〠
k

j=0
C qð Þ

j uk−j+1i + Δxð Þ ∂u∂x
k−j+1
i + Δxð Þ2

2!
∂2u
∂x2

�����
�����
k−j+1

i

0
@

+ Δxð Þ3
3!

∂3u
∂x3

k−j+1
i +⋯−2uk−j+1i + uk−j+1i − Δxð Þ ∂u∂x
����

����
k−j+1

i

+ Δxð Þ2
2!

∂2u
∂x2

k−j+1
i −

Δxð Þ3
3!

∂3u
∂x3

�����
�����
k−j+1

i

+⋯

1
A

− 2S1 〠
k−1

j=0
C qð Þ

j uk−ji + Δxð Þ ∂u∂x
k−j
i + Δxð Þ2

2!
∂2u
∂x2

�����
�����
k−j

i

0
@

+ Δxð Þ3
3!

∂3u
∂x3

k−j
i +⋯−2uk−ji + uk−ji − Δxð Þ ∂u∂x
����

����
k−j

i

+ Δxð Þ2
2!

∂2u
∂x2

k−j
i −

Δxð Þ3
3!

∂3u
∂x3

�����
�����
k−j

i

+⋯

1
A

− S1 〠
k−2

j=0
C qð Þ

j uk−j−1i + Δxð Þ ∂u∂x
k−j−1
i + Δxð Þ2

2!
∂2u
∂x2

�����
�����
k−j−1

i

0
@

+ Δxð Þ3
3!

∂3u
∂x3

k−j−1
i +⋯−2uk−j−1i + uk−j−1i − Δxð Þ ∂u∂x
����

����
k−j−1

i

+ Δxð Þ2
2!

∂2u
∂x2

k−j−1
i −

Δxð Þ3
3!

∂3u
∂x3

�����
�����
k−j−1

i

+⋯

1
A,

Tk+1
i = Δtð Þ2 ∂

2u
∂t2

k
i +

Δtð Þ4
12

∂4u
∂t4

�����
�����
k

i

+⋯

0
@

1
A

+ S1〠
k

j=0
C qð Þ

j Δxð Þ2 ∂
2u

∂x2
k−j+1
i + Δxð Þ4

12
∂4u
∂x4

�����
�����
k−j+1

i

+⋯

0
@

1
A

− 2S1 〠
k−1

j=0
C qð Þ

j Δxð Þ2 ∂
2u

∂x2
k−j
i + Δxð Þ4

12
∂4u
∂x4

�����
�����
k−j

i

+⋯

0
@

1
A

− S1 〠
k−2

j=0
C qð Þ

j Δxð Þ2 ∂
2u

∂x2
k−j−1
i + Δxð Þ4

12
∂4u
∂x4

�����
�����
k−j−1

i
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The above equation can also be written as

Tk+1
i = Δtð Þ2 ∂2u

∂t2
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We obtained the following truncation error

Tk+1
i =O Δtð Þ2 +O Δxð Þ2: ð29Þ

The IDS of fractional diffusion-wave equation is consis-
tent if space step Δx and time step Δt approaches zero; then,
truncation error approaches zero.

Theorem 5. The consistency and stability analysis are both
the necessary and the sufficient for convergence. By Lax-
equivalence theorem [33], the proposed scheme is convergent.

6. Numerical Results

Here, the FDWE examples reported to find the accuracy and
feasibility of the scheme. The numerical examples are coded
in Maple 15, i.e., the maximum error, is defined as follows:

E∞ = max
0≤i≤M−1,0≤k≤N

y xi, tkð Þ − Yk
i

��� ���: ð30Þ

The E2 error is:

E2 = 〠
M−1

i=1
y xi, tkð Þ − Yk

i,j

� �2
Δxð Þ

 !1/2

: ð31Þ

The convergence order is:

C − order = log e1/e2ð Þ
log h1/h2ð Þ : ð32Þ

Example 6. In equations (1)–(3), take the source term Fðx, tÞ
= ðΓð3 + qÞ/Γð1 + qÞÞexx2ð1 − xÞ2tq − ðΓð3 + qÞ/Γð1 + 2qÞÞ
ext2qð2 − 8x + x2 + 6x3 + x4Þ and the closed solution Yðx, tÞ
= exx2ð1 − xÞ2tq+2.

Table 1: The numerical results of the IDS for Example 6 at T = 1:0.

τ = Δxð Þ2 q = 0:25 q = 0:5 q = 0:75
1/16 1:9802 × 10−2 1:9053 × 10−2 1:8120 × 10−2

1/64 5:0811 × 10−3 4:8647 × 10−3 4:6537 × 10−3

1/144 2:2611 × 10−3 3:1168 × 10−3 2:0756 × 10−3

1/256 1:1894 × 10−3 1:1418 × 10−3 1:1693 × 10−3

5Journal of Function Spaces



Example 7. In equations (1)–(3) taking the source term
Fðx, tÞ = eðxÞððΓð2 + qÞ/ΓðqÞÞtq−1 − ðΓð2 + qÞ/Γð2qÞÞt2q−1Þ and
the closed solution uðx, tÞ = eðxÞt1+q.

7. Discussion

The numerical examples 5.1 and 5.2 are solved by the sug-
gested numerical scheme in equation (12). Tables 1–4 repre-
sent the performance of the numerical results. The accuracy
level increases as reducing the space and the time step; please
refer to Tables 1 and 2 for different and same space and time

steps, respectively. In Table 3, fixed Δx = 1/100 and for vari-
ous values of τ and q, and find the convergence order
completely demonstrates the analysis theoretically. Similarly,
Table 4 also shows the accuracy for the second test example
5.2, which converges to the exact solution to reduce the error
by reducing the step size. From the above discussion, it is
clear that the proposed scheme proved our theoretical
analysis.

8. Conclusion

A practical and fast numerical scheme has been developed for
FDWE. The approximation is based on the discretization of
Riemann-Liouville integral in Lemma 1. We have success-
fully proved the analysis theoretically of stability by mathe-
matical induction, consistency, and convergence. The
numerical result confirmed our theoretical analysis and dem-
onstrated that the proposed scheme is fast convergent and
more feasible. This approach can also apply to other types
of FDWEs.
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