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This article characterizes the isometries between spaces of all differentiable functions from a compact interval of the real line into a
strictly convex Banach space.

1. Introduction

The main purpose of this article is to characterize the isome-
tries of the space of all (continuously) differentiable functions
from a compact interval of the real line into a strictly convex
Banach space.

Cambern ([1], Theorem 6.5.5) and Pathak [2] investigated
the surjective linear isometries over spaces of complex-valued
differentiable functions on the interval ½0, 1� and gave a rep-
resentation for such operators, and Jarosz and Pathak [3]
studied those operators over differentiable function spaces
defined on te compact subsets of the real line (without iso-
lated points). Also, Wang [4] studied the isometries between
spaces of scalar-valued (real case and complex case) differen-
tiable functions (and vanish at infinity) on the locally com-
pact subsets of the Euclidean spaces (without isolated
points) and gave a representation for such operators.

On the other hand, Botelho and Jamison [5] extended
these results to the surjective linear isometries on spaces of
1-time differentiable functions on ½0, 1� with values in a
finite-dimensional Hilbert space. In [5], the main result is
valid whenever the (real) dimension of the Hilbert space is
bigger than one. Compare with the assumptions in ([6], The-
orem 2.13). In [6], the authors investigated the isometries
between spaces of p-times differentiable functions (and van-
ish at infinity) on an open subset of the real line with values
in a strictly convex Banach space. Also, Li and Wang [7]
studied the isometries between spaces of p-times differentia-

ble functions (and vanish at infinity) on an open subset of the
Euclidean space with values in a reflexive and strictly convex
Banach space. In [7], there is a gap in the proof of Theorem
3.5 (page 553); in the proof of Claim 1, why f∂γTgðτðxÞÞ: γ
∈ Γg must have at most one nonzero term? Compare with
the proofs in ([4], Lemma 2.5) and ([2], Lemma 2.3).

Suppose that ðV , k·kÞ and ðW, k·kÞ are Banach spaces (on
the real line). Denote the space of all C1-functions f : ½0, 1�
→V by C1ð½0, 1�, VÞ, and on this space, we consider the fol-
lowing norm:

fk k1 ≔max
t∈ 0,1½ �

f tð Þk k + f ′ tð Þ�� ��n o
= max

t∈ 0,1½ �
f tð Þk k1

� �
<∞:

ð1Þ

Let T : C1ð½0, 1�, VÞ→ C1ð½0, 1�, VÞ be a surjective linear
isometry. In [5], it is shown when V is a finite dimensional
Hilbert space, there exists a linear isometry J : V → V such
that either Tð f ÞðtÞ = Jð f ðtÞÞ or Tð f ÞðtÞ = Jð f ð1 − tÞÞ, for all
f ∈ C1ð½0, 1�, VÞ and t ∈ ½0, 1�. In this article, we extend the
above result to a surjective isometry T : C1ð½0, 1�, VÞ→
C1ð½0, 1�,WÞ, whenever Banach spaces V and W are strictly
convex.

In [6], the authors described the surjective isometries
between spaces of p-times differentiable functions (and van-
ish at infinity) on an open subset of the real line with values
in a strictly convex Banach space (with dimension greater
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than one). Such a representation is as Tð f ÞðtÞ = Jtð f ∘ τðtÞÞ,
where Jt : V →W is a surjective linear isomorphism (for all
t ∈ ½0, 1�) and τ is a diffeomorphism (over ½0, 1�), and its
proof is based on the main result of [8]. By using the proof
of ([6], Lemma 2.12), we recover their representation in our
setting. Therefore, our description is better and its proof is
somewhat shorter and more elementary than the one in [6].
Also, in the appendix, we provide a proof for Theorem 13
for special case =W = R . In a forthcoming article, we
extend our result to the class of p-times differentiable
functions.

