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In this paper, we use ω-distance to prove the existence, uniqueness, and iterative approximations of fixed points for a few
contractive mappings of integral type in complete metric spaces. The proved results are used to investigate the solvability of
certain nonlinear integral equations. Four examples are given.

1. Introduction

The researchers [1–17] attained various generalizations of
the well-known Banach contraction principle. In 2001,
Rhoades [15] certified several fixed point results for the
weakly contractive mappings. Branciari [1] introduced the
notion of integral type contraction and established a nice
fixed point result for the mapping. Many authors investigated
the existence of fixed points for a lot of contractive mappings
of integral type, for example, see [11–14]. Particularly, Liu
et al. [14] obtained several fixed point theorems for contrac-
tive mappings of integral type in complete metric spaces.

Kada et al. [8] introduced the concept of ω-distance in
metric spaces and proved a few fixed point theorems for
some contractive mappings by using ω-distance. It is clear
that the results in [8] extended the Caristi’s fixed point theo-
rem, Ekeland’s ε-variational’s principle, and the nonconvex
minimization theorem. The researchers in [3, 5–7, 9, 10,
17] got several fixed point results for certain contractive map-
pings with respect to ω-distance.

In this paper, we prove the existence, uniqueness, and iter-
ative approximations of fixed points for several kinds of map-
pings, which satisfy some contractive conditions of integral

type with respect to ω-distance in complete metric spaces. We
also construct four illustrative examples and give applications
of the obtained results in nonlinear Fredholm andVolterra inte-
gral equations, respectively. Our results generalize or differ from
the corresponding fixed point theorems in [1, 14, 15].

2. Preliminaries

Letℕ denotes the set of all positive integers, R = ð−∞, +∞Þ,
R+ = ½0,+∞Þ, N0 =N ∪ f0g and

Φ1 = w ∣w : R+ → R+is Lebesgue integrable, summable on eachf
compact subset of R+ and

ðε
0
w rð Þdr > 0 for each ε > 0

�
;

Φ2 = w ∣w ∈Φ1 and satisfies that
ðu
0
w rð Þdr <

ðv
0
w rð Þdr for each

�
u, v ∈ R+ with u < vg ;

Φ3 = w ∣w : R+ → R+ is nondecreasing, continuous,w 0ð Þf
= 0, lim

t→+∞
w tð Þ = +∞andw tð Þ > 0 for each t > 0

o
;
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Φ4 = w ∣w : R+ → R+ is lower semi − continuous,w 0ð Þf
= 0 andw tð Þ > 0 for each t > 0g: ð1Þ

Recall that a self-mapping f in a metric space X is called
orbitally continuous if limn→∞ f nx = u implies limn→∞ f n+1x
= f u for each f f nxgn∈N0

⊆ X and u∈X.

3. Fixed Point Results with respect to ω
-Distance

In this section, using ω-distance, we give four fixed point the-
orems for the contractive mappings (2), (38), (82), and (114)
below.

Theorem 1. Let p be a ω-distance in a complete metric space
ðX, dÞ and let f : X → X satisfy that

ðp f x,f yð Þ

0
w rð Þdr ≤

ðp x,yð Þ

0
w rð Þdr −

ðψ p x,yð Þð Þ

0
w rð Þdr,∀x, y ∈ X:

ð2Þ

Here, ðw, ψÞ ∈Φ1 ×Φ4. Then, f possesses a unique fixed point
u ∈ X such that pðu, uÞ = 0,

limn→∞p f nx0, uð Þ = 0 and limn→∞ f nx0 = u for each x0 ∈ X:
ð3Þ

Proof. Firstly, we claim the existence of fixed points of f in X.
Put x0 ∈ X and xn = f nx0 for each n ∈N0. Now, we need to
think over two situations as follows:

Case 2. xn0 = xn0−1 for some n0 ∈N . Clearly, xn0−1 is a fixed
point of f and limn→∞ f nx0 = xn0−1. Suppose that pðxn0−1,
xn0−1Þ > 0. Making use of (2) and ðw, ψÞ ∈Φ1 ×Φ4, we obtain
that

ðp xn0−1,xn0−1ð Þ
0

w rð Þdr =
ðp f xn0−1,f xn0−1ð Þ
0

w rð Þdr

≤
ðp xn0−1,xn0−1ð Þ
0

w rð Þdr

−
ðψ p xn0−1,xn0−1ð Þð Þ
0

w rð Þdr

<
ðp xn0−1,xn0−1ð Þ
0

w rð Þdr,

ð4Þ

which is ridiculous. Hence, pðxn0−1, xn0−1Þ = 0, which means
that

lim
n→∞

p f nx0, xn0−1
� �

= p xn0−1, xn0−1
� �

= 0 ; ð5Þ

Case 3. xn ≠ xn−1 for all n ∈N . Suppose that

p xn0−1, xn0
� �

= 0 for some n0 ∈N: ð6Þ

(2), (6), and ðw, ψÞ ∈Φ1 ×Φ4 ensure that

0 ≤
ðp xn0 ,xn0+1ð Þ
0

w rð Þdr =
ðp f xn0−1,f xn0ð Þ
0

w rð Þdr

≤
ðp xn0−1,xn0ð Þ
0

w rð Þdr −
ðψ p xn0−1,xn0ð Þð Þ
0

w rð Þdr = 0,
ð7Þ

that is,

ðp xn0 ,xn0+1ð Þ
0

w rð Þdr = 0: ð8Þ

The above equation and w ∈Φ1 give that

p xn0 , xn0+1
� �

= 0: ð9Þ

Combining (6), (9), and ðp1Þ, we know that

0 ≤ p xn0−1, xn0+1
� �

≤ p xn0−1, xn0
� �

+ p xn0 , xn0+1
� �

= 0, ð10Þ

that is,

p xn0−1, xn0+1
� �

= 0: ð11Þ

Because of Lemma 1 in [8], (6), and (11), we deduce that
xn0 = xn0+1, which is contradictive, and, hence,

p xn−1, xnð Þ > 0,∀n ∈N: ð12Þ

By means of ðw, ψÞ ∈Φ1 ×Φ4, (2) and (12), we have

ðp xn ,xn+1ð Þ

0
w rð Þdr =

ðp f xn−1,f xnð Þ

0
w rð Þdr

≤
ðp xn−1,xnð Þ

0
w rð Þdr −

ðψ p xn−1,xnð Þð Þ

0
w rð Þdr

<
ðp xn−1,xnð Þ

0
w rð Þdr,∀n ∈N ,

ð13Þ

which together with (12) and w ∈Φ1 ensures that

0 < p xn, xn+1ð Þ < p xn−1, xnð Þ,∀n ∈N: ð14Þ

We see from (14) that fpðxn, xn+1Þgn∈N0
is a positive and

strictly decreasing sequence. It follows that

lim
n→∞

p xn, xn+1ð Þ = c for some c ≥ 0: ð15Þ

Now, we claim that c = 0. Otherwise, c > 0. In view of
Lemma 2.1 in [12], (2), (15), and ðw, ψÞ ∈Φ1 ×Φ4, we see
that
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ðc
0
w rð Þdr = limsup

n→∞

ðp xn ,xn+1ð Þ

0
w rð Þdr

= limsup
n→∞

ðp f xn−1,f xnð Þ

0
w rð Þdr

≤ limsup
n→∞

ðp xn−1,xnð Þ

0
w rð Þdr −

ðψ p xn−1,xnð Þð Þ

0
w rð Þdr

� �

≤ limsup
n→∞

ðp xn−1,xnð Þ

0
w rð Þdr

− liminf
n→∞

ðψ p xn−1,xnð Þð Þ

0
w rð Þdr

≤
ðc
0
w rð Þdr −

ðψ cð Þ

0
w rð Þdr <

ðc
0
w rð Þdr:

ð16Þ

It is ridiculous. Therefore, c = 0. Consequently,

lim
n→∞

p xn, xn+1ð Þ = 0: ð17Þ

In the same way, we have

lim
n→∞

p xn+1, xnð Þ = 0: ð18Þ

Now, we proceed to show that

lim
n,m→∞

p xn, xmð Þ = 0: ð19Þ

Suppose that there exists a real number ε > 0 such that for
every k ∈N , there exist mðkÞ, nðkÞ ∈N satisfying

p xn kð Þ, xm kð Þ
� 	

> ε,m kð Þ > n kð Þ > k,∀k ∈N: ð20Þ

For each k ∈N , mðkÞ denotes the least integer exceeding
nðkÞ and satisfying (20). Obviously,

p xn kð Þ, xm kð Þ
� 	

> ε and p xn kð Þ, xm kð Þ−1
� 	

≤ ε,∀k ∈N: ð21Þ

On account of ðp1Þ and (21), we obtain that

ε < p xn kð Þ, xm kð Þ
� 	

≤ p xn kð Þ, xn kð Þ−1
� 	

+ p xn kð Þ−1, xm kð Þ−1
� 	

+ p xm kð Þ−1, xm kð Þ
� 	

≤ p xn kð Þ, xn kð Þ−1
� 	

+ p xn kð Þ−1, xn kð Þ
� 	

+ p xn kð Þ, xm kð Þ−1
� 	

+ p xm kð Þ−1, xm kð Þ
� 	

≤ p xn kð Þ, xn kð Þ−1
� 	

+ p xn kð Þ−1, xn kð Þ
� 	

+ ε + p xm kð Þ−1, xm kð Þ
� 	

,∀k ∈N:

