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In this paper, we use w-distance to prove the existence, uniqueness, and iterative approximations of fixed points for a few
contractive mappings of integral type in complete metric spaces. The proved results are used to investigate the solvability of
certain nonlinear integral equations. Four examples are given.

1. Introduction

The researchers [1-17] attained various generalizations of
the well-known Banach contraction principle. In 2001,
Rhoades [15] certified several fixed point results for the
weakly contractive mappings. Branciari [1] introduced the
notion of integral type contraction and established a nice
fixed point result for the mapping. Many authors investigated
the existence of fixed points for a lot of contractive mappings
of integral type, for example, see [11-14]. Particularly, Liu
et al. [14] obtained several fixed point theorems for contrac-
tive mappings of integral type in complete metric spaces.

Kada et al. [8] introduced the concept of w-distance in
metric spaces and proved a few fixed point theorems for
some contractive mappings by using w-distance. It is clear
that the results in [8] extended the Caristi’s fixed point theo-
rem, Ekeland’s e-variational’s principle, and the nonconvex
minimization theorem. The researchers in [3, 5-7, 9, 10,
17] got several fixed point results for certain contractive map-
pings with respect to w-distance.

In this paper, we prove the existence, uniqueness, and iter-
ative approximations of fixed points for several kinds of map-
pings, which satisfy some contractive conditions of integral

type with respect to w-distance in complete metric spaces. We
also construct four illustrative examples and give applications
of the obtained results in nonlinear Fredholm and Volterra inte-
gral equations, respectively. Our results generalize or differ from
the corresponding fixed point theorems in [1, 14, 15].

2. Preliminaries

Let N denotes the set of all positive integers, R = (—00, + 00),
R*=[0,4+00), Ny=N U {0} and

@, = {w|w : R" — R'is Lebesgue integrable, summable on each
&

compact subset of R* andJ w(r)dr > 0foreache > 0} ;

0

u v

w(r)dr < J w(r)dr for each

D, = {w | w € @, and satisfies thatJ
0

0
u,veR " withu<v};

®; ={w|w : R" - R" is nondecreasing, continuous, w(0)

t—+00

=0, lim w(t)=+ooandw(t) > 0foreacht> O} ;
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@, ={w|w: R" — R" islower semi — continuous, w(0)
=0andw(t) > 0foreacht > 0}.

(1)

Recall that a self-mapping f in a metric space X is called
orbitally continuous if lim,, . f"x = u implies lim, . f""'x
= fu for each {f"x},.y <X and ueX.

3. Fixed Point Results with respect to w
-Distance

In this section, using w-distance, we give four fixed point the-
orems for the contractive mappings (2), (38), (82), and (114)
below.

Theorem 1. Let p be a w-distance in a complete metric space
(X,d) and let f : X — X satisfy that

P(f%f7) P(xy)
J w(r)dr < J w
0 0

v(p(xy))
w(r)dr,Vx,y € X.

(2)

Here, (w,y) € ®; X ©,. Then, f possesses a unique fixed point
u € X such that p(u, u) =0,

(e~ |

0

Oandlim,,_, . f"x, = uforeachx, € X.
(3)
Proof. Firstly, we claim the existence of fixed points of f in X.

Put x, € X and x, = f"x, for each n € N,. Now, we need to
think over two situations as follows:

lmnaoop(fnxO’ u) =

Case 2. x, =x, _, for some ny € N. Clearly, x, _, is a fixed
point of f and lim,_,.f"x,=x, _;. Suppose that p(x, _,
X,,-1) > 0. Making use of (2) and (w, ) € @; x @, we obtain
that

which is ridiculous. Hence, p(x,, _,x,, _;) =0, which means

that

hmp(f Xo» X, 1) p('xno—l’xno—l):O; (5)

Case 3. x,, # x,,_, for all n € N. Suppose that

p(xy,-1>%,,) = 0for some n,y € N. (6)
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(2), (6), and (w, ¥) € O, X O, ensure that

0< E(% ’X%H)w(r)dr = Jz(fxnopfxnl])w(r)dr
o) (ol m) 7
sJ w(r)dr—J w(r)dr=0,

0 0

that is,

J:(xno’xnw)w(r)dr: 0. (8)

The above equation and w € @, give that
p(xnu’xnoﬂ) =0. )
Combining (6), (9), and (p; ), we know that
0P (%15 % 41) SP (Kot Xy ) + P (X X 01) =0, (10)
that is,
p(xn0—1>xn0+l> =0. (11)

Because of Lemma 1 in [8], (6), and (11), we deduce that

Xy, =X, 1> which is contradictive, and, hence,

o

p(x,_1,x,)>0VneN. (12)

By means of (w, ) € ®; x D,, (2) and (12), we have

P (XX 1) P(fXp1of %)
J w(r)dr = w(r)dr
0 Jo
P(X1%y) Y (P(X-1%0))
< w(r)dr - J w(r)dr
0 0
P(X0-1%,)
< w(r)dr,Yn €N,
0

(13)
which together with (12) and w € @, ensures that

0<p<xn’xn+1) <p(xn—l’xn)’vn€N‘ (14)

We see from (14) that {p(x,,,
strictly decreasing sequence. It follows that

xnﬂ)}nel\,0 is a positive and

»X,,1) = cfor somec>0. (15)

lim p(x,

n—00

Now, we claim that ¢=0. Otherwise, ¢ > 0. In view of
Lemma 2.1 in [12], (2), (15), and (w, y) € ®; X D,, we see
that
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¢ p n> n+l
J (r)dr =limsup

0 n—-00 0

n—-00

P Xn-1%n )
< hmsupJ

n—oo Jo

— liminf
n—00 0

< [(war- [ wiryir< [wdr.

0 0

(16)
It is ridiculous. Therefore, ¢ = 0. Consequently,
1im p(x, %) =0. (17)
In the same way, we have
hmp( ni1> %) = 0. (18)

Now, we proceed to show that

I
e

lim p(x,,x,) (19)

1,M—00

Suppose that there exists a real number & > 0 such that for
every k € N, there exist m(k), n(k) € N satisfying

p<xn(k)’ xm(k)) >¢g m(k)>n(k)>kVkeN.  (20)

For each k € N, m(k) denotes the least integer exceeding
n(k) and satisfying (20). Obviously,

p (.xn<k)) xm<k>) > & andp (xn<k)) xm(k)—l) < S,Vk € N. (21)

On account of (p;) and (21), we obtain that

<k>> <P ("n(k) xn(k)—l)
+P<xn<k>—v xm(k)—l) tp ("m(k)—v xm(k))

SP("n(kv xn<k>—1) +P(xn<k>—v "n(k)) 22)
+P(xn<k>> xm<k>—1) P ("m<k>—1’ xm<k>)

SP(’“n(k)’ xn<k>—1) +P("n<k>71”‘n<k>)

+e +p(xm(k),1, xm(k)> VkeN.