2. Characterization of T-Set in C1ð½0, 1�, VÞ
Suppose that ðV , k·kÞ is a Banach space on the real line. For
v1, v2 ∈ V \ f0g and x ∈ ½0, 1�, we define

S x, v1, v2ð Þ≔
n
f ∈ C1 0, 1½ �0, 1�, Vð Þ: fk k1 = f xð Þk k1&f xð Þ

∈ v1h i+&f ′ xð Þ ∈ v2h i+
o
,

ð2Þ

where hvi+ ≔ fu ∈ V : u = λv, for some λ ≥ 0g.
A T-set in a Banach space U is a subset S of U with the

property that for any finite collection x1,⋯, xn ∈ S, k∑n
i xik =

∑n
i kxik, and such that S is maximal with respect to this

property.
In this section, we show that every T-set of C1ð½0, 1�, VÞ

has a unique representation by some Sðx, v1, v2Þ, up to
hv1i+ and hv2i+, whenever V is strictly convex (compare with
([9], Lemma 7.2.2)). We start this section with two elemen-
tary Lemmas.

Lemma 1. For any x ∈ �0, 1½ and η > 0 such that 0 < x − η <
x + η < 1, there exists ϕ ∈ C1ð½0, 1�, RÞ in such a way that ϕðxÞ
= 0, supp ðϕÞ ⊂ �x − η, x + η½ and

ϕk k1 = ϕ xð Þk k1 > ϕ tð Þk k1, ð3Þ

for all t ∈ ½0, 1� \ fxg. Moreover, when x = 0 or x = 1, we can
state and prove a similar result.

Proof. For 0 < δ < ε < 1/4, define f ε,δ : ½−ε, ε�→ R as follows:

f ε,δ tð Þ≔
ffiffiffiffiffiffiffiffiffi
t + δ

p
−

ffiffiffi
δ

p
if t ≥ 0,

−
ffiffiffiffiffiffiffiffiffiffiffiffi
−t + δ

p
+

ffiffiffi
δ

p
if t ≤ 0:

(
ð4Þ

Then, it is easy to verify that f ε,δ ∈ C
1ð½−ε, ε�,RÞ and

f ε,δ
�� ��

1 = f ε,δ 0ð Þ�� ��
1 = 0 + 1

2
ffiffiffi
δ

p > f ε,δ tð Þ�� ��
1, ð5Þ

for all t ∈ ½−ε, ε� \ f0g. It is clear that f ε,δ can be extended as a
C1-function on ½−1/2, 1/2� with support in ½−ε+, ε+�, for any

ε+ ∈ �ε, 1/2½. Denote this extension of f ε,δ by ~f ε,δ. Now, by
choosing δ > 0 small enough (fixing ε and ε+), we have

~f ε,δ
��� ���

1
= ~f ε,δ 0ð Þ
��� ���

1
> ~f ε,δ tð Þ
��� ���

1
, ð6Þ

for all t ∈ ½−1/2, 1/2� \ f0g. Now, one can easily construct the
desired function ϕ as in Lemma 1.

For v ∈ V , the function v̂ ∈ C1ð½0, 1�, VÞ denotes the con-
stant function with value v.

Lemma 2. Let V be a Banach space, v1 ∈ V and v2 ∈ V \ f0g.
For any x ∈ ½0, 1�, there exists ϕ ∈ C1ð½0, 1�,VÞ in such a way
that ϕðxÞ = v1, ϕ′ðxÞ = v2 and

ϕk k1 = ϕ xð Þk k1 > ϕ tð Þk k1, ð7Þ

for all t ∈ ½0, 1� \ fxg.

Proof. Let ϕ0 be a function with the properties as in Lemma 1.
Then, ϕ≔ v̂1 + ðϕ0/ϕ0′ðxÞÞ v̂2 is the desired function.

Theorem 3. Let V be a strictly convex Banach space. Then,
every T-set of C1ð½0, 1�, VÞ is as Sðx, v1, v2Þ, for some x ∈ ½0,
1� and v1, v2 ∈ V \ f0g, and vice versa Sðx, v1, v2Þ is a T -set
of C1ð½0, 1�, VÞ.