ð22Þ

Letting k tend to infinity in (22) and taking advantage of

(17), (18), and (21), we have

lim
k→∞

p xn kð Þ, xm kð Þ
� 	

= lim
k→∞

p xn kð Þ−1, xm kð Þ−1
� 	

= ε: ð23Þ

In light of Lemma 2.1 in [12], (2), (23), and ðw, ψÞ ∈Φ1
×Φ4, we deduct that

ðε
0
w rð Þdr = limsup

k→∞

ðp xn kð Þ ,xm kð Þð Þ
0

w rð Þdr

= limsup
k→∞

ðp f xn kð Þ−1,f xm kð Þ−1ð Þ
0

w rð Þdr

≤ limsup
k→∞

ðp xn kð Þ−1,xm kð Þ−1ð Þ
0

w rð Þdr −
ðψ p xn kð Þ−1,xm kð Þ−1ð Þð Þ
0

w rð Þdr
 !

≤ limsup
k→∞

ðp xn kð Þ−1,xm kð Þ−1ð Þ
0

w rð Þdr − liminf
k→∞

ðψ p xn kð Þ−1,xm kð Þ−1ð Þð Þ
0

w rð Þdr

≤
ðε
0
w rð Þdr −

ðψ εð Þ

0
w rð Þdr <

ðε
0
w rð Þdr:

ð24Þ

It is ridiculous. Of course, (19) is true.
Assume that ε > 0 and δ denotes the real number appear-

ing in (3) of [8]. By means of (19), we infer that there isN ∈N
satisfying

p xN , xnð Þ < δ, p xN , xmð Þ < δ,∀n,m >N , ð25Þ

which ensures that

d xn, xmð Þ ≤ ε,∀n,m >N: ð26Þ

So fxngn∈N0
is a Cauchy sequence. Completeness of X

means that

lim
n→∞

xn = u for some u ∈ X: ð27Þ

According to (19), we are aware of the fact that for any
ε > 0 there is M ∈N with

p xn, xmð Þ < ε,∀m > n >M, ð28Þ

which together with (27) gives that

0 ≤ p xn, uð Þ ≤ liminf
m→∞

p xn, xmð Þ ≤ ε,∀n >M: ð29Þ

It follows that

lim
n→∞

p xn, uð Þ = 0: ð30Þ

Taking account of (2), (30), ðw, ψÞ ∈Φ1 ×Φ4, and
Lemma 2.1 in [12], we infer that
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0 ≤ limsup
n→∞

ðp f xn ,f uð Þ

0
w rð Þdr

≤ limsup
n→∞

ðp xn ,uð Þ

0
w rð Þdr −

ðψ p xn ,uð Þð Þ

0
w rð Þdr

� �

≤ limsup
n→∞

ðp xn ,uð Þ

0
w rð Þdr − liminf

n→∞

ðψ p xn ,uð Þð Þ

0
w rð Þdr

≤ 0 −
ðψ 0ð Þ

0
w rð Þdr = 0:

ð31Þ

It follows that

lim
n→∞

ðp f xn ,f uð Þ

0
w rð Þdr = 0: ð32Þ

Lemma 2.2 in [12] and the above equation give that

lim
n→∞

p f xn, f uð Þ = lim
n→∞

p xn+1, f uð Þ = 0: ð33Þ

We get from (1) in [8] and (17) that

0 ≤ p xn, f uð Þ ≤ p xn, xn+1ð Þ + p xn+1, f uð Þ→ 0 asn→∞:

ð34Þ

Clearly,

lim
n→∞

p xn, f uð Þ = 0: ð35Þ

Applying (30), (35), and Lemma 1 in [8], we gain that u
= f u.

Secondly, we prove that pðu, uÞ = 0. Suppose that pðu, u
Þ > 0. In view of ðw, ψÞ ∈Φ1 ×Φ4 and (2), we receive that

0 <
ðp u,uð Þ

0
w rð Þdr =

ðp f u,f uð Þ

0
w rð Þdr

≤
ðp u,uð Þ

0
w rð Þdr −

ðψ p u,uð Þð Þ

0
w rð Þdr

<
ðp u,uð Þ

0
w rð Þdr,

ð36Þ

which is not possible. Hence, pðu, uÞ = 0.
Thirdly, we assert the uniqueness of fixed points of f in X.

Assume that f possesses two fixed points u, v ∈ X. We know,
analogous to the proof of (36), that pðu, uÞ = pðv, vÞ = 0.
Assume that pðu, vÞ > 0. Due to ðw, ψÞ ∈Φ1 ×Φ4 and (2),
we deduce that

0 <
ðp u,vð Þ

0
w rð Þdr =

ðp f u,f vð Þ

0
w rð Þdr

≤
ðp u,vð Þ

0
w rð Þdr −

ðψ p u,vð Þð Þ

0
w rð Þdr

<
ðp u,vð Þ

0
w rð Þdr,

ð37Þ

which is ridiculous. Consequently, pðu, vÞ = 0. Using Lemma
1 in [8] and pðu, uÞ = 0, we obtain that u = v.

Theorem 4. Let p be a ω-distance in a complete metric space
ðX, dÞ and let f : X→ X satisfy that

ðp f x,f yð Þ

0
w rð Þdr ≤

ðp x,yð Þ

0
w rð Þdr −

ðψ p x,f yð Þð Þ

0
w rð Þdr,∀x, y ∈ X:

ð38Þ

Here, ðw, ψÞ ∈Φ2 ×Φ4. Then, f possesses a unique fixed point
u ∈ X such that pðu, uÞ = 0,

limn→∞p f nx0, uð Þ = 0 and limn→∞ f nx0 = u for each x0 ∈ X:
ð39Þ

Proof. Firstly, we show that f possesses fixed points in X. Let
x0∈X and xn = f nx0 for each n ∈N0. Now, we divide the proof
into two steps.

Step 5. Put xn0 = xn0−1 for some n0 ∈N . In addition, xn0−1 is a
fixed point of f and limn→∞ f nx0 = xn0−1. Suppose that pð
xn0−1, xn0−1Þ > 0. Owing to (38) and ðw, ψÞ ∈Φ2 ×Φ4, we
acquire that

ðp xn0−1,xn0−1ð Þ
0

w rð Þdr =
ðp f xn0−1,f xn0−1ð Þ
0

w rð Þdr

≤
ðp xn0−1,xn0−1ð Þ
0

w rð Þdr

−
ðψ p xn0−1,f xn0−1ð Þð Þ
0

w rð Þdr

=
ðp xn0−1,xn0−1ð Þ
0

w rð Þdr

−
ðψ p xn0−1,xn0−1ð Þð Þ
0

w rð Þdr

<
ðp xn0−1,xn0−1ð Þ
0

w rð Þdr,

ð40Þ

which is ridiculous. Hence, pðxn0−1, xn0−1Þ = 0, which means
that

lim
n→∞

p f nx0, xn0−1
� �

= p xn0−1, xn0−1
� �

= 0 ; ð41Þ

Step 6. xn ≠ xn−1 for all n ∈N . Assume that

p xn0 , xn0−1
� �

= 0 for some n0 ∈N: ð42Þ

4 Journal of Function Spaces



Using ðw, ψÞ ∈Φ2 ×Φ4, (38), and (42), we conclude that

0 ≤
ðp xn0+1,xn0ð Þ
0

w rð Þdr =
ðp f xn0 ,f xn0−1ð Þ
0

w rð Þdr

≤
ðp xn0 ,xn0−1ð Þ
0

w rð Þdr −
ðψ p xn0 ,f xn0−1ð Þð Þ
0

w rð Þdr

=
ðp xn0 ,xn0−1ð Þ
0

w rð Þdr −
ðψ p xn0 ,xn0ð Þð Þ
0

w rð Þdr ≤ 0:

ð43Þ

It becomes that

ðp xn0+1,xn0ð Þ
0

w rð Þdr = 0: ð44Þ

Thus, w ∈Φ2 and the above equation guarantee that

p xn0+1, xn0
� �

= 0: ð45Þ

As a result of (42), (45), and (1) in [8], we deduce that

0 ≤ p xn0+1, xn0−1
� �

≤ p xn0+1, xn0
� �

+ p xn0 , xn0−1
� �

= 0, ð46Þ

in other words,

p xn0+1, xn0−1
� �

= 0: ð47Þ

From (45), (47), and Lemma 1 in [8], we obtain that xn0
= xn0−1, which is impossible, and, hence,

p xn, xn−1ð Þ > 0,∀n ∈N: ð48Þ

Suppose that there exists q ∈N with

p xq+1, xq
� �

> p xq, xq−1
� �

: ð49Þ

In light of (38), (48), (49), and ðw, ψÞ ∈Φ2 ×Φ4, we infer
that

0 <
ðp xq ,xq−1ð Þ
0

w rð Þdr <
ðp xq+1,xqð Þ
0

w rð Þdr

=
ðp f xq ,f xq−1ð Þ
0

w rð Þdr ≤
ðp xq ,xq−1ð Þ
0

w rð Þdr

−
ðψ p xq ,f xq−1ð Þð Þ
0

w rð Þdr =
ðp xq ,xq−1ð Þ
0

w rð Þdr

−
ðψ p xq ,xqð Þð Þ
0

w rð Þdr ≤
ðp xq ,xq−1ð Þ
0

w rð Þdr:

ð50Þ

It is ridiculous. By means of (48), we get that

0 < p xn+1, xnð Þ ≤ p xn, xn−1ð Þ,∀n ∈N: ð51Þ

Thus, (51) means that the sequence fpðxn+1, xnÞgn∈N0
is

both positive and decreasing. Consequently,

lim
n→∞

p xn+1, xnð Þ = v for some v ≥ 0: ð52Þ

Assume that

p xj+2, xj
� �

> p xj+1, xj−1
� �

for some j ∈N: ð53Þ

In terms of (38), (53), and ðw, ψÞ ∈Φ2 ×Φ4, we attain
that

0 ≤
ðp xj+1,xj−1ð Þ
0

w rð Þdr <
ðp xj+2,xjð Þ
0

w rð Þdr

=
ðp f xj+1,f x j−1ð Þ
0

w rð Þdr ≤
ðp x j+1,xj−1ð Þ
0

w rð Þdr

−
ðψ p xj+1,f x j−1ð Þð Þ
0

w rð Þdr =
ðp xj+1,xj−1ð Þ
0

w rð Þdr

−
ðψ p xj+1,xjð Þð Þ
0

w rð Þdr ≤
ðp x j+1,xj−1ð Þ
0

w rð Þdr,

ð54Þ

which is ridiculous. Hence,

0 ≤ p xn+2, xnð Þ ≤ p xn+1, xn−1ð Þ, ∀n ∈N: ð55Þ

We get from (55) that the sequence fpðxn+2, xnÞgn∈N0
is

both nonnegative and nonincreasing. Thus,

lim
n→∞

p xn+2, xnð Þ = b for some b ≥ 0: ð56Þ

Assume that v > 0. In view of (38), (52), (56), ðw, ψÞ ∈
Φ2 ×Φ4, and Lemma 2.1 in [12], we gain that

0 ≤
ðb
0
w rð Þdr = limsup

n→∞

ðp xn+2,xnð Þ

0
w rð Þdr

= limsup
n→∞

ðp f xn+1,f xn−1ð Þ

0
w rð Þdr

≤ limsup
n→∞

ðp xn+1,xn−1ð Þ

0
w rð Þdr −

ðψ p xn+1,f xn−1ð Þð Þ

0
w rð Þdr

� �

= limsup
n→∞

ðp xn+1,xn−1ð Þ

0
w rð Þdr −

ðψ p xn+1,xnð Þð Þ

0
w rð Þdr

� �

≤ limsup
n→∞

ðp xn+1,xn−1ð Þ

0
w rð Þdr − liminf

n→∞

ðψ p xn+1,xnð Þð Þ

0
w rð Þdr

≤
ðb
0
w rð Þdr −

ðψ vð Þ

0
w rð Þdr <

ðb
0
w rð Þdr:

ð57Þ

It is impossible. Thus, (18) is true. Suppose that (6) holds.
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Taking advantage of (6), (38), and ðw, ψÞ ∈Φ2 ×Φ4, we have

0 ≤
ðp xn0 ,xn0+1ð Þ
0

w rð Þdr =
ðp f xn0−1,f xn0ð Þ
0

w rð Þdr

≤
ðp xn0−1,xn0ð Þ
0

w rð Þdr −
ðψ p xn0−1,f xn0ð Þð Þ
0

w rð Þdr

=
ðp xn0−1,xn0ð Þ
0

w rð Þdr −
ðψ p xn0−1,xn0+1ð Þð Þ
0

w rð Þdr ≤ 0:

ð58Þ

It follows that

ðp xn0 ,xn0+1ð Þ
0

w rð Þdr = 0: ð59Þ

Thus, the above equation and w ∈Φ2 give (9). Using (6),
(9), and (1) in [8], we conclude that

0 ≤ p xn0−1, xn0+1
� �

≤ p xn0−1, xn0
� �

+ p xn0 , xn0+1
� �

= 0, ð60Þ

that is, (11) holds. By virtue of (6), (11), and Lemma 1 in [8],
we obtain that xn0 = xn0+1, which is impossible. As a result,
(12) holds. Assume that there exists q ∈N with

p xq, xq+1
� �

> p xq−1, xq
� �

: ð61Þ

We know from (12), (38), (61), and ðw, ψÞ ∈Φ2 ×Φ4 that

0 <
ðp xq−1,xqð Þ
0

w rð Þdr <
ðp xq ,xq+1ð Þ
0

w rð Þdr

=
ðp f xq−1,f xqð Þ
0

w rð Þdr ≤
ðp xq−1,xqð Þ
0

w rð Þdr

−
ðψ p xq−1,f xqð Þð Þ
0

w rð Þdr =
ðp xq−1,xqð Þ
0

w rð Þdr

−
ðψ p xq−1,xq+1ð Þð Þ
0

w rð Þdr ≤
ðp xq−1,xqð Þ
0

w rð Þdr,

ð62Þ

which is ridiculous. By means of (12), we obtain that

0 < p xn, xn+1ð Þ ≤ p xn−1, xnð Þ,∀n ∈N: ð63Þ

With the help of (63), there is a real number c ≥ 0 satisfy-
ing (15). Assume that c > 0. Let limsupn→∞pðxn, xnÞ =w.
Clearly, there exists a subsequence fxnkgk∈N of fxngn∈N0

with

lim
k→∞

p xnk , xnk
� �

=w: ð64Þ

Note that (38) and ðw, ψÞ ∈Φ2 ×Φ4 infer that

0 ≤
ðp xn+1,xnð Þ

0
w rð Þdr =

ðp f xn ,f xn−1ð Þ

0
w rð Þdr

≤
ðp xn ,xn−1ð Þ

0
w rð Þdr −

ðψ p xn ,f xn−1ð Þð Þ

0
w rð Þdr

=
ðp xn ,xn−1ð Þ

0
w rð Þdr −

ðψ p xn ,xnð Þð Þ

0
w rð Þdr

≤
ðp xn ,xn−1ð Þ

0
w rð Þdr,∀n ∈N:

ð65Þ

Letting n→∞ in (65) and utilizing (18), w ∈Φ2 and
Lemma 2.2 in [12], we make a conclusion that

lim
n→∞

ðp xn ,xn−1ð Þ

0
w rð Þdr −

ðψ p xn ,xnð Þð Þ

0
w rð Þdr

� �
= 0: ð66Þ

It follows that

lim
n→∞

ðψ p xn ,xnð Þð Þ

0
w rð Þdr = lim

n→∞

ðp xn ,xn−1ð Þ

0
w rð Þdr

− lim
n→∞

ðp xn ,xn−1ð Þ

0
w rð Þdr −

ðψ p xn ,xnð Þð Þ

0
w rð Þdr

� �
= 0:

ð67Þ

In view of (18), (38), (64), (65), and (67), ðw, ψÞ ∈Φ2 ×
Φ4 and Lemma 2.2 in [12], we deduct that

0 = limsup
k→∞

ðp xnk+1,xnkð Þ
0

w rð Þdr = limsup
k→∞

ðp f xnk ,f xnk−1ð Þ
0

w rð Þdr

≤ limsup
k→∞

ðp xnk ,xnk−1ð Þ
0

w rð Þdr −
ðψ p xnk ,f xnk−1ð Þð Þ
0

w rð Þdr
 !

= limsup
k→∞

ðp xnk ,xnk−1ð Þ
0

w rð Þdr −
ðψ p xnk ,xnkð Þð Þ
0

w rð Þdr
 !

≤ limsup
k→∞

ðp xnk ,xnk−1ð Þ
0

w rð Þdr − liminf
k→∞

ðψ p xnk ,xnkð Þð Þ
0

w rð Þdr

≤ 0 −
ðψ wð Þ

0
w rð Þdr,

ð68Þ

which together with ðw, ψÞ ∈Φ2 ×Φ4 yields that w = 0. It is
obvious that

lim
n→∞

p xn, xnð Þ = 0: ð69Þ

Using Lemma 2.2 in [12], (15), (38), (69), and ðw, ψÞ ∈
Φ2 ×Φ4, we find that
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0 = limsup
n→∞

ðp xn+1,xn+1ð Þ

0
w rð Þdr = limsup

n→∞

ðp f xn ,f xnð Þ

0
w rð Þdr

≤ limsup
n→∞

ðp xn ,xnð Þ

0
w rð Þdr −

ðψ p xn ,f xnð Þð Þ

0
w rð Þdr

� �

= limsup
n→∞

ðp xn ,xnð Þ

0
w rð Þdr −

ðψ p xn ,xn+1ð Þð Þ

0
w rð Þdr

� �

≤ limsup
n→∞

ðp xn ,xnð Þ

0
w rð Þdr − liminf

n→∞

ðψ p xn ,xn+1ð Þð Þ

0
w rð Þdr

≤ 0 −
ðψ cð Þ

0
w rð Þdr,

ð70Þ

which together with ðw, ψÞ ∈Φ2 ×Φ4 implies that c = 0.
Thus, (17) holds.