€ <p(xn(k) X

Letting k tend to infinity in (22) and taking advantage of

(17), (18), and (21), we have

o) s

In light of Lemma 2.1 in [12], (2), (23), and (w,y) €
x @,, we deduct that

P (k)
J rydr= hmsupJ

]}Lngop( l’xm(k)fl) =e.  (23)

k—oco JO
P fx n(k)- 1f X (k) 1

= hmsupJ r)dr

k—oco Jo

P (X1 % V(P (*u1 Xm1))

< hmsup < o rydr - J e w(r)dr

k—0o0 0

Xin(k)-1%m(k)— 1) w(p(xw(k)fl’xm(k)fl))

< hmsup w(r)dr - hmme w(r)dr

k—oo Jo k—00 0

£ y(e) £
< J w(r)dr - J w(r)dr < J w(r)dr.

0 0 0

(24)

It is ridiculous. Of course, (19) is true.

Assume that € > 0 and § denotes the real number appear-
ingin (3) of [8]. By means of (19), we infer that thereis N € N
satisfying

p(xns> x,) <6, p(xy, x,,) <8,¥n,m >N, (25)
which ensures that
d(x,,x,,) <&Vn,m>N. (26)

So {x,},e, is @ Cauchy sequence. Completeness of X
means that

lim x,, = u for some u € X. (27)

n—-o0o

According to (19), we are aware of the fact that for any
&> 0 there is M € N with

p(x,5%,,) <&YM>n>M, (28)

which together with (27) gives that

0 < p(x,, u) <liminfp(x,, x,,) <eVn> M. (29)
It follows that
lim p(x,, u) =0. (30)

Taking account of (2), (30), (w,
Lemma 2.1 in [12], we infer that

) €D, xD,, and



P(fxufu)
0< limsupJ w(r)dr
n—oo Jo
P(%) V(p(x,u))
< limsup (J w(r)dr - J w(r)dr)
n—co \Jo 0 1
P(xuott) Y (p(xpn)) ()
< limsupJ w(r)dr - limian w(r)dr
n—oo Jo n—co |,

It follows that

(fxfu)
limJ w(r)dr=0. (32)
0

n—-o0o0
Lemma 2.2 in [12] and the above equation give that
lim p(fx,, fu) = lim p(x,,,, fu) = 0. (33)
n—0o0 n—o00

We get from (1) in [8] and (17) that

Sp(xn’fu) Sp(xn’ xn+1) +p('xn+1’fu) — 0asn — oo.
(34)
Clearly,
lim p(x,, fu) = 0. (35)

Applying (30), (35), and Lemma 1 in [8], we gain that u
=fu.

Secondly, we prove that p(u, u) = 0. Suppose that p(u, u
) > 0. In view of (w, y) € @, x @, and (2), we receive that

p(u,14) p(fufu)
0< w(r)dr = J w(r)dr

0 0
p(1h:14) v (p(usu))

< w(r)dr - J w(r)dr (36)
0 0
p(u,14)

< w(r)dr,
0

which is not possible. Hence, p(u, u) = 0.

Thirdly, we assert the uniqueness of fixed points of f in X.
Assume that f possesses two fixed points u, v € X. We know,
analogous to the proof of (36), that p(u,u)=p(v,v)=0.
Assume that p(u,v) >0. Due to (w,y) € @, x D, and (2),
we deduce that

p(wv) (fufv)
0< w(r)dr = J w(r)dr
0

IN
£
=

QU

N

|
—
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which is ridiculous. Consequently, p(u, v) =

1in [8] and p(u, u) =

0. Using Lemma
0, we obtain that u =v.

Theorem 4. Let p be a w-distance in a complete metric space
(X,d) and let f : X — X satisfy that

P(fxfy) P(x) v(p(xfy))
J w(r)drsJ w(r)dr—J w(r)drVx,y € X.
0 0 0

(38)

Here, (w,y) € @, X ©,. Then, f possesses a unique fixed point
u € X such that p(u, u) =0,

Oandlim,_, f"x,=uforeachx, € X.

(39)

lmnﬁoop(fnxO’ M) =

Proof. Firstly, we show that f possesses fixed points in X. Let
xp€X and x,, = f"x, for each n € N,,. Now, we divide the proof
into two steps.

Step 5. Put x,, =x, _; for some ny € N. In addition, x,, _; isa
fixed point of f and lim,_,.f"x,=x, _;. Suppose that p(
_1)>0. Owing to (38) and (w,y) € @, x D,, we
acquire that

J‘P(xnol’xno
0

xno—l’ xn0

Xng- 1fxn0
J w(r)dr

J Xno-1%Xny-1 d
r

—J (P (%np-1f%g1))

IA

w(r)dr |
(40
(xno—l)xno—l)
= JP w(r)dr

_0 ‘[w(p(xnopxnol))

0

P(xno—l Xno-1 )
|

0

w(r)dr

w(r)dr,

which is ridiculous. Hence, p(x,, _,x, ;) =0, which means

that

hmp(f X0 X ny 1) p('xno—l’ xno—l) =0 > (41)

Step 6. x,, # x,,_; for all n € N. Assume that

(x> Xy,_1) = 0 for some gy € N. (42)
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Using (w, v) € @, x Dy, (38), and (42), we conclude that

P(Xnoﬂ’xno) P(fxnn >fxn071)
0< w(r)dr = w(r)dr
Jo Jo
P(X"O ’x"o*l) l”(‘D("“o f¥nga ))
< w(r)dr - w(r)dr (43)
Jo 0
P(""o”‘"o*l) 1”(AD(X"O’ ”0))
= w(r)dr - w(r)dr<0
0 0
It becomes that
P(xn0+1 xno)
J w(r)dr=0. (44)
0

Thus, w € @, and the above equation guarantee that
P(%ngs10 %y, ) = 0. (45)
As a result of (42), (45), and (1) in [8], we deduce that
0 Sp(xnnﬂ’ xno—l) Sp(xn0+l’ xno) +P(xn > xno—l) =0, (46)
in other words,

p(xn0+1’ xno—l) =0. (47)

From (45), (47), and Lemma 1 in [8], we obtain that X,
= X,,-1> Which is impossible, and, hence,

P(x,%x,_1) >0,VYneN. (48)
Suppose that there exists g € N with
Xg1)- (49)

In light of (38), (48), (49), and (w, v) € @, x @, we infer
that

P(%g1>%,) > P (%,

J ) rydr < E(X:l’xq)u))(r)dr
fx,lfxq 1 D (%41
w(r)dr < w(r)dr
J v (p(%0f %)) JO p(%0%41) (50)
‘L W°W=L w(r)dr

p(xq,xq,l)

_ Jw(p(xq)xq))w(r)dr < J w(r)dr.