Proof. First, we show that Sðx, v1, v2Þ is a T-set of C1ð½0, 1�,
VÞ, for any x ∈ ½0, 1� and v1, v2 ∈ V \ f0g. To do this, it is
enough to show the maximality property for Sðx, v1, v2Þ. Sup-
pose that h ∈ C1ð½0, 1�, VÞ such that kh + f k1 = khk1 + k f k1,
for any f ∈ Sðx, v1, v2Þ, we show that h ∈ Sðx, v1, v2Þ. Suppose
that khk1 > khðxÞk1. So, there exists an open neighborhood
of x in ½0, 1�, say Ux, such that khk1 > khðtÞk1, for all t ∈Ux.
By Lemma 1, there exists f1 ∈ Sðx, v1, v2Þ such that f1ðxÞ = 0,
f 1′ðxÞ = v2 and supp ð f1Þ ⊂Ux, and also

f1k k1 = f1 xð Þk k1 > f1 tð Þk k1, ð8Þ

for all t ∈ ½0, 1� \ fxg. Then, we have

h tð Þ + f1 tð Þk k1 ≤ h tð Þk k1 + f1 tð Þk k1 < hk k1 + f1k k1, ð9Þ

for all t ∈ ½0, 1�. This is a contradiction. Therefore, we get
khk1 = khðxÞk1.

Next, we prove that hðxÞ ∈ hv1i+ and h′ðxÞ ∈ hv2i+. We
know that f2 ≔ v̂1 + f1 ∈ Sðx, v1, v2Þ (see the proof of Lemma
2) and

h tð Þ + f2 tð Þk k1 ≤ h tð Þk k1 + f2 tð Þk k1 < hk k1 + f2k k1, ð10Þ
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for all t ∈ ½0, 1� \ fxg. Also, we have

h + f2k k1 = h xð Þ + f2 xð Þk k1
= h xð Þ + f2 xð Þk k + h′ xð Þ + f 2′ xð Þ�� ��
≤ h xð Þk k + f2 xð Þk k + h′ xð Þ�� �� + f 2′ xð Þ�� ��
= h xð Þk k + h′ xð Þ�� �� + f2 xð Þk k + f 2′ xð Þ�� ��
≤ hk k1 + f2k k1:

ð11Þ

By Equation (10) and the assumptions, we see that all
inequalities in Equation (11) are equalities. This implies that

h xð Þ + f2 xð Þk k = h xð Þk k + f2 xð Þk k,
h′ xð Þ + f 2′ xð Þ�� �� = h′ xð Þ�� �� + f 2′ xð Þ�� ��: ð12Þ

Since V is strictly convex, this implies that hðxÞ ∈
h f2ðxÞi+ and h′ðxÞ ∈ h f 2′ðxÞi+ and then hðxÞ ∈ hv1i+ and h′
ðxÞ ∈ hv2i+.

To prove the converse, suppose that S is a T-set in
C1ð½0, 1�, VÞ. For f ∈ S, define

Kf ≔ t ∈ 0, 1½ �: fk k1 = f tð Þk k1
� �

: ð13Þ

It is clear that Kf is a compact nonempty subset of
½0, 1�. Also, for any finite collection of elements f1, f2,⋯, f n
∈ S, we have

Tn
i=1Kf i

≠∅. By contradiction, suppose thatTn
i=1Kf i

=∅. This implies that for any t ∈ ½0, 1�, there exists
some f jt , for 1 ≤ jt ≤ n, such that k f jt ðtÞk1 < k f jtk1. Then,
we obtain

〠
n

i=1
f i tð Þ

�����
�����
1

≤ 〠
n

i=1
f i tð Þk k1 < 〠

n

i=1
f ik k1, ð14Þ

for all t ∈ ½0, 1�. So, we get

〠
n

i=1
f i tð Þ

�����
�����
1

< 〠
n

i=1
f ik k1, ð15Þ

for all t ∈ ½0, 1�. This is a contradiction. So,Tn
i=1Kf i

≠∅. This
implies that

T
f ∈SK f ≠∅. Let x ∈

T
f ∈SK f . Finally, by the

maximality property of S, since V is strictly convex, we see
that S = Sðx, v1, v2Þ, for some v1, v2 ∈ V \ f0g.