Now, we assert that (19) holds. Otherwise, there is a real
number ε > 0 such that for arbitrary k ∈N , there are mðkÞ,
nðkÞ ∈N with (20) and (21). On account of (1) in [8] and
(3.12), we gain that

ε < p xn kð Þ, xm kð Þ
� 	

≤ p xn kð Þ, xn kð Þ−1
� 	

+ p xn kð Þ−1, xm kð Þ
� 	

≤ p xn kð Þ, xn kð Þ−1
� 	

+ p xn kð Þ−1, xm kð Þ−1
� 	

+ p xm kð Þ−1, xm kð Þ
� 	

≤ p xn kð Þ, xn kð Þ−1
� 	

+ p xn kð Þ−1, xn kð Þ
� 	

+ p xn kð Þ, xm kð Þ−1
� 	

+ p xm kð Þ−1, xm kð Þ
� 	

≤ p xn kð Þ, xn kð Þ−1
� 	

+ p xn kð Þ−1, xn kð Þ
� 	

+ ε + p xm kð Þ−1, xm kð Þ
� 	

,∀k ∈N:

ð71Þ

Letting k→∞ in (71) and making use of (17), (18), and
(21), we require that

lim
k→∞

p xn kð Þ, xm kð Þ
� 	

= lim
k→∞

p xn kð Þ−1, xm kð Þ−1
� 	

= lim
k→∞

p xn kð Þ−1, xm kð Þ
� 	

= ε:
ð72Þ

Taking notice of (38), (72), ðw, ψÞ ∈Φ2 ×Φ4, and Lemma
2.1 in [12], we receive that

ðε
0
w rð Þdr = limsup

k→∞

ðp xn kð Þ ,xm kð Þð Þ
0

w rð Þdr

= limsup
k→∞

ðp f xn kð Þ−1,f xm kð Þ−1ð Þ
0

w rð Þdr

≤ limsup
k→∞

ðp xn kð Þ−1,xm kð Þ−1ð Þ
0

w rð Þdr −
ðψ p xn kð Þ−1,f xm kð Þ−1ð Þð Þ
0

w rð Þdr
 !

= limsup
k→∞

ðp xn kð Þ−1,xm kð Þ−1ð Þ
0

w rð Þdr −
ðψ p xn kð Þ−1,xm kð Þð Þð Þ
0

w rð Þdr
 !

≤ limsup
k→∞

ðp xn kð Þ−1,xm kð Þ−1ð Þ
0

w rð Þdr − liminf
k→∞

ðψ p xn kð Þ−1,xm kð Þð Þð Þ
0

w rð Þdr

≤
ðε
0
w rð Þdr −

ðψ εð Þ

0
w rð Þdr <

ðε
0
w rð Þdr:

ð73Þ

It is ridiculous. That is, (19) is true.
We deduce, similar to the proof of Theorem 1, that (27)

holds. It follows from (19) that for every real number ε > 0
there is M ∈N with

p xn, xmð Þ < ε,∀m > n >M, ð74Þ

which together with (2) in [8] and (27) gives that

0 ≤ p xn, uð Þ ≤ liminf
m→∞

p xn, xmð Þ ≤ ε,∀n >M, ð75Þ

that is, (30) holds. In terms of (30), (38), ðw, ψÞ ∈Φ2 ×Φ4,
and Lemma 2.1 in [12], we get that

0 ≤ limsup
n→∞

ðp f xn ,f uð Þ

0
w rð Þdr

≤ limsup
n→∞

ðp xn ,uð Þ

0
w rð Þdr −

ðψ p xn ,f uð Þð Þ

0
w rð Þdr

� �

≤ limsup
n→∞

ðp xn ,uð Þ

0
w rð Þdr − liminf

n→∞

ðψ p xn ,f uð Þð Þ

0
w rð Þdr

≤ 0 − liminf
n→∞

ðψ p xn ,f uð Þð Þ

0
w rð Þdr ≤ 0:

ð76Þ

It follows that

lim
n→∞

ðp f xn ,f uð Þ

0
w rð Þdr = 0: ð77Þ

Thus, Lemma 2.2 in [12] and the above equation ensure
that

lim
n→∞

p f xn, f uð Þ = lim
n→∞

p xn+1, f uð Þ = 0: ð78Þ

In light of (1) in [8] and (17), we arrive at

0 ≤ p xn, f uð Þ ≤ p xn, xn+1ð Þ + p xn+1, f uð Þ→ 0 asn→∞,
ð79Þ

that is to say, (35) holds. By virtue of (30), (35) and Lemma 1
in [8], we have u = f u.
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Secondly, we assert that pðu, uÞ = 0. Assume that pðu, uÞ
> 0. Owing to (38) and ðw, ψÞ ∈Φ2 ×Φ4, we deduce that

0 <
ðp u,uð Þ

0
w rð Þdr =

ðp f u,f uð Þ

0
w rð Þdr ≤

ðp u,uð Þ

0
w rð Þdr −

ðψ p u,f uð Þð Þ

0
w rð Þdr

=
ðp u,uð Þ

0
w rð Þdr −

ðψ p u,uð Þð Þ

0
w rð Þdr <

ðp u,uð Þ

0
w rð Þdr:

ð80Þ

It is ridiculous. Hence, pðu, uÞ = 0.
Thirdly, we show the uniqueness of fixed points of f in X.

Assume that f possesses two fixed points u, v ∈ X. We get,
similar to the proof of (80), that pðu, uÞ = pðv, vÞ = 0. Assume
that pðu, vÞ > 0. Taking account of ðw, ψÞ ∈Φ2 ×Φ4 and (38),
we get that

0 <
ðp u,vð Þ

0
w rð Þdr =

ðp f u,f vð Þ

0
w rð Þdr ≤

ðp u,vð Þ

0
w rð Þdr −

ðψ p u,f vð Þð Þ

0
w rð Þdr

=
ðp u,vð Þ

0
w rð Þdr −

ðψ p u,vð Þð Þ

0
w rð Þdr <

ðp u,vð Þ

0
w rð Þdr,

ð81Þ

which is ridiculous. Therefore, pðu, vÞ = 0. It follows from p
ðu, uÞ = 0 and Lemma 1 in [8] that u = v.

Theorem 7. Let p be a ω-distance in a complete metric space
ðX, dÞ and let f : X → X satisfy that

ðp f x,f yð Þ

0
w rð Þdr ≤

ðp x,yð Þ

0
w rð Þdr −

ðψ p f x,yð Þð Þ

0
w rð Þdr,∀x, y ∈ X,

ð82Þ

here ðw, ψÞ ∈Φ2 ×Φ4. Then, f possesses a unique fixed point
u ∈ X satisfying pðu, uÞ = 0,

limn→∞p f nx0, uð Þ = 0 and limn→∞ f nx0 = u for each x0 ∈ X:
ð83Þ

Proof. Firstly, we demonstrate that f possesses fixed points in
X. Let x0∈X and xn = f nx0 for each n ∈N0. Now, we consider
two cases below:

Case 8. xn0 = xn0−1 for some n0 ∈N . Since xn0−1 is a fixed point
of f , it follows that limn→∞ f nx0 = xn0−1. Assume that pð
xn0−1, xn0−1Þ > 0. Due to (82) and ðw, ψÞ ∈Φ2 ×Φ4, we have

ðp xn0−1,xn0−1ð Þ
0

w rð Þdr =
ðp f xn0−1,f xn0−1ð Þ
0

w rð Þdr ≤
ðp xn0−1,xn0−1ð Þ
0

w rð Þdr

−
ðψ p f xn0−1,xn0−1ð Þð Þ
0

w rð Þdr

=
ðp xn0−1,xn0−1ð Þ
0

w rð Þdr −
ðψ p xn0−1,xn0−1ð Þð Þ
0

w rð Þdr

<
ðp xn0−1,xn0−1ð Þ
0

w rð Þdr,

ð84Þ

which is absurd. Hence, pðxn0−1, xn0−1Þ = 0 and

lim
n→∞

p f nx0, xn0−1
� �

= p xn0−1, xn0−1
� �

= 0: ð85Þ

Case 9. xn ≠ xn−1 for all n ∈N . Assume that (6) holds. In view
of (6), (82), and ðw, ψÞ ∈Φ2 ×Φ4, we obtain that

0 ≤
ðp xn0 ,xn0+1ð Þ
0

w rð Þdr =
ðp f xn0−1,f xn0ð Þ
0

w rð Þdr

≤
ðp xn0−1,xn0ð Þ
0

w rð Þdr −
ðψ p f xn0−1,xn0ð Þð Þ
0

w rð Þdr

=
ðp xn0−1,xn0ð Þ
0

w rð Þdr −
ðψ p xn0 ,xn0ð Þð Þ
0

w rð Þdr ≤ 0,

ð86Þ

which means that

ðp xn0 ,xn0+1ð Þ
0

w rð Þdr = 0: ð87Þ

Combining w ∈Φ2 and the above equation, we get (3.3).
We gain from (6), (9), and ðp1Þ that

0 ≤ p xn0−1, xn0+1
� �

≤ p xn0−1, xn0
� �

+ p xn0 , xn0+1
� �

= 0, ð88Þ

in other words, (11) sets up. In terms of (6), (11), and Lemma
1 in [8], we know immediately that xn0 = xn0+1, which is
absurd, and, hence, (12) is true. Assume that there is q ∈N
satisfying (61). We conclude from (12), (61), (82), and ðw,
ψÞ ∈Φ2 ×Φ4 that

0 <
ðp xq−1,xqð Þ
0

w rð Þdr <
ðp xq ,xq+1ð Þ
0

w rð Þdr =
ðp f xq−1,f xqð Þ
0

w rð Þdr

≤
ðp xq−1,xqð Þ
0

w rð Þdr −
ðψ p f xq−1,xqð Þð Þ
0

w rð Þdr

=
ðp xq−1,xqð Þ
0

w rð Þdr −
ðψ p xq ,xqð Þð Þ
0

w rð Þdr ≤
ðp xq−1,xqð Þ
0

w rð Þdr,

ð89Þ

which is impossible. Hence, (63) is true. It follows from (63)
that there is a real number c ≥ 0 with (15). Assume that there
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is j ∈N with

p xj, xj+2
� �

> p xj−1, xj+1
� �

: ð90Þ

In terms of (82), (90), and ðw, ψÞ ∈Φ2 ×Φ4, we infer that

0 ≤
ðp xj−1,xj+1ð Þ
0

w rð Þdr <
ðp xj ,xj+2ð Þ
0

w rð Þdr =
ðp f xj−1,f x j+1ð Þ
0

w rð Þdr

≤
ðp xj−1,xj+1ð Þ
0

w rð Þdr −
ðψ p f x j−1,xj+1ð Þð Þ
0

w rð Þdr

=
ðp xj−1,xj+1ð Þ
0

w rð Þdr −
ðψ p x j ,xj+1ð Þð Þ
0

w rð Þdr ≤
ðp xj−1,xj+1ð Þ
0

w rð Þdr:

ð91Þ

It is absurd, and, hence,

0 ≤ p xn, xn+2ð Þ ≤ p xn−1, xn+1ð Þ,∀n ∈N: ð92Þ

(92) means that fpðxn, xn+2Þgn∈N0
is both nonnegative

and nonincreasing. Consequently,

lim
n→∞

p xn, xn+2ð Þ = z for some constant z ≥ 0: ð93Þ

Assume that c > 0. Owing to (15), (82), (93), ðw, ψÞ ∈
Φ2 ×Φ4, and Lemma 2.1 in [12], we get that

0 ≤
ðz
0
w rð Þdr = limsup

n→∞

ðp xn ,xn+2ð Þ

0
w rð Þdr

= limsup
n→∞

ðp f xn−1,f xn+1ð Þ

0
w rð Þdr

≤ limsup
n→∞

ðp xn−1,xn+1ð Þ

0
w rð Þdr −

ðψ p f xn−1,xn+1ð Þð Þ

0
w rð Þdr

� �

= limsup
n→∞

ðp xn−1,xn+1ð Þ

0
w rð Þdr −

ðψ p xn ,xn+1ð Þð Þ

0
w rð Þdr

� �

≤ limsup
n→∞

ðp xn−1,xn+1ð Þ

0
w rð Þdr − liminf

n→∞

ðψ p xn ,xn+1ð Þð Þ

0
w rð Þdr

≤
ðz
0
w rð Þdr −

ðψ cð Þ

0
w rð Þdr <

ðz
0
w rð Þdr:

ð94Þ

It is contradictive. Thus, (17) is true. Suppose that (42)
holds. We infer from (42), (82), and ðw, ψÞ ∈Φ2 ×Φ4 that

0 ≤
ðp xn0+1,xn0ð Þ
0

w rð Þdr =
ðp f xn0 ,f xn0−1ð Þ
0

w rð Þdr

≤
ðp xn0 ,xn0−1ð Þ
0

w rð Þdr −
ðψ p f xn0 ,xn0−1ð Þð Þ
0

w rð Þdr

=
ðp xn0 ,xn0−1ð Þ
0

w rð Þdr −
ðψ p xn0+1,xn0−1ð Þð Þ
0

w rð Þdr ≤ 0,

ð95Þ

that is,

ðp xn0+1,xn0ð Þ
0

w rð Þdr = 0: ð96Þ

Thus, (45) follows from the above equation and w ∈Φ2.
We deduct from (42), (45), and (1) in [8] that

0 ≤ p xn0+1, xn0−1
� �

≤ p xn0+1, xn0
� �

+ p xn0 , xn0−1
� �

= 0, ð97Þ

that is to say, (47) holds. Thus, xn0 = xn0−1 is easily obtained
from (45), (47), and Lemma 1 in [8], which is ridiculous.
As a result, (48) holds. Suppose that there exists q ∈N satis-
fying (49). By virtue of (48), (49), (82), and ðw, ψÞ ∈Φ2 ×
Φ4, we know that

0 <
ðp xq ,xq−1ð Þ
0

w rð Þdr <
ðp xq+1,xqð Þ
0

w rð Þdr =
ðp f xq ,f xq−1ð Þ
0

w rð Þdr

≤
ðp xq ,xq−1ð Þ
0

w rð Þdr −
ðψ p f xq ,xq−1ð Þð Þ
0

w rð Þdr

=
ðp xq ,xq−1ð Þ
0

w rð Þdr −
ðψ p xq+1,xq−1ð Þð Þ
0

w rð Þdr

≤
ðp xq ,xq−1ð Þ
0

w rð Þdr,

ð98Þ

which is ridiculous. By means of (48), we have (51). It follows
from (51) that the sequence fpðxn+1, xnÞgn∈N0

is both positive
and decreasing, which yields (52) for some a constant v ≥ 0.
Suppose that v > 0. Put limsupn→∞pðxn, xnÞ =w. Obviously,
there is a subsequence fxnkgk∈N of fxngn∈N0

with (64). Using
(82), and ðw, ψÞ ∈Φ2 ×Φ4, we deduce that

0 ≤
ðp xn ,xn+1ð Þ

0
w rð Þdr =

ðp f xn−1,f xnð Þ

0
w rð Þdr

≤
ðp xn−1,xnð Þ

0
w rð Þdr −

ðψ p f xn−1,xnð Þð Þ

0
w rð Þdr

=
ðp xn−1,xnð Þ

0
w rð Þdr −

ðψ p xn ,xnð Þð Þ

0
w rð Þdr

≤
ðp xn−1,xnð Þ

0
w rð Þdr, ∀n ∈N:

ð99Þ

Letting n→∞ in (99) and using (17), w ∈Φ2 and
Lemma 2.2 in [12], we find that

lim
n→∞

ðp xn−1,xnð Þ

0
w rð Þdr −

ðψ p xn ,xnð Þð Þ

0
w rð Þdr

� �
= 0: ð100Þ
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It follows that

lim
n→∞

ðψ p xn ,xnð Þð Þ

0
w rð Þdr = lim

n→∞

ðp xn−1,xnð Þ

0
w rð Þdr

− lim
n→∞

ðp xn−1,xnð Þ

0
w rð Þdr

�

−
ðψ p xn ,xnð Þð Þ

0
w rð Þdr

�
= 0:

ð101Þ

We attain from Lemma 2.2 in [12], (17), (64), (82), (99),
(101), and ðw, ψÞ ∈Φ2 ×Φ4 that

0 = limsup
k→∞

ðp xnk ,xnk+1ð Þ
0

w rð Þdr = limsup
k→∞

ðp f xnk−1,f xnkð Þ
0

w rð Þdr

≤ limsup
k→∞

ðp xnk−1,xnkð Þ
0

w rð Þdr −
ðψ p f xnk−1,xnkð Þð Þ
0

w rð Þdr
 !

= limsup
k→∞

ðp xnk−1,xnkð Þ
0

w rð Þdr −
ðψ p xnk ,xnkð Þð Þ
0

w rð Þdr
 !