0 0

It is ridiculous. By means of (48), we get that
0< (ks ) P( 3, )VHEN.  (51)

Thus, (51) means that the sequence {p(x,;,x,)},cy, i

5
both positive and decreasing. Consequently,
’}Lrgop( wi1> X, ) = vforsomev>0. (52)
Assume that
P(xj2%;) > p(%;41, X, ) forsome j € N. (53)

In terms of (38), (53), and (w, y) € @, x ®,, we attain
that

I/\

j+1> P(Xj425X
XjrrXj-1 J(} })w(r)dr
0

(Frifr) P(%501%-1)
J w(r)dr < J

. w(r)dr
B Jw( P(xfx1) ) JP(WH) (54)

0

which is ridiculous. Hence,

ng(xn+2’xn)Sp(xnﬂ’xn—l)’ VneN. (55)

We get from (55) that the sequence {p(x,,.,,,
both nonnegative and nonincreasing. Thus,

xn>}neN0 is

lim p(x,,,, x,) = bforsome b >0. (56)

Assume that v> 0. In view of (38), (52), (56), (w, y) €
@, x @4, and Lemma 2.1 in [12], we gain that

b P( n+2>xn>
0< J w(r)dr = limsupJ w(r)dr

0 n—0oo 0

(X1 %u1)
= limsupJ w(r)dr
n—oo
P(Xpi1%n1) V(P (xpi1f %0 1))
< limsup ( dr - J w(r)dr)
n—0oo 0 0
P(Xps1%n1) V(P (Xpi1X0))
= limsup ( dr — J w(r)dr)
n—o0 0
P( n+1%n- l) V/(P( n+1%, ))
< limsupJ w(r)dr - hmme w(r)dr
n—00 n—-o00 0
b y(v) b
< J w(r)dr - J w(r)dr < J w(r)dr.
0 0 0
(57)

It is impossible. Thus, (18) is true. Suppose that (6) holds.



Taking advantage of (6), (38), and (w, y) € @, x @,, we have

P\ Xng Xng+1 P f g1 %,
OSJ ( )w(r)drz ( )w(r)dr
0 0
P(Xng-1%nq V(2 (Xng-12/ %y
< ( )w(r)dr— ol ) )w(r)dr (58)

0 0

p(xno—l'xno) w(p(xnn—l’xng-ﬂ))
= w(r)dr - w(r)dr <0.
0 Jo
It follows that
P(X"o ’x"o*l)
J w(r)dr=0. (59)
0

Thus, the above equation and w € @, give (9). Using (6),
(9), and (1) in [8], we conclude that

0 Sp(xnn—l’ xn0+1) Sp(xnn—l’ xno) +p(xn ’xn0+1) = 0’ (60)

that is, (11) holds. By virtue of (6), (11), and Lemma 1 in [8],
we obtain that x, =x, .;, which is impossible. As a result,

(12) holds. Assume that there exists g € N with

p( q+1) >p( q- X ) (61)

We know from (12), (38), (61), and (w, v) € @, x @, that

a lxq r)dr < r(xq)xqﬂ)w(r)dr
(xqfl’xq)
dr < JP w(r)dr
0 (62)
(xqfl’xq)
w(r)dr = JP w(r)dr

0

w(r)dr < Jp(qu’xq)w(r)dr,

o<,
J (fxgrfxy)
I Wolo%)

B JW(p(XMW))

0 0

which is ridiculous. By means of (12), we obtain that

0<p(xn’xn+1) sp(xn_l,xn),VnEN. (63)

With the help of (63), there is a real number ¢ > 0 satisfy-
ing (15). Assume that ¢>0. Let limsup,_  p(x,,x,) =w.
Clearly, there exists a subsequence {x,, }, . of {x,},cy, with

]}Lrglop (X0 %, ) = w. (64)
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Note that (38) and (w, y) € @, x @, infer that

P(xn-ﬂ X ) p(fxn’fxn—l )
0< w(r)dr = w(r)dr
0 Jo
P(X X 1) V/(P(xwfxn—l))
< w(r)dr - w(r)dr
Jo Jo
P(xn’xn—l) W(P(xwxn)) (65)
= w(r)dr - w(r)dr
Jo Jo
P (XyX-1)
< w(r)dr,Yn eN.
Jo

Letting n — 0o in (65) and utilizing (18), w € @, and
Lemma 2.2 in [12], we make a conclusion that

P (X X-1) V(p(xnXn))
lim (J w(r)dr - J w(r)dr) =0. (66)

0 0
It follows that

Y(p(xxn)) P %-1)
lim J w(r)dr = lim J w(r)dr

0 n—oo J

DX K1) V(P(X%,))
— lim (J w(r)dr—J w(r)dr) =0.
n—o0o 0
(67)

In view of (18), (38), (64), (65), and (67), (w, 1//) €, x
@, and Lemma 2.2 in [12], we deduct that

P (g1 %) (S f %0 1)
0= limsupJ o w(r)dr = limsupJ o w(r)dr
k—oo JO k—oo JO
P xnk’xn 71) W P Xn ’fxn 71))
< limsup J G w(r)dr—J (oo w(r)dr
k—o00 0 0
P (X X1 ¥ (P (%%, )
= limsup J G )w(r)dr—J (P w(r)dr
k—o00 0 0
ICHEY v(p(xnrn)
< limsupJ . w(r)dr - liminfj o w(r)dr
k—oco Jo k—o00 0
v(w)
<0- J w(r)dr,
0

(68)

which together with (w, y) € @, x @, yields that w=0. It is
obvious that

lim p(x,,x,) = 0. (69)

n—0o0

Using Lemma 2.2 in [12], (15), (38), (69), and (w, v) €
®, x @, we find that
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P( n+]’xn+])
0= limsupj w(r)dr = limsup

n—00 n—00

P(fxf%y)
J w(r)dr
0

P(% (ACICANER)
(J J w(r)dr)
0 0
P(x V(P(XnXr1))
=limsup ( rydr — J w(r)dr)

<limsup
n—o00

n—-00 0 0
P(xn xn W(P(xn’xnﬂ))
< llmsupJ rydr - hmme w(r)dr
n—oo Jo n—oo |,
v(c)
<0- J w(r)dr,
(70)

which together with (
Thus, (17) holds.