Next, we state a few simple facts about T-sets in C1ð½0,
1�, VÞ, whenever V is a strictly convex Banach space.

Proposition 4. Let V be a strictly convex Banach space. Con-
sider the space C1ð½0, 1�, VÞ, then we have

(i) Sðx, v1, v2Þ is not trivial, i.e., Sðx, v1, v2Þ ≠ f0g
(ii) Sðx, v1, v2Þ ∩ Sð�x, �v1, �v2Þ is not trivial, whenever x ≠ �x

(iii) If x ≠ �x, or v1 ∉ h�v1i+, or v2 ∉ h�v2i+, then Sðx, v1, v2Þ
≠ Sð�x, �v1, �v2Þ

(iv) If v1 ∉ h�v1i+, then

S x, v1, v2ð Þ
\

S x, �v1, v2ð Þ = f ∈ C1 0, 1½ �,Vð Þ: f xð Þ = 0
� �\

S x, v1, v2ð Þ:
ð16Þ

(v) If v2 ∉ h�v2i+, then

S x, v1, v2ð Þ
\

S x, v1, �v2ð Þ = f ∈ C1 0, 1½ �, Vð Þ: f ′ xð Þ = 0
n o
\

S x, v1, v2ð Þ:
ð17Þ

(vi) If v1 ∉ h�v1i+ and v2 ∉ h�v2i+, then

S x, v1, v2ð Þ
\

S x, �v1, �v2ð Þ = 0f g: ð18Þ

Proof. It is straightforward (using Lemma 1 and Lemma 2).

3. Main Results

In this section, by using results of the previous section about
T-sets in C1ð½0, 1�, VÞ, we obtain a few important properties
of a given isometry T : C1ð½0, 1�, VÞ→ C1ð½0, 1�,WÞ in order
to characterize such isometry.

Proposition 5. Let T : C1ð½0, 1�, VÞ→ C1ð½0, 1�,WÞ be a sur-
jective linear isometry, where V andW are two strictly convex
Banach spaces. Then,

(i) T maps a T-set in C1ð½0, 1�, VÞ to a T-set in C1ð½0,
1�,WÞ. In particular, for any x ∈ ½0, 1� and v1, v2 ∈
V \ f0g, there exist y ∈ ½0, 1� and w1,w2 ∈W \ f0g
such that TðSðx, v1, v2ÞÞ = Sðy,w1,w2Þ

(ii) If TðSðx, v1, v2ÞÞ = Sðy,w1,w2Þ and TðSðx, �v1, �v2ÞÞ =
Sð�y, �w1, �w2Þ, then y = �y

Proof. (i) Since T is an isometry, by definition, it is easy to see
that T maps a T-set to a T-set. Now, by Theorem 3, the proof
is complete. (ii) By contradiction, suppose that y ≠ �y.

First, we assume that dim ðVÞ > 1. By Proposition 4 (vi),
there exist u1, u2 ∈ V \ f0g such that

S x, u1, u2ð Þ
\

S x, v1, v2ð Þ = 0f g,
S x, u1, u2ð Þ

\
S x, �v1, �v2ð Þ = 0f g:

ð19Þ

Therefore, we obtain

T S x, u1, u2ð Þð Þ
\

S y,w1,w2ð Þ = 0f g,
T S x, u1, u2ð Þð Þ

\
S �y, �w1, �w2ð Þ = 0f g:

ð20Þ
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On the other hand, by part (i), we know that TðSðx, u1,
u2ÞÞ = Sðz, ζ1, ζ2Þ, for some z ∈ ½0, 1� and ζ1, ζ2 ∈W \ f0g.
Also, either z ≠ y or z ≠ �y. This is a contradiction, by Propo-
sition 4 (ii).