≤ limsup
k→∞

ðp xnk−1,xnkð Þ
0

w rð Þdr − liminf
k→∞

ðψ p xnk ,xnkð Þð Þ
0

w rð Þdr

≤ 0 −
ðψ wð Þ

0
w rð Þdr:

ð102Þ

It follows that
Ð ψðwÞ
0 wðrÞdr ≤ 0. By virtue of ðw, ψÞ ∈Φ2

×Φ4, we have
Ð ψðwÞ
0 wðrÞdr = 0 and w = 0. It means that

(69) holds. In view of (52), (69), (82), ðw, ψÞ ∈Φ2 ×Φ4, and
Lemma 2.2 in [12], we infer that

0 = limsup
n→∞

ðp xn+1,xn+1ð Þ

0
w rð Þdr = limsup

n→∞

ðp f xn ,f xnð Þ

0
w rð Þdr

≤ limsup
n→∞

ðp xn ,xnð Þ

0
w rð Þdr −

ðψ p f xn ,xnð Þð Þ

0
w rð Þdr

� �

= limsup
n→∞

ðp xn ,xnð Þ

0
w rð Þdr −

ðψ p xn+1,xnð Þð Þ

0
w rð Þdr

� �

≤ limsup
n→∞

ðp xn ,xnð Þ

0
w rð Þdr − liminf

n→∞

ðψ p xn+1,xnð Þð Þ

0
w rð Þdr

≤ 0 −
ðψ vð Þ

0
w rð Þdr,

ð103Þ

which yields that
Ð ψðvÞ
0 wðrÞdr ≤ 0. Using ðw, ψÞ ∈Φ2 ×Φ4,

we obtain that
Ð ψðvÞ
0 wðrÞdr = 0 and v = 0. Thus, (3.9) holds.

Now, we prove that (19) holds. Suppose that there is an
ε > 0 such that for arbitrary k ∈N , (20), (21), and (22) hold
for some mðkÞ, nðkÞ ∈N . As k→∞ in (3.13) and by virtue

of (17), (18), and (21), we acquire that

lim
k→∞

p xn kð Þ, xm kð Þ
� 	

= lim
k→∞

p xn kð Þ−1, xm kð Þ−1
� 	

= lim
k→∞

p xn kð Þ, xm kð Þ−1
� 	

= ε:
ð104Þ

In terms of Lemma 2.1 in [12], (82), (104), and ðw, ψÞ
∈Φ2 ×Φ4, we are aware of the fact that

ðε
0
w rð Þdr = limsup

k→∞

ðp xn kð Þ ,xm kð Þð Þ
0

w rð Þdr

= limsup
k→∞

ðp f xn kð Þ−1,f xm kð Þ−1ð Þ
0

w rð Þdr

≤ limsup
k→∞

ðp xn kð Þ−1,xm kð Þ−1ð Þ
0

w rð Þdr
 

−
ðψ p f xn kð Þ−1,xm kð Þ−1ð Þð Þ
0

w rð Þdr
!

= limsup
k→∞

ðp xn kð Þ−1,xm kð Þ−1ð Þ
0

w rð Þdr
 

−
ðψ p xn kð Þ,xm kð Þ−1ð Þð Þ
0

w rð Þdr
!

≤ limsup
k→∞

ðp xn kð Þ−1,xm kð Þ−1ð Þ
0

w rð Þdr

− liminf
k→∞

ðψ p xn kð Þ ,xm kð Þ−1ð Þð Þ
0

w rð Þdr

≤
ðε
0
w rð Þdr −

ðψ εð Þ

0
w rð Þdr <

ðε
0
w rð Þdr,

ð105Þ

which is absurd. Thus, (19) is true.
We infer, similar to the proof of Theorem 1, that (27)

holds. It follows from (19) that for each ε > 0 there is M ∈
N with

p xn, xmð Þ < ε,∀m > n >M, ð106Þ

which together with (2) in [8] and (27) gets that

0 ≤ p xn, uð Þ ≤ liminf
m→∞

p xn, xmð Þ ≤ ε,∀n >M, ð107Þ

that is, (30) holds. On account of Lemma 2.1 in [12], (30),
(82), and ðw, ψÞ ∈Φ2 ×Φ4, we deduct that

0 ≤ limsup
n→∞

ðp f xn,f uð Þ

0
w rð Þdr ≤ limsup

n→∞

ðp xn ,uð Þ

0
w rð Þdr −

ðψ p f xn ,uð Þð Þ

0
w rð Þdr

� �

≤ limsup
n→∞

ðp xn ,uð Þ

0
w rð Þdr − liminf

n→∞

ðψ p xn+1,uð Þð Þ

0
w rð Þdr ≤ 0 −

ðψ 0ð Þ

0
w rð Þdr = 0,

ð108Þ
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in other words,

lim
n→∞

ðp f xn ,f uð Þ

0
w rð Þdr = 0: ð109Þ

Lemma 2.2 in [12] and the above equation give that

lim
n→∞

p f xn, f uð Þ = lim
n→∞

p xn+1, f uð Þ = 0: ð110Þ

In light of (1) in [8] and (17), we attain that

0 ≤ p xn, f uð Þ ≤ p xn, xn+1ð Þ + p xn+1, f uð Þ→ 0asn→∞,
ð111Þ

that is to say, (35) holds. Using (30), (35), and Lemma 1 in
[8], we have u = f u.

Secondly, we prove that pðu, uÞ = 0. Assume that pðu, uÞ
> 0. Because of (82) and ðw, ψÞ ∈Φ2 ×Φ4, we deduce that

0 <
ðp u,uð Þ

0
w rð Þdr =

ðp f u,f uð Þ

0
w rð Þdr ≤

ðp u,uð Þ

0
w rð Þdr −

ðψ p f u,uð Þð Þ

0
w rð Þdr

=
ðp u,uð Þ

0
w rð Þdr −

ðψ p u,uð Þð Þ

0
w rð Þdr <

ðp u,uð Þ

0
w rð Þdr,

ð112Þ

which is impossible. Hence, pðu, uÞ = 0.
Thirdly, we assert the uniqueness of fixed points of f in X.

Assume that f possesses two fixed points u, v ∈ X. We
deduce, similar to the proof of (112), that pðu, uÞ = pðv, vÞ
= 0. Assume that pðu, vÞ > 0. On account of (82) and ðw, ψ
Þ ∈Φ2 ×Φ4, we get that

0 <
ðp u,vð Þ

0
w rð Þdr =

ðp f u,f vð Þ

0
w rð Þdr ≤

ðp u,vð Þ

0
w rð Þdr −

ðψ p f u,vð Þð Þ

0
w rð Þdr

=
ðp u,vð Þ

0
w rð Þdr −

ðψ p u,vð Þð Þ

0
w rð Þdr <

ðp u,vð Þ

0
w rð Þdr,

ð113Þ

which is ridiculous. Therefore, pðu, vÞ = 0. Using pðu, uÞ = 0
and Lemma 1 in [8], we infer immediately that u = v.

We have, similar to the proof of Theorem 1, the result
below and omit its proof.

Theorem 10. Let p be a ω-distance in a complete metric space
ðX, dÞ and let f : X → X satisfy that

ðp f x,f yð Þ

0
w rð Þdr ≤

ðp x,yð Þ

0
w rð Þdr −

ðψ p f x,f yð Þð Þ

0
w rð Þdr,∀x, y ∈ X:

ð114Þ

Here, ðw, ψÞ ∈Φ1 ×Φ4. Then, f possesses a unique fixed point

u ∈ X such that pðu, uÞ = 0,

limn→∞p f nx0, uð Þ = 0 and limn→∞ f nx0 = u for each x0 ∈ X:
ð115Þ

4. Four Examples

Now, we give four examples to explain the fixed point results
obtained in Section 3.

Remark 11. Letting pðx, yÞ = dðx, yÞ, ∀x, y ∈ X, we deduce
that Theorem 1 reduces to Theorem 2.1 in [14], which gener-
alizes Theorem 1 in [15]. On the other hand, the example
below proves that Theorem 1 extends indeed these results
in [14, 15] and differs from Theorem 2.1 in [1].

Example 12. Let X = ½0, 6�, dðx, yÞ = ∣x − y ∣ and pðx, yÞ = y/2
, ∀x, y ∈ X. Let f : X→ X, w and ψ : R+ → R+ be defined by,
respectively,

f x = 2x − x2,∀x ∈ 6
5 , 2
� 


, 0,∀x ∈ 0, 65

� 

∪ 2, 6ð � ð116Þ

and

w rð Þ = 2, ψ rð Þ = 1
3 r

2, ∀r ∈ R+: ð117Þ

It follows that p is a ω-distance in X and ðw, ψÞ ∈Φ1 ×Φ4
. Put x, y ∈ X. In order to check (2), we consider two cases
below:

Case 13. ðx, yÞ ∈ X × ð6/5, 2�. It follows that

ðp f x,f yð Þ

0
w rð Þdr =

ðy−1
2y

2

0
2dr = 2y − y2 ≤ y −

1
6 y

2 =
ðy

2

0
2dr −

ð 1
12y

2

0
2dr

=
ðp x,yð Þ

0
w rð Þdr −

ðψ p x:yð Þð Þ

0
w rð Þdr:

ð118Þ

Case 14. ðx, yÞ ∈ X × ½0, 6/5� ∪ ð2, 6�. Note that

ðp f x,f yð Þ

0
w rð Þdr = 0 ≤ y −

1
6 y

2 =
ðp x,yð Þ

0
w rð Þdr −

ðψ p x:yð Þð Þ

0
w rð Þdr:

ð119Þ

That is, (2) is true. Hence, the conditions of Theorem 1
are fulfilled. Thus, Theorem 1 ensures that f possesses a
unique fixed point in X. Now, we need to prove that Theorem
2.1 in [1], Theorem 2.1 in [14], and Theorem 1 in [15] are
useless in checking the existence of fixed points for the map-
ping f in X.
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If there is ψ ∈Φ3 satisfying the conditions of Theorem 1
in [15], we know that

21
25 = d f

7
5 , f 1

� �
≤ d

7
5 , 1
� �

− ψ d
7
5 , 1
� �� �

< 2
5 , ð120Þ

which is absurd.
If there are c ∈ ð0, 1Þ and w ∈Φ1 satisfying the conditions

of Theorem 2.1 in [1], we attain that

0 <
ð3

4

0
w rð Þdr =

ðd f 34,f 32ð Þ
0

w rð Þdr

≤ c
ðd 3

4,32ð Þ
0

w rð Þdr <
ð3

4

0
w rð Þdr,

ð121Þ

which is ridiculous.
If there is ðw, ψÞ ∈Φ1 ×Φ4 satisfying the conditions of

Theorem 2.1 in [14], we conclude that

0 <
ð24

25

0
w rð Þdr = limsup

y→6
5
+

ð∣0− 2y−y2ð Þ∣
0

w rð Þdr

= limsup
y→6

5
+

ðd f 65,f yð Þ
0

w rð Þdr

≤ limsup
y→6

5
+

ðd 6
5,yð Þ

0
w rð Þdr −

ðψ d 6
5,yð Þð Þ

0
w rð Þdr

 !

≤ limsup
y→6

5
+

ðd 6
5,yð Þ

0
w rð Þdr − liminf

y→6
5
+

ðψ d 6
5,yð Þð Þ

0
w rð Þdr

≤ 0 −
ðψ 0ð Þ

0
w rð Þdr = 0,

ð122Þ

which is impossible.

Remark 15. Examples 16, 21, and 26 explain that Theorems 4,
7, and 10 are different from Theorem 2.1 in [14].

Example 16. Let X = R+, dðx, yÞ = ∣x − y ∣ and pðx, yÞ = x + y
, ∀x, y ∈ X. Let f : X→ X, w and ψ : R+ → R+ be defined by,
respectively,

f x = x
3 ,∀x ∈ 0, 1½ �, x4 ,∀x ∈ 1,+∞ð Þ, ð123Þ

and

w rð Þ = 2r, ψ rð Þ = r
2 ,∀r ∈ R

+: ð124Þ

Evidently, p is a ω-distance in X and ðw, ψÞ ∈Φ2 ×Φ4.
Let x, y ∈ X. For the sake of verifying (38), we take into
account the following four possible cases:

Case 17. ðx, yÞ ∈ ½0, 1� × ½0, 1�. Note that

ðp f x,f yð Þ

0
w rð Þdr =

ðx+y
3

0
2tdt = 1

9 x + yð Þ2 ≤ x + yð Þ2 − 1
4 x + y

3
� 	2

=
ðx+y
0

2tdt −
ðψ x+y

3ð Þ
0

2tdt

=
ðp x,yð Þ

0
w rð Þdr −

ðψ p x,f yð Þð Þ

0
w rð Þdr:

ð125Þ

Case 18. ðx, yÞ ∈ ½0, 1� × ð1,+∞Þ. Obviously,

ðp f x,f yð Þ

0
w rð Þdr =

ðx
3+

y
4

0
2tdt = x

3 + y
4

� 	2
≤ x + yð Þ2 − 1

4 x + y
4

� 	2

=
ðx+y
0

2tdt −
ðψ x+y

4ð Þ
0

2tdt

=
ðp x,yð Þ

0
w rð Þdr −

ðψ p x,f yð Þð Þ

0
w rð Þdr:

ð126Þ

Case 19. ðx, yÞ ∈ ð1,+∞Þ × ½0, 1�. Notice that

ðp f x,f yð Þ

0
w rð Þdr =

ðx
4+

y
3

0
2tdt = x

4 + y
3

� 	2
≤ x + yð Þ2 − 1

4 x + y
3

� 	2

=
ðx+y
0

2tdt −
ðψ x+y

3ð Þ
0

2tdt

=
ðp x,yð Þ

0
w rð Þdr −

ðψ p x,f yð Þð Þ

0
w rð Þdr:

ð127Þ

Case 20. ðx, yÞ ∈ ð1,+∞Þ × ð1,+∞Þ. It follows that

ðp f x,f yð Þ

0
w rð Þdr =

ðx+y
4

0
2tdt = 1

16 x + yð Þ2

≤ x + yð Þ2 − 1
4 x + y

4
� 	2

=
ðx+y
0

2tdt −
ðψ x+y

4ð Þ
0

2tdt

=
ðp x,yð Þ

0
w rð Þdr −

ðψ p x,f yð Þð Þ

0
w rð Þdr:

ð128Þ

That is to say, (38) is true. Therefore, the conditions of
Theorem 4 are fulfilled. Consequently, Theorem 4 means
that f possesses a unique fixed point in X. However, we can-
not use Theorem 2.1 in [14] to show the existence of fixed
points for the mapping f in X. Or else, there is ðw, ψÞ ∈Φ1
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×Φ4 with

0 <
ð 1

12

0
w rð Þdr = limsup

y→1+

ð∣13−y
4∣

0
w rð Þdr

= limsup
y→1+

ðd f 1,f yð Þ

0
w rð Þdr

≤ limsup
y→1+

ðd 1,yð Þ

0
w rð Þdr −

ðψ d 1,yð Þð Þ

0
w rð Þdr

� �

≤ limsup
y→1+

ðd 1,yð Þ

0
w rð Þdr − liminf

y→1+

ðψ d 1,yð Þð Þ

0
w rð Þdr

≤ 0 −
ðψ 0ð Þ

0
w rð Þdr = 0,

ð129Þ

which is absurd.

Example 21. Let X = R+, dðx, yÞ = ∣x − y ∣ and pðx, yÞ = x + y
, ∀x, y ∈ X. Let f : X→ X, w and ψ : R+ → R+ be defined by,
respectively,

f x = 0,∀x ∈ 0,
ffiffiffi
3

ph i
,
ffiffiffi
3

p

4 x,∀x ∈
ffiffiffi
3

p
,+∞

� 	
, ð130Þ

and

w rð Þ = 4r, ψ rð Þ =
ffiffiffi
3

p

2 r,∀r ∈ R+: ð131Þ

Obviously, p is a ω-distance in X and ðw, ψÞ ∈Φ2 ×Φ4.
Let x, y ∈ X. To demonstrate (82), we consider four cases
below:

Case 22. ðx, yÞ ∈ ½0, ffiffiffi
3

p � × ½0, ffiffiffi
3

p �. Evidently,

ðp f x,f yð Þ

0
w rð Þdr = 0 ≤ 2 x + yð Þ2 − 3

2 y
2

=
ðp x,yð Þ

0
w rð Þdr −

ðψ p f x,yð Þð Þ

0
w rð Þdr:

ð132Þ

Case 23. ðx, yÞ ∈ ½0, ffiffiffi
3

p � × ð ffiffiffi
3

p
,+∞Þ. Clearly,

ðp f x,f yð Þ

0
w rð Þdr =

ð ffiffi3p
4 y

0
4rdr = 3

8 y
2 ≤ 2 x + yð Þ2 − 3

2 y
2

=
ðx+y
0

4rdr −
ðψ yð Þ

0
4rdr

=
ðp x,yð Þ

0
w rð Þdr −

ðψ p f x,yð Þð Þ

0
w rð Þdr:

ð133Þ

Case 24. ðx, yÞ ∈ ð ffiffiffi
3

p
,+∞Þ × ½0, ffiffiffi

3
p �. It is obvious that

ðp f x,f yð Þ

0
w rð Þdr =

ð ffiffi3p
4 x

0
4rdr = 3

8 x
2

≤ 2 x + yð Þ2 − 3
2

ffiffiffi
3

p

4 x + y

 !2

=
ðx+y
0

4rdr −
ðψ ffiffi

3
p
4 x+y
� �

0
4rdr

=
ðp x,yð Þ

0
w rð Þdr −

ðψ p f x,yð Þð Þ

0
w rð Þdr:

ð134Þ

Case 25. ðx, yÞ ∈ ð ffiffiffi
3

p
,+∞Þ × ð ffiffiffi

3
p

,+∞Þ. Clearly
ðp f x,f yð Þ

0
w rð Þdr =

ð ffiffi3p
4 x+yð Þ

0
4rdr = 3

8 x + yð Þ2

≤ 2 x + yð Þ2 − 3
2

ffiffiffi
3

p

4 x + y

 !2

=
ðx+y
0

4rdr −
ðψ ffiffi

3
p
4 x+y
� �

0
4tdt

=
ðp x,yð Þ

0
w rð Þdr −

ðψ p f x,yð Þð Þ

0
w rð Þdr:

ð135Þ

In other words, (82) is true, and consequently, the condi-
tions of Theorem 7 are fulfilled. Thus, Theorem 7 yields that
f possesses a unique fixed point in X. Next, we testify that
Theorem 2.1 in [14] is unapplicable in ensuring the existence
of fixed points for the mapping f in X.

If there is ðw, ψÞ ∈Φ1 ×Φ4 satisfying the conditions of
Theorem 2.1 in [14], we have

0 <
ð3

4

0
w rð Þdr = limsup

y→
ffiffi
3

p +

ð∣0− ffiffi3p
4 y∣

0
w rð Þdr

= limsup
y→
ffiffi
3

p +

ðd f
ffiffi
3

p
,f yð Þ

0
w rð Þdr

≤ limsup
y→
ffiffi
3

p +

ðd ffiffi
3

p
,yð Þ

0
w rð Þdr −

ðψ d
ffiffi
3

p
,yð Þð Þ

0
w rð Þdr

 !

≤ limsup
y→
ffiffi
3

p +

ðd ffiffi
3

p
,yð Þ

0
w rð Þdr − liminf

y→
ffiffi
3

p +

ðψ d
ffiffi
3

p
,yð Þð Þ

0
w rð Þdr

≤ 0 −
ðψ 0ð Þ

0
w rð Þdr = 0,

ð136Þ

which is ridiculous.

Example 26. Let X = R+, dðx, yÞ = ∣x − y ∣ and pðx, yÞ = y, ∀x
, y ∈ X. Let f : X→ X, w and ψ : R+ → R+ be defined by,
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respectively,

f x = 0,∀x ∈ 0, 25½ �, x5 ,∀x ∈ 25,+∞ð Þ, ð137Þ

and

w rð Þ = 4
5 r

3, ψ rð Þ = 5
ffiffi
r

p
,∀r ∈ R+: ð138Þ

It is easy to see that p is a ω-distance in X and ðw, ψÞ ∈
Φ1 ×Φ4. Let x, y ∈ X. To prove (114), we have to consider
two cases below:

Case 27. ðx, yÞ ∈ X × ½0, 25�. Apparently,

ðp f x,f yð Þ

0
w rð Þdr = 0 ≤ 1

5 y
4 =
ðp x,yð Þ

0
w rð Þdr

−
ðψ p f x,f yð Þð Þ

0
w rð Þdr:

ð139Þ

Case 28. ðx, yÞ ∈ X × ð25,+∞Þ. It is easy to demonstrate that

ðp f x,f yð Þ

0
w rð Þdr =

ðy
5

0

4
5 r

3dr = 1
55 y

4 ≤
1
5 y

4 − 5y2

=
ðy
0

4
5 r

3dr −
ðψ y

5ð Þ
0

4
5 r

3dr

=
ðp x,yð Þ

0
w rð Þdr −

ðψ p f x,f yð Þð Þ

0
w rð Þdr:

Hence, (114) is true, and the conditions of Theorem 10
are satisfied. Thus, Theorem 10 guarantees that f possesses
a unique fixed point in X. Then, we certify that Theorem
2.1 in [14] is unfulfilled in showing the existence of fixed
points for the mapping f in X. Otherwise, there is ðw, ψÞ ∈
Φ1 ×Φ4 satisfying the conditions Theorem 2.1 in [14]. It
means that

0 <
ð5
0
w rð Þdr = limsup

y→25+

ð∣0−y
5∣

0
w rð Þdr

= limsup
y→25+

ðd f 25,f yð Þ

0
w rð Þdr

≤ limsup
y→25+

ðd 25,yð Þ

0
w rð Þdr −

ðψ d 25,yð Þð Þ

0
w rð Þdr

� �

≤ limsup
y→25+

ðd 25,yð Þ

0
w rð Þdr − liminf

y→25+

ðψ d 25,yð Þð Þ

0
w rð Þdr

≤ 0 −
ðψ 0ð Þ

0
w rð Þdr = 0,

ð141Þ

which is ridiculous.

5. Applications

In this section, we utilize Theorems 1 and 7 to investigate the
solvability of the nonlinear Fredholm and Volterra integral
equations below, respectively,

x tð Þ = h tð Þ +
ðb
a
K t, r, x rð Þð Þdr,∀t ∈ a, b½ �, ð142Þ

x tð Þ = h tð Þ +
ðt
a
K t, r, x rð Þð Þdr,∀t ∈ a, b½ �, ð143Þ

where a and b are constants in Rwith a < b, h : ½a, b�→ R and
K : ½a, b�2 × R→ R are given functions.

We assume that Cð½a, b�, RÞ denotes the Banach space of
all continuous functions x : ½a, b�→ R with the norm ∥x∥ =
supt∈½a,b� ∣ xðtÞ ∣ . Let X = Cð½a, b�, RÞ and

d x, yð Þ = sup
r∈ a,b½ �

∣x rð Þ − y rð Þ∣,∀x, y ∈ X: ð144Þ

Obviously, ðX, dÞ is a complete metric space. Define two
mappings T and S as follows:

Txð Þ tð Þ = h tð Þ +
ðb
a
K t, r, x rð Þð Þdr,∀ t, xð Þ ∈ a, b½ � × X,

ð145Þ

Sxð Þ tð Þ = h tð Þ +
ðt
a
K t, r, x rð Þð Þdr,∀ t, xð Þ ∈ a, b½ � × X:

ð146Þ

Theorem 29. Let h : ½a, b�→ R and K : ½a, b�2 × R→ R satisfy
that

(a1) h and K are continuous;
(a2) there is ψ ∈Φ4 with

∣
h tð Þ
b − a

+ K t, r, y rð Þð Þ∣

≤

sup
r∈ a,b½ �

∣ y rð Þ∣−ψ sup
r∈ a,b½ �

∣ y rð Þ ∣
 !

b − a
,∀ t, r, yð Þ ∈ a, b½ �2 × X:

ð147Þ

Then, Eq. (142) possesses a unique solution in X.

Proof. Define two functions w : R+ → R+ and p : X × X→ R+

by

w rð Þ = 1
2 ,∀r ∈ R

+, p x, yð Þ = sup
t∈ a,b½ �

∣y tð Þ∣,∀x, y ∈ X: ð148Þ

Obviously, p is a ω-distance and w ∈Φ1. It follows from
ða1Þ and (145) that for arbitrary x ∈ X, Tx is continuous in
½a, b�, which means that T maps X into itself. Taking account
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of (145) and ða2Þ, we get that

ð∣ Tyð Þ tð Þ∣

0
w rð Þdr = 1

2 ∣ Tyð Þ tð Þ∣ = 1
2 ∣h tð Þ +

ðb
a
K t, r, y rð Þð Þdr∣

≤
1
2

ðb
a
∣
h tð Þ
b − a

+ K t, r, y rð Þð Þ∣dr

≤
1
2

ðb
a

sup
r∈ a,b½ �

∣ y rð Þ∣−ψ sup
r∈ a,b½ �

∣ y rð Þ ∣
 !

b − a
dr

= 1
2

ðb
a

p x, yð Þ − ψ p x, yð Þð Þ ∣
b − a

ds

=
ðp x,yð Þ

0
w rð Þdr −

ðψ p x,yð Þð Þ

0
w rð Þdr,∀ t, x, yð Þ

∈ a, b½ � × X2:

ð149Þ

It follows that

ðp Tx,Tyð Þ

0
w rð Þdr =

ð sup
t∈ a,b½ �

∣ Tyð Þ tð Þ∣

0
w rð Þdr

≤
ðp x,yð Þ

0
w rð Þdr −

ðψ p x,yð Þð Þ

0
w rð Þdr

=
ðp x,yð Þ

0
w rð Þdr

−
ðψ p Tx,yð Þð Þ

0
w rð Þdr,∀x, y ∈ X:

ð150Þ

That is, (2) and (82) hold. It follows from each of Theo-
rems 1 and 7 that T possesses a unique fixed point x ∈ X, that
is, Eq. (142) has a unique solution x ∈ X.

We get, similar to the proof of Theorem 29, the following
result and omit its proof.

Theorem 30. Let h : ½a, b�→ R and K : ½a, b�2 × R→ R satisfy
ða1Þ and ða2Þ. Then, Eq. (143) possesses a unique solution in
X.

6. Conclusion

By using ω-distance, we prove several fixed point results for a
few contractive mappings of integral type, some of which are
used to investigate the existence and uniqueness of solutions
for certain nonlinear Fredholm and Volterra integral equa-
tions, respectively. Four examples are provided to testify that
our results extend or differ from some known results in the
literature.
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