Now, we assert that (19) holds. Otherwise, there is a real
number & >0 such that for arbitrary k € N, there are m(k),
n(k) € N with (20) and (21). On account of (1) in [8] and
(3.12), we gain that

w,y) €@, x @, implies that c=0.

Letting k — oo in (71) and making use of (17), (18), and
(21), we require that

fimp (oo on ) = fmp (o)
= fimp (v ) ==

Taking notice of (38), (72), (w, ) € @, x ®,, and Lemma
2.1 in [12], we receive that

P n(k)> m(k
J r)dr =limsup w(r)dr

k—o00

’wc

fx n(k)- Df %k
= hmsupJ w(r)dr

k—0o
P (k)=1%m(k)~ 1 (p(xn[k)fl’fxm(k]fl))
w(r)dr - J w(r)dr
0

P n(k)~1%m( (VL Xnr)-1%m(k)
()~ dT—J (p(ut U))w(r)dr>

=)

< hmsup
k—o00
= limsup (

k—oco

0

7
P(Xn(k)-1%m(k)-1 Y{P(Xni)-1Xom(k
§limsupJ( o )w(r)dr—limian (o <)))w(r)dr
k—co Jo k—oo Jo
3 y(e) 3
< J w(r)dr - J w(r)dr < J w(r)dr.
0 0 0
(73)

It is ridiculous. That is, (19) is true.

We deduce, similar to the proof of Theorem 1, that (27)
holds. It follows from (19) that for every real number £ >0
there is M € N with

p(x,,x,,) <&VYm>n>M, (74)
which together with (2) in [8] and (27) gives that

u) <liminfp(x,

m—00

0<p(x, X,) <&Vn>M, (75)

that is, (30) holds. In terms of (30), (38), (w,y) € ©, x D,
and Lemma 2.1 in [12], we get that
p(fxpfu)
0< limsupj w(r)dr
n—oo Jo
P(xt) Y (p(x,fu))
<limsup (J w(r)dr - J w(r)dr>
e 0 0 (76)

P(Xtt) v (p(xpfu
< limsupj w(r)dr - liminfj w(r)dr
0

n—co Jo n—00

Y (p(x,.f 1))
<0- limian w(r)dr<0.
0

n—00

It follows that

n—00

(fxufu)
lim J w(r)dr=0. (77)
0

Thus, Lemma 2.2 in [12] and the above equation ensure
that

lim p(fx,, fu) = lim p(x,.1, fu) = (78)

n—00

In light of (1) in [8] and (17), we arrive at

<p(x fu) <p(x

n’xn+1) +P(xn+1>f1/l) — 0asn — 00,
(79)

that is to say, (35) holds. By virtue of (30), (35) and Lemma 1
in [8], we have u = fu.



Secondly, we assert that p(u, u) = 0. Assume that p(u, u)
> 0. Owing to (38) and (w, y) € @, x @,, we deduce that

p(tu) p(fufu) p(uu) (W (p(ufu))
0< J w(r)dr = w(r)dr < J w(r)dr - J w(r)dr
0 0 0 0
p(uu) vy (p(uu)) p(uu)
= [ w(r)dr - [ w(r)dr < J w(r)dr.
Jo Jo 0
(80)

It is ridiculous. Hence, p(u, u) = 0.

Thirdly, we show the uniqueness of fixed points of f in X.
Assume that f possesses two fixed points u, v € X. We get,
similar to the proof of (80), that p(u, u) = p(v, v) = 0. Assume
that p(u, v) > 0. Taking account of (w, y) € @, x @, and (38),
we get that

which is ridiculous. Therefore, p(u, v) = 0. It follows from p
(u,u) =0 and Lemma 1 in [8] that u=v.

Theorem 7. Let p be a w-distance in a complete metric space
(X,d) and let f : X — X satisfy that

v(p(fx))

p(fxfy)
J w(r)dr,Vx,y € X,

w(r)dr—J

0 0

(82)

here (w, ) € @, x ©,. Then, f possesses a unique fixed point
u € X satisfying p(u, u) =0,

lim,_  p(f"x, u) = 0andlim,_, f"x,=ufor eachx, € X.
(83)

Proof. Firstly, we demonstrate that f possesses fixed points in
X. Let xyeX and x,, = f"x, for each n € N,. Now, we consider
two cases below:

Case 8. x, =x, _, for some n, € N.Since x,, _, is a fixed point
of f, it follows that lim, ,.f"xo=x, ;. Assume that p(
Xpy-1> Xy,-1) > 0. Due to (82) and (w, y) € @, x @, we have
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P(fxng—lvfxno—l) P(Xno—l’xno—l)

wirdr= | w(rdr< |
- JW(P(fanpxn(,l))

P Xng-1%ng-1
J ( ) w(r)dr

0 0

0
JP (xno—l Xng-1 )

0

P(xnofl’xngfl)
< J w(r)dr,

0

which is absurd. Hence, p(x,, _;,x, ;) =0 and

limp(f”xo, xnn—l) :p(xno—l’xnn—l) =0. (85)

n—00

Case 9. x,, # x,,_, for all n € N. Assume that (6) holds. In view
of (6), (82), and (w, y) € @, x O, we obtain that

P (X Xng 41 D%y %
0< ( )w(r)dr = ( )w(r)dr
0 0
P (Xg-1 %0 V(P( 1%y
™ e [P e
0 0
P (Xpg15%, V(0 (%g %y
= ( )w(r)dr— (r( ))w(r)dr<0,
0 0
which means that
p(xno ’xn0+1 )
J w(r)dr=0. (87)
0

Combining w € @, and the above equation, we get (3.3).
We gain from (6), (9), and (p,) that

0<p (%15 X 41) SP (Kot Xy ) + P (X X 01) =0, (88)

in other words, (11) sets up. In terms of (6), (11), and Lemma
1 in [8], we know immediately that x, =x, ,;, which is
absurd, and, hence, (12) is true. Assume that there is g€ N
satisfying (61). We conclude from (12), (61), (82), and (w,
y) € ©, x O, that

0< P(xw’xq)w(r)dr < P xqﬂ)w r)dr = r(fqufxq)w(r) r

- Z(qu’xq)w(r)dr B :(p(fqu’xq))w(r)dr
= z(qu’xq)w(r)dr - :(p(xq)xq))w(r)dr < J:(qu Xq)w(r)dr,
(89)

which is impossible. Hence, (63) is true. It follows from (63)
that there is a real number ¢ > 0 with (15). Assume that there
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is j € N with

(90)

P( ]+2) >P( j—l’xj+1)'