Next, we assume that V = R and dim ðWÞ > 1. Then,
there exist ζ1, ζ2 ∈W \ f0g and �x ∈ ½0, 1� \ fxg such that TðS
ð�x, v̂1, v̂2ÞÞ = Sðy, ζ1, ζ2Þ, for some v̂1, v̂2 ∈ V \ f0g. Now, by
considering T−1 and since T−1ðSðy,w1,w2ÞÞ = Sðx, v1, v2Þ
and T−1ðSðy, ζ1, ζ2ÞÞ = Sð�x, v̂1, v̂2Þ, we obtain a contradiction
as before (note that x ≠ �x).

Finally, we assume that V =W = R (see [3], page 202).
Also, we present a proof for this in the appendix.

Corollary 6. Let T : C1ð½0, 1�, VÞ→ C1ð½0, 1�,WÞ be a surjec-
tive linear isometry, where V and W are two strictly convex
Banach spaces. Then, there exists a bijection ΦT : ½0, 1�→ ½0,
1� such that TðSðx, v1, v2ÞÞ = SðΦTðxÞ,w1,w2Þ, ΦTðxÞ does
not depend on v1, v2 ∈ V (and w1,w2 ∈W).

Proof. It is an immediate consequence of Proposition 5.

Theorem 7. Let T : C1ð½0, 1�, VÞ→ C1ð½0, 1�,WÞ be a surjec-
tive linear isometry, where V and W are two strictly convex
Banach spaces. Then, T maps constant functions to constant
functions. In particular, T induces a linear isometry from V
onto W.

Proof. Suppose that v ∈ V \ f0g and the function ΦT is as in
Corollary 6. It is clear that v̂ ∈ Sðx, v, v2Þ, for all x ∈ ½0, 1�
and v2 ∈ V . Therefore, by Proposition 4 (iv) and (v) and
Proposition 5 (ii), for any x ∈ ½0, 1�, we see that either Tðv̂Þ
ðΦTðxÞÞ = 0 or ðTðv∧ÞÞ′ðΦTðxÞÞ = 0. Now, the theorem is
an immediate consequence of the following simple fact from
real analysis:

(i) Let h : R→V be a differentiable function such that
for any x ∈ R, either hðxÞ = 0 or h′ðxÞ = 0. Then, h is
a constant function

Proposition 8. Let T : C1ð½0, 1�, VÞ→ C1ð½0, 1�,WÞ be a sur-
jective linear isometry, where V andW are two strictly convex
Banach spaces. Consider x ∈ ½0, 1� and v1, v2 ∈ V \ f0g and
suppose that TðSðx, v1, v2ÞÞ = Sðy,w1,w2Þ, for some y ∈ ½0, 1�
and w1,w2 ∈W \ f0g. Then,

(i) If �v2 ∈ V \ f0g, then,

T S x, v1, �v2ð Þð Þ = S y,w1, �w2ð Þ, ð21Þ

for some �w2 ∈W \ f0g

(ii) If �v1 ∈ V \ f0g, then,

T S x, �v1, v2ð Þð Þ = S y, �w1,w2ð Þ, ð22Þ

for some �w1 ∈W \ f0g

Proof. (i) By Proposition 5 (ii), we know that TðSðx, v1, �v2ÞÞ
= Sðy, �w1, �w2Þ, for some �w1, �w2 ∈W \ f0g. On the other
hand, the constant function v̂1 ∈ C1ð½0, 1�, VÞ belongs to Sðx,
v1, vÞ, for all v ∈ V . Therefore, by Theorem 7, Tðv̂1Þ ∈ C1ð½0,
1�,WÞ is a constant function with value in hw1i+ ∩ h�w1i+. This
implies that �w1 ∈ hw1i+ (note that Tðv̂1Þ ≠ 0). So, this com-
pletes the proof. (ii) The proof is an immediate consequence
of part (i) applied to T−1 (by contradiction and using Proposi-
tion 4 (vi)).

Lemma 9. Suppose that f ∈ C2ð½0, 1�, VÞ, i.e., f is continuously
twice differentiable, such that f ðxÞ = 0 and f ′ðxÞ ≠ 0, for some
x ∈ �0, 1½. For any η > 0 such that 0 < x − η < x + η < 1, there
exists ϕ ∈ C1ð½0, 1�,VÞ such that ϕðxÞ = 0, ϕ′ðxÞ ∈ h f ′ðxÞi+,
supp ðϕÞ ⊂ �x − η, x + η½and

ϕk k1 = ϕ xð Þk k1 > ϕ tð Þk k1,
ϕ + fk k1 = ϕ xð Þ + f xð Þk k1 > ϕ tð Þ + f tð Þk k1,

ð23Þ

for all t ∈ ½0, 1� \ fxg. Moreover, when x = 0 or x = 1, we can
state and prove a similar result.

Proof. Since f ∈ C2ð½0, 1�, VÞ, there is a positive constant M
such that

f ′ sð Þ − f ′ tð Þ�� �� ≤M s − tj j, ð24Þ

for all s, t ∈ ½0, 1�. By using this fact, the rest of proof is similar
to the proof of Lemma 1, with a slight modification.

Remark 10. Lemma 9 is meaningful when f ′ðxÞ = 0. In fact,
for any v ∈ V \ f0g, there exists ϕ ∈ C1ð½0, 1�, VÞ satisfying
the conditions in Lemma 9, except, replacing the condition
of ϕ′ðxÞ ∈ h f ′ðxÞi+ with ϕ′ðxÞ ∈ hvi+ \ f0g.

Theorem 11. Let T : C1ð½0, 1�, VÞ→ C1ð½0, 1�,WÞ be a sur-
jective linear isometry, where V andW are two strictly convex
Banach spaces. Suppose that ΦT is as in Corollary 6 and con-
sider x ∈ ½0, 1�. Suppose that f ∈ C2ð½0, 1�,VÞ satisfies the con-
dition f ðxÞ = 0, then Tð f ÞðΦTðxÞÞ = 0.

Proof. By Lemma 9 and Remark 10, there exists a function
ϕ ∈ C1ð½0, 1�, VÞ in such a way that ϕðxÞ = 0:

ϕk k1 = ϕ xð Þk k1 > ϕ tð Þk k1,
ϕ + fk k1 = ϕ xð Þ + f xð Þk k1 > ϕ tð Þ + f tð Þk k1,

ð25Þ

for all t ∈ ½0, 1� \ fxg. This implies that ϕ + f ∈ Sðx, v, v2Þ, for
all v ∈ V \ f0g and some v2 ∈ V \ f0g. Now, by Proposition 8
(ii), we see that Tðϕ + f Þ ∈ SðΦTðxÞ,w,w2Þ, for all w ∈W \
f0g and some w2 ∈W \ f0g. So, by Proposition 4 (iv), we
have Tðϕ + f ÞðΦTðxÞÞ = 0. Similarly, we can show that TðϕÞ
ðΦTðxÞÞ = 0. This completes the proof of theorem.

Corollary 12. In Theorem 11, we can replace the condition f
∈ C2ð½0, 1�, VÞ with the weaker assumption f ∈ C1ð½0, 1�, VÞ.
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Proof. It is an immediate consequence of the density of
C2ð½0, 1�, VÞ in C1ð½0, 1�,VÞ (with k·k1 norm).

Theorem 13. Let T : C1ð½0, 1�, VÞ→ C1ð½0, 1�,WÞ be a sur-
jective linear isometry, where V andW are two strictly convex
Banach spaces. Then, there exists a surjective linear isometry
J : V →W, such that either Tð f ÞðtÞ = Jð f ðtÞÞ or Tð f ÞðtÞ = J
ð f ð1 − tÞÞ, for all f ∈ C1ð½0, 1�, VÞ and t ∈ ½0, 1�.

Proof. By Theorem 7, we know that T maps the constant
function v̂ ∈ C1ð½0, 1�, VÞ with value v ∈ V to the constant
function ŵ ∈ C1ð½0, 1�,WÞ, for some w ∈W. So, T induces a
surjective linear isometry J : V →W. Now, let f be an arbi-
trary element of C1ð½0, 1�, VÞ and let x be an arbitrary ele-

ment of ½0, 1�. Define g≔ f − df ðxÞ ∈ C1ð½0, 1�, VÞ. It is clear
that gðxÞ = 0, so by Corollary 12, we obtain TðgÞðΦTðxÞÞ =
0. This implies that Tð f ÞðΦTðxÞÞ = Jð f ðxÞÞ, for all f ∈ C1ð½0,
1�, VÞ and x ∈ ½0, 1�. Finally, by a standard argument, we
can show that ΦT is differentiable on ½0, 1� and the absolute
value of its derivative is a constant function with value 1. This
completes the proof of theorem.

Remark 14. Theorem 13 remains meaningful and valid for a
surjective linear isometry T : C1ð½a, b�, VÞ→ C1ð½c, d�,WÞ
as well, and as a consequence, we see that the intervals ½a, b�
and ½c, d� should have equal length.

Appendix

In this appendix, we provide a proof for Proposition 5 (ii)
whenever V =W = R. To do this, we need to show that y = �y.

Without loss of generality, we may assume that v1 = v2 =
�v1 = 1 and �v2 = −1 and also wi = ±1 and �wi = ±1, for i = 1, 2.

On the other hand, by Proposition 1.3 (or Equation (1.2))
in [5] (see also ([1], 6.5)), for any w ∈ ½0, 1�, θ1 = ±1 and
θ2 = ±1, there exist z = zðw, θ1, θ2Þ ∈ ½0, 1�, Θ1 =Θ1ðw, θ1,
θ2Þ = ±1, and Θ2 =Θ2ðw, θ1, θ2Þ = ±1, such that

θ1 f wð Þ + θ2 f ′ wð Þ =Θ1g zð Þ +Θ2g′ zð Þ, ðA:1Þ

for all f ∈ C1ð½0, 1�, VÞ, where g≔ Tf . In particular, there
exist z1, z2 ∈ ½0, 1�, αi = ±1, and βi = ±1, for i = 1, 2, such
that

f xð Þ + f ′ xð Þ = α1g z1ð Þ + α2g′ z1ð Þ,
f xð Þ − f ′ xð Þ = β1g z2ð Þ + β2g′ z2ð Þ,

ðA:2Þ

for all f ∈ C1ð½0, 1�,VÞ, where g≔ Tf .
Now, we show that y = z1, �y = z2, α2 =w2, β2 = �w2 and

α1 = β1 =w1 = �w1. To do this, by Lemma 1, there exists a
function ϕ ∈ Sðy,w1,w2Þ in such a way that ϕðyÞ = 0, ϕ′ðyÞ =
w2, and also

1 = ϕk k1 = ϕ yð Þk k1 > ϕ sð Þk k1, ðA:3Þ

for all s ∈ ½0, 1� \ fyg. Since Φ≔ T−1ðϕÞ ∈ Sðx, v1, v2Þ and

1 =Φ xð Þ +Φ′ xð Þ = α1ϕ z1ð Þ + α2ϕ′ z1ð Þ = α2w2: ðA:4Þ

This implies that y = z1 and α2 =w2. Similarly, we can show
that �y = z2 and β2 = �w2.

Next, we show that T maps a constant function to a con-
stant function. Suppose that the image of f0 ∈ C

1ð½0, 1�, VÞ
under T is the constant function g0 ∈ C

1ð½0, 1�,WÞ with
value 1. Then, by Equation (A.1), we have

f0 wð Þ + f 0′ wð Þ = γ1,
f0 wð Þ − f 0′ wð Þ = η1,

ðA:5Þ

for all w ∈ ½0, 1�, where γ1 = ±1 and η1 = ±1. Then, we obtain

2f0 wð Þ = γ1 + η1, ðA:6Þ

for all w ∈ ½0, 1�. Since f0 is continuous and ½0, 1� is connected,
we see that f0 should be constant with value α1 = β1 =w1 = �w1.

By a simple argument similar to the proof of ([2], Lemma
1.4), we can show that the map w↦ z is a well-defined
homeomorphism from ½0, 1� onto itself (for fixed values θ1
and θ2 in Equation (A.1)); we denote this homeomorphism
by hTθ1,θ2 = hθ1,θ2 .

Let A1,1 denote the set of all w ∈ ½0, 1� such that

f wð Þ + f ′ wð Þ = α1g zð Þ + α2g′ zð Þ, ðA:7Þ

for all f ∈ C1ð½0, 1�, VÞ, where g≔ Tf and z = h1,1ðwÞ. One
can easily show that A1,1 is a closed and open set in ½0, 1�,
and since x ∈ A1,1, we obtain A1,1 = ½0, 1�. Similarly, we can
define A1,−1 and show that A1,−1 = ½0, 1�. Therefore, we have

f wð Þ + f ′ wð Þ = α1g h1,1 wð Þð Þ + α2g′ h1,1 wð Þð Þ, ðA:8Þ

f wð Þ − f ′ wð Þ = β1g h1,−1 wð Þð Þ + β2g′ h1,−1 wð Þð Þ, ðA:9Þ

for all f ∈ C1ð½0, 1�, VÞ and all w ∈ ½0, 1�, where g≔ Tf (note
that α2 =w2, β2 = �w2 and α1 = β1 =w1 = �w1). If α2 = β2, by
considering T−1 and the corresponding homeomorphism

hT
−1

α1,α2 , we obtain a contradiction.
So, we have α2 = −β2. Now, by choosing f ðtÞ≔ exp ðtÞ in

Equation (A.8), we see that gðsÞ≔ Tf ðsÞ satisfies

2 exp tð Þ =w1g h1,1 tð Þð Þ +w2g′ h1,1 tð Þð Þ,
0 =w1g h1,−1 tð Þð Þ −w2g′ h1,−1 tð Þð Þ,

ðA:10Þ

for all t ∈ ½0, 1�. From the second equation, we see that g
ðsÞ = λ exp ðw1w2sÞ, for some constant λ ∈ R. By the first
equation, we have

exp tð Þ = λw1 exp w1 w2 h1,1 tð Þð Þ, ðA:11Þ
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for all t ∈ ½0, 1�. In particular, for t = 0, we get

1 = λw1 exp w1 w2 h1,1 0ð Þð Þ, ðA:12Þ

and λw1 > 0. On the other hand, since h1,1 is a homeo-
morphism on ½0, 1�, h1,1ð0Þ is equal to 0 or 1.

If h1,1ð0Þ = 0, we obtain λw1 = 1 and then we get

exp tð Þ = exp w1 w2 h1,1 tð Þð Þ, ðA:13Þ

for all t ∈ ½0, 1�. This implies thatw1 w2 = 1 and h1,1ðtÞ = t, for
all t ∈ ½0, 1�. Then, since y = h1,1ðxÞÞ, we obtain y = x.

If h1,1ð0Þ = 1, we obtain λw1 = exp ð−w1 w2Þ and then we
get

exp tð Þ = exp w1 w2 −1 + h1,1 tð Þð Þð Þ, ðA:14Þ

for all t ∈ ½0, 1�. This implies that w1 w2 = −1 and h1,1ðtÞ
= 1 − t, for all t ∈ ½0, 1�. Then, since y = h1,1ðxÞÞ, we obtain
y = 1 − x.

Therefore, either y = x, whenever w1w2 > 0 or y = 1 − x,
whenever w1w2 < 0. Similarly, by using f ðtÞ≔ exp ð−tÞ and
h1,−1, we can show that either �y = x, whenever w1w2 > 0 or
�y = 1 − x, whenever w1w2 < 0. Finally, we obtain y = �y, as
desired.

Remark 15. By the above constructions, one can provide a
direct proof for Theorem 13, whenever V =W = R. Also, in
([1], 6.5), one can find a proof for Theorem 13, whenever
V =W is the complex plane (note that its dimension over
the real line is 2).
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