In terms of (82), (90), and (w, y) € @, x @, we infer that

P(X—l)x'ﬂ) P(x"xn) P(fx'—1>fx'+1)
o<| w(r)dr < o w(r)dr:J o w(r)dr

0 0 0
P(x—px'ﬂ) W(P(fx'—l’x'ﬂ))

< Y w(r)dr - Y w(r)dr
0 0
P(x—l’x'ﬂ) ‘I/(P(X"x'+1)) p(x 1>x'+1)

= w(r)dr - . w(r)drsj o w(r)dr.
0 0 0

(91)

It is absurd, and, hence,

0 Sp(‘xn’xn+2) Sp(xn 1> n+1) VneN.

(92) means that {p(x

(92)

X +2)}neN0 is both nonnegative

and nonincreasing. Consequently,

lim p(x,, x

n—oo

Assume that

1s2) =z for some constantz>0.  (93)

¢>0. Owing to (15), (82), (93), (w,

) €

@, x D4, and Lemma 2.1 in [12], we get that

z P(XpXn12)
0< J w(r)dr = limsupJ w(r)dr
0 n—co Jo
P(fxnfl’fxnﬂ)
= limsupJ w(r)dr
n—00
P(X 1 xn+l Y(P(fX1%051))
<limsup ( dr - J w(r)dr)
n—oo 0 0
P n—=1” xn+1 W(P(xn xn+l))
= limsup < rydr - J w(r)dr)
n—00 0 0
P (Xp-15%11) Y(P(%%0i1))
< limsupJ w(r)dr - 11m1an w(r)dr
H—00 n—0o |,

z v (c)
< J w(r)dr - J w
0 0

w(r)dr.
0

(ryr< |
(54)

It is contradictive. Thus, (17) is true. Suppose that (42)
holds. We infer from (42), (82), and (w, y) € @, X @, that

P(xnoﬂ’xno)
0
P(Xﬂo ’X"O*l)
0

p(x"o ’X"O*l)

0

0<

IN

(fxn(] ’fxn(rl)
w(r)dr = Z w(r)dr
w(r)dr - P, ’xnml))w(r)dr (95)
w(r)dr - 1V(p(x”ow}%%))w(r)dr <0,

0

that is,

w(r)dr=0.

J‘P(xnoﬂ’xno) (96)

0

Thus, (45) follows from the above equation and w € @,.
We deduct from (42), (45), and (1) in [8] that

0 Sp('xnoﬂ’ xno—l) Sp(xnoﬂ’ ) +p('x xn 1) = 0’ (97)

that is to say, (47) holds. Thus, x, =x, _, is easily obtained
from (45), (47), and Lemma 1 in [8], which is ridiculous.
As a result, (48) holds. Suppose that there exists g € N satis-
fying (49). By virtue of (48), (49), (82), and (w, y) € @, x
@,, we know that

0< z(qum w(r)dr < Z(w)wm r=jz(fxq’fx“)w<r> :
g Z(xq - 1)w (rydr - J :(P(fxq)xﬂ))w (rdr
y ‘O’(xq”‘q“’w i :(p(xqwxq-lnw i
< Z(qu‘”) w(r)dr,

(98)

which is ridiculous. By means of (48), we have (51). It follows
from (51) that the sequence {p(x,,,, X,,) } .y, is both positive
and decreasing, which yields (52) for some a constant v > 0.
Suppose that v > 0. Put limsup,_, . p(x,, x,,) = w. Obviously,
there is a subsequence {x,, } . of {x,},cy, with (64). Using
(82), and (w, v) € @, x 4, we deduce that

DX X11) P(f%1:f %)
0< w(r)dr = w(r)dr
Jo Jo
p(xnfl xn) W(P(fxnfl’xn»
< w(r)dr - w(r)dr
Jo Jo
p(xnfl xn) W(P(xn’xn» <99)
= w(r)dr - w(r)dr
Jo Jo
P(X-15%,)
< w(r)dr, VneN.
Jo

Letting n — 0o in (99) and using (17), we®, and
Lemma 2.2 in [12], we find that

P (X-15%s) V(P (XXn))
<J w(r)dr - J w(r)dr) =0. (100)

0 0

lim
n—00
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It follows that

u/(p(xn’xn)) P(xnfl’xn)
lim J w(r)dr = lim J w(r)dr

n—o00 0 n—00 0

p(xnfl’xn)
— lim (J w(r)dr

n—-00 0
V(p(x%0))

—J (r)dr) =
0

2], (17), (64), (82), (99),

(101)

We attain from Lemma 2.2 in [1
(101), and (w, y) € @, x @, that

P Xn +1 p(f n 71’fxn )
—llmsupJ e dr—llmsupJ o w(r)dr

—00 JO k—oo Jo

P n, lxn W(P(fxn —1%y ))
<11msup o dr—J o w(r)dr
—00 0 0
P n lxn \[/(‘D(X,, Xn ))
—llmsup J e dr—J o w(r)dr
—00 0 0
P (%1%, (P (%n %, ) )
<hmsupJ o w(r)dr—h}zmnfj o w(r)dr
k—oo JO —® Jo

(102)

It follows that IW (r)dr <0. By virtue of (w,y) € D,

x @,, we have f"’ (r)dr=0 and w=0. It means that
(69) holds. In view of (52) (69), (82), (w, y) € ®, x D, and
Lemma 2.2 in [12], we infer that

P( n+l ’xn+l) (fxn ’fxn)
0 —limsupj w(r )dr:limsupJ w(r)dr
0

P(x V(p(fxu%n))
<limsup (j J w(r)dr)
n—00 0 0
P(x V(P(Xn1¥n))
=limsup ( rydr — J w(r)dr)
n—00 0 0

P(%s xn V(P (Xni1%n))
< hmsupj r)dr - hmme w(r)dr

n—ooo Jo n—00

Yo
<0- J w(r)dr,
(103)

which yields that jw r)dr <0. Using (w,y) € ®, x D,,

we obtain that J“"’ )dr =0 and v =0. Thus, (3.9) holds.
Now, we prove that (19) holds. Suppose that there is an

€ >0 such that for arbitrary k € N, (20), (21), and (22) hold

for some m(k), n(k) € N. As k — oo in (3.13) and by virtue
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of (17), (18), and (21), we acquire that

Jim p (xn(k> X <k>) = Jimp (x”“‘)‘l’xm(k)_l) (104)
= (o 1) =

In terms of Lemma 2.1 in [12], (82), (104), and (w, )
€ @, x D,, we are aware of the fact that

€ ) P (%t inii))
J w(r)dr=hmsupj w(r)dr

0

0 k—00

. p(fxn(k)fl’fxm(k)fl>
= 11msupj w(r)dr
k—oco JO
) P(Xn(k)-l»xm(k)—l)
<limsup J w(r)dr
k—o00 0

( (fxn k)—l»xm(M—l))
_ J: P w(r)df’>

p(xn(k)fl’xm(k)fl)
=limsup J
k—00 0

B JW (P(x"<k) Kim(k)-1 ) ) w(r)dr>

0

w(r)dr

<limsup
k—o00

w(r)dr

Jp(xn(k)l’xm(k)l)
0

— liminf
k—o00

J‘/’(P (%a Xmitg-1) )

0

e v (e)
< J w(r)dr - J w(r
0 0

which is absurd. Thus, (19) is true.

We infer, similar to the proof of Theorem 1, that (27)
holds. It follows from (19) that for each € > 0 there is M €
N with

p(x,,x,,) <&¥m>n>M, (106)
which together with (2) in [8] and (27) gets that
0 < p(x,, u) <liminfp(x,, x,,) <eV¥n>M, (107)

m—00

that is, (30) holds. On account of Lemma 2.1 in [12], (30),
(82), and (w, ¥) € @, x @,, we deduct that

P(fxf 1) P(xnstt) V(p(fx,4))
0< lirnsupJ w(r)dr < limsup <J w(r)dr - J w(r)dr>
0

n—00 n—o0 0 0

P(Xpoh) Y (P(Xpe11)) y(0)
slimsupJ w(r)dr—liminfj w(r)dr<0 —J w(r)dr=0,
0

n—oo Jo n—co |

(108)
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in other words,

lim
n—00

(109)

p(ff 1)
J w(r)dr=0.

0

Lemma 2.2 in [12] and the above equation give that

lim p(fx,,fu) = lim p(x,;, fu) =0.  (110)

n—o00

In light of (1) in [8] and (17), we attain that

0 Sp('xn’fu) Sp(xn’xn+l) +p(xn+1’fu) — Oasn — 00,
(111)

that is to say, (35) holds. Using (30), (35), and Lemma 1 in
[8], we have u = fu.

Secondly, we prove that p(u, u) = 0. Assume that p(u, u)
> 0. Because of (82) and (w, v) € @, x @,, we deduce that

(p(usut)

(p(ustt) (P(furfu) (Y (p(fun)
0< J w(r)dr= J w(r)dr< J w(r)dr - J w(r)dr
0 0

p(usu) y(p(wi)) p(tu)
= [ w(r)dr - [ w(r)dr < J w(r)dr,

Jo 0

0

(112)

which is impossible. Hence, p(u, 1) = 0.

Thirdly, we assert the uniqueness of fixed points of f in X.
Assume that f possesses two fixed points u,veX. We
deduce, similar to the proof of (112), that p(u, u) =p(v,v)
=0. Assume that p(u, v) > 0. On account of (82) and (w, v
) € @, x @, we get that

(1) p(fufv) p(uv) v(p(fiv)
0< J w(r)dr = I w(r)dr < J w(r)dr - J w(r)dr

0 Jo 0

p(usv) y(p(uv)) p(usv)

= J w(r)dr - [ w(r)dr < J w(r)dr,
0 Jo 0

(113)

which is ridiculous. Therefore, p(u, v) = 0. Using p(u, u) =0
and Lemma 1 in [8], we infer immediately that u = v.

We have, similar to the proof of Theorem 1, the result
below and omit its proof.

Theorem 10. Let p be a w-distance in a complete metric space
(X,d) and let f : X — X satisfy that

v(p(fxfy))
w(r)dr¥x,y € X.

P(x.y)

p(fxfy)
J w(r)dr < J

w(r)dr —J

0 0 0

(114)

Here, (w, ) € @, x @,. Then, f possesses a unique fixed point
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u € X such that p(u, u) =0,

lim,_, p(f"xy ) = 0andlim,_,  f"x, = ufor eachx, € X.
(115)

4. Four Examples

Now, we give four examples to explain the fixed point results
obtained in Section 3.

Remark 11. Letting p(x,y) =d(x,y),Vx,y € X, we deduce
that Theorem 1 reduces to Theorem 2.1 in [14], which gener-
alizes Theorem 1 in [15]. On the other hand, the example
below proves that Theorem 1 extends indeed these results
in [14, 15] and differs from Theorem 2.1 in [1].

Example 12. Let X =[0,6],d(x,y) = |lx—y| and p(x, y) = y/2
,Vx,yeX. Let f : X = X, wand y : R — R be defined by,
respectively,

6 6
fx=2x-x*Vxe <§,2],0,Vxe {o, g] u(2,6 (116)
and

w(r)=2, y(r)= %rz, VreR*. (117)

It follows that p is a w-distance in X and (w, y) € @, x D,
. Put x, y € X. In order to check (2), we consider two cases
below:

Case 13. (x, y) € X x (6/5, 2]. It follows that

1,2

P(fxf) Y3y 1 3 4
J w(r)dr:J 2dr=2y—y2£y—gy2=J2dr—J 2dr
0

0 0
P(xy) y(p(xy))
= J w(r)dr - J w(r)dr.

0

(118)

Case 14. (x,y) € X x [0, 6/5] U (2, 6]. Note that

P(fxfy) 1, p(xy) v(p(xy))
J w(r)dr=0<y— gy =J w(r)dr—J w(r)dr.
0 0 0

(119)

That is, (2) is true. Hence, the conditions of Theorem 1
are fulfilled. Thus, Theorem 1 ensures that f possesses a
unique fixed point in X. Now, we need to prove that Theorem
2.1 in [1], Theorem 2.1 in [14], and Theorem 1 in [15] are
useless in checking the existence of fixed points for the map-

ping f in X.
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If there is y € @, satisfying the conditions of Theorem 1
in [15], we know that

o) o)+ ) o

which is absurd.
If there are c € (0, 1) and w € @, satisfying the conditions
of Theorem 2.1 in [1], we attain that

afu

N J w(r)dr = J A()
)

(121)

which is ridiculous.
If there is (w, y) € @, x @, satisfying the conditions of
Theorem 2.1 in [14], we conclude that

4 10-(27-5)]
0< J w(r)dr = limsupj w(r)dr

0 ya? 0

= limsup
61
Ve

4(57)
<limsup J
y=5 \J0

< limsup Jd(g)y) w(r)dr — liminf F/(d(g’y))w(r) dr

0 y—¢

d(f5f7)
J g w(r)dr

0

w(r)dr—J

6+
V=3

v(0)
<0-— J w(r)dr=0,

0

which is impossible.

Remark 15. Examples 16, 21, and 26 explain that Theorems 4,
7, and 10 are different from Theorem 2.1 in [14].

Example 16. Let X =R*,d(x,y) =|x-y| and p(x,y)=x+y
,Vx,yeX. Let f : X > X, wand v : R* > R* be defined by,
respectively,

ﬂngNWJL£W£UﬁmL (123)

and

w(r)=2ry(r)= %,Vr €R". (124)

Evidently, p is a w-distance in X and (w,y) € ©, x D,.
Let x,y € X. For the sake of verifying (38), we take into
account the following four possible cases:
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Case 17. (x,y) €0, 1] x [0, 1]. Note that

P(fxfy) =+ 5 , 1 7\2
J w(rydr=| 2tdt=—(x+y)"<(x+y) —Z(x+—)
0 0

(125)

Case 18. (x,y) € [0, 1] x (1,+00). Obviously,

e

P(fxfy) 5
J w(r)dr=

0 0

X N\? , 1 2
2tdt = (3 + 4) <(x+y) ) (x+ 4)
X+y
. ym—J
0 0
p(%.y) v (p(x.fy))
w r)dr—J

v (x+)
2tdt

w(r)dr.

0 0

(126)

Case 19. (x,y) € (1,+00) X [0, 1]. Notice that

o

w(r)dr = r

Jo

xX+y y/(x%)
= J 2tdt — J 2tdt
0

0

P(xy) v(p(xf))
= J w(r)dr - J w(r)dr.
0 0

[ vt [ ) w503

(127)
Case 20. (x,y) € (1,+400) X (1,+00). It follows that
P(fxfy) = 1 5
J w(r)dr=| 2tdt=—(x+y)
0 0 16
2 1 7\?
<(x+y) 1 (x + Z)
xX+y w(x%) (128)
= J 2tdt — J 2tdt
0 0

p(x.y) Y (p(xfy))
= J w(r)dr - J w(r)dr.
0

That is to say, (38) is true. Therefore, the conditions of
Theorem 4 are fulfilled. Consequently, Theorem 4 means
that f possesses a unique fixed point in X. However, we can-
not use Theorem 2.1 in [14] to show the existence of fixed
points for the mapping f in X. Or else, there is (w, ¥) € @,
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x @, with

-
4

w(r)dr

~|~

b
0< J w(r)dr = limsupJ
0 y—=1" Jo
d(fL.fy)
= limsupJ
=

w(r)dr

(rydr - Jw(d(lw)w(r)dr)

0

0

d(1y)
< limsup (J w
y—l* 0

d(Ly) y(d(Ly))
< limsupJ w(r)dr — limian w(r)dr

y—=1" Jo =17 )

v(0)
<0- J w(r)dr =0,
0

(129)

which is absurd.

Example 21. Let X=R*,d(x,y)=|x—y| and p(x,y)=x+y
,Vx,yeX. Let f : X > X, wand v : R* > R* be defined by,
respectively,

fx=0Vxe {0 \/_} \[xVxe (\/_+oo> (130)
and
w(r)y=4r, y(r)= ?r,Vr eR". (131)

Obviously, p is a w-distance in X and (w, ) € @, X D,.
Let x,y € X. To demonstrate (82), we consider four cases
below:

Case 22. (x, ) € [0, /3] x [0, v/3]. Evidently,

(fxfy)
J w(r)dr=0<2(x+y)* - gyz
0

p(x.y) v (p(fxy)) (132)
= J w(r)dr - J w(r)dr.
0 0
Case 23. (x, ) € [0, v/3] x (v/3,+00). Clearly,
P(Fxfy) By
J w(r)dr=| 4rdr= é)/2 <2(x+y)* - §yz
0 0 8 2
Xty v(y)
= 4rdr — J 4rdr (133)
0 0
p(%.y) v (p(fxy))
= w(r)dr — J w(r)dr.
0 0

13
Case 24. (x, y) € (v/3,+00) x [0, v/3]. It is obvious that
p(fxfy) i 3
J w(r)dr—J drdr = ~x?
0 0 8"
2
3 3
SZ(x+y)2 = £x+y>
2\ 4
(134)
X+y w(‘/Tixt‘v)
= J 4rdr — J 4rdr
0 0
P(xy) v(p(fxy))
= J w(r)dr - J w(r)dr
0 0
Case 25. (x, y) € (v/3,+00) x (1/3,+00). Clearly
P(fxf) L) 3 ,
J w(r)dr=J drdr=—(x+y)
0 0 8
2
3
<2x+y)P-= £ y)
2\ 4
(135)
Pty

= Jx y4rdr - J ( )4tdt
0

0

P(xy) v(p(fxy))
= J w(r)dr - J w(r)dr.
0 0

In other words, (82) is true, and consequently, the condi-
tions of Theorem 7 are fulfilled. Thus, Theorem 7 yields that
f possesses a unique fixed point in X. Next, we testify that
Theorem 2.1 in [14] is unapplicable in ensuring the existence
of fixed points for the mapping f in X.

If there is (w, y) € @, x @, satisfying the conditions of
Theorem 2.1 in [14], we have

% 0- 4}"
0< J w(r)dr = limsupj w(r)dr
0 yo/3'

Jd fffy

= limsup
yoV3

< 11msup ( J (d(ﬁ’y))w(r)dr>
y=v3' 0

Jd JW(d(ﬁw))

0

r)dr — liminf

<limsup
0 y—V3'

y—V3'

w(r)dr

v(0)
<0- J w(r)dr =0,
0
(136)
which is ridiculous.

Example 26. Let X =R*,d(x,y) =|x—y| and p(x,y) =y, Vx
,yeX. Let f: X— X, w and v : R" - R" be defined by,
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respectively,

fx=0Yxe[0,25], i;,Vx €(25+00),  (137)
and

w(r) = §r3, v(r)=5y/rVreR". (138)

It is easy to see that p is a w-distance in X and (w, y) €
@, xD,. Let x,y € X. To prove (114), we have to consider
two cases below:

Case 27. (x,y) € X x [0, 25]. Apparently,

P(fxfy) 1 p(xy)
J w(r)dr=0< §y4 = J w(r)dr
0 0
v(p(fxfy)) (139)
- J w(r)dr.
0

Case 28. (x,y) € X x (25,400). It is easy to demonstrate that

w(r)dr=| —rdr=

Jp(fx,fy) 54 ,
0 0 5

Hence, (114) is true, and the conditions of Theorem 10
are satisfied. Thus, Theorem 10 guarantees that f possesses
a unique fixed point in X. Then, we certify that Theorem
2.1 in [14] is unfulfilled in showing the existence of fixed
points for the mapping f in X. Otherwise, there is (w, ¥) €
D, x P, satisfying the conditions Theorem 2.1 in [14]. It
means that

5 [0-%|
0< J w(r)dr = limsupJ w(r)dr
0 y—25* Jo
d(f25.fy)
= limsupJ w(r)dr
y—25* Jo
d(25,) ¥(d(25))
< limsup (J w(r)dr - J w(r)dr) (141)
y—25* 0 0
d(25,) y(d(25))
< limsupJ w(r)dr — limian w(r)dr
y=25° Jo y=25 )

v(0)
<0- J w(r)dr =0,
0

which is ridiculous.
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5. Applications

In this section, we utilize Theorems 1 and 7 to investigate the
solvability of the nonlinear Fredholm and Volterra integral
equations below, respectively,

x(t)=h(t) + Jle(t, r,x(r))drVt € [a, ],

a

(142)

x(t)=h(t)+ J K(t,r,x(r))drNt € [a, b], (143)
where a and b are constants in Rwitha < b, h : [a, b] > Rand
K : [a, b)* x R — R are given functions.

We assume that C([a, b], R) denotes the Banach space of
all continuous functions x : [a, b] — R with the norm ||x|| =
SUP;(o | X(2) | . Let X = C([a, b], R) and

d(x,y) = sup |x(r) — y(r)|.Vx, y € X. (144)

refa,b)

Obviously, (X, d) is a complete metric space. Define two
mappings T and S as follows:

b
(Tx)(t)=h(t) + J K(t, r,x(r))dr¥(t, x) € [a, b] X X,

(145)

(Sx)(t)=h(t) + J K(t,r,x(r))dr¥(t,x) € [a, b] x X.

(146)

Theorem 29. Let h : [a, b] — Rand K : [a, b’ x R — R satisfy
that

(al) h and K are continuous;

(a2) there is v € @, with

0

b= +K(t, 1, y(r))l

rela,b] re(a,b]

- b-a

sup | y(r)l-y ( sup | y(r) | )
N(t,1,y) € [a, b]? x X.

(147)
Then, Eq. (142) possesses a unique solution in X.

Proof. Define two functionsw : R* - R*andp : X x X — R*
by

1
w(r) = 5,Vr €RY, p(x,y) = sup |y(t)|,Vx, y € X.

tefab]

(148)

Obviously, p is a w-distance and w € . It follows from
(al) and (145) that for arbitrary x € X, Tx is continuous in
[a, b], which means that T maps X into itself. Taking account
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of (145) and (a2), we get that

b

I(Ty) (1)l = %Ih(t) +J K(t, 7, y(r))dr]

a

I(Ty)(®)]
J w(r)dr =
0

N = N =

b h
I£ +K(t,r,y(r))ldr

IN

sup | y(r)l=y( sup |y(r)]
b refa) re(ab]

d
a b-a

p(ey) - W)
b-a

v(p(xy))
w(r)dr - J w(r)drY(t,x,y)
0
€[a, b x X*.

IN

r

N = N
|:

Ja

P(%y)

11
—

0
(149)
It follows that

Sup [(Ty) ()l
w(r)dr = |0

0 0

P(xy)

p(Tx,Ty)
J w(r)dr

IN
£
=

QU

=~

|
—

v(p(Txy))
—J w(r)dr,Vx,y € X.

0

That is, (2) and (82) hold. It follows from each of Theo-
rems 1 and 7 that T possesses a unique fixed point x € X, that
is, Eq. (142) has a unique solution x € X.

We get, similar to the proof of Theorem 29, the following
result and omit its proof.

Theorem 30. Let h : [a, b] — Rand K : [a, b]° x R — R satisfy
(al) and (a2). Then, Eq. (143) possesses a unique solution in
X.

6. Conclusion

By using w-distance, we prove several fixed point results for a
few contractive mappings of integral type, some of which are
used to investigate the existence and uniqueness of solutions
for certain nonlinear Fredholm and Volterra integral equa-
tions, respectively. Four examples are provided to testify that
our results extend or differ from some known results in the
literature.

Data Availability

The data used to support the findings of this study are
included within the article.

15

Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

All authors contributed equally to the writing of this paper.
All authors read and approved the final manuscript.

Acknowledgments

The authors thank the referees for their useful comments and
suggestions. This work was supported by the National Natu-
ral Science Foundation of China (No. 41701616).

References

[1] A. Branciari, “A fixed point theorem for mappings satisfying a
general contractive condition of integral type,” International
Journal of Mathematics and Mathematical Sciences, vol. 29,
no. 9, 536 pages, 2002.

[2] J. Caristi, “Fixed point theorems for mappings satisfying
inwardness conditions,” Transactions of the American Mathe-
matical Society, vol. 215, pp. 241-251, 1976.

[3] L. Ciri¢, H. Lakzian, and V. Rakocevi¢, “Fixed point theorems
for w-cone distance contraction mappings in tvs-cone metric
spaces,” Fixed Point Theory and Applications, vol. 2012,
no. 1, 2012.

[4] L Ekeland, “Nonconvex minimization problems,” Bulletin of
the American Mathematical Society, vol. 1, no. 3, pp. 443-
475, 1979.

[5] L. Guran, “Fixed points for multivalued operators with respect
to a w-distance on metric spaces,” Carpathian Journal of
Mathematics, vol. 23, pp. 89-92, 2007.

[6] D. Ili¢ and V. Rakocevi¢, “Common fixed points for maps on
metric space with w-distance,” Applied Mathematics and Com-
putation, vol. 199, no. 2, pp. 599-610, 2008.

[7] M. Imdad and F. Rouzkard, “Fixed point theorems in ordered
metric spaces via w-distances,” Fixed Point Theory and Appli-
cations, vol. 2012, no. 1, 2012.

[8] O.Kada, T. Suzuki, and W. Takahashi, “Nonconvex minimiza-
tion theorems and fixed point theorems in complete metric
spaces,” Mathematica Japonicae, vol. 44, pp. 381-391, 1996.

[9] S.Kaneko, W. Takahashi, C. F. Wen, and J. C. Yao, “Existence
theorems for single-valued and set-valued mappings with w-
distances in metric spaces,” Fixed Point Theory and Applica-
tions, vol. 2016, no. 1, 2016.

[10] H. Lakzian, H. Aydi, and B. E. Rhoades, “Fixed points for (w
, ¥, p)-weakly contractive mappings in metric spaces with w
-distance,” Applied Mathematics and Computation, vol. 219,
pp. 6777-6782, 2013.

[11] Z.Liu, M. He, X. Liu, and L. Zhao, “Common fixed point the-
orems for four mappings satisfying contractive inequalities of
integral type,” Nonlinear Functional Analysis and Applica-
tions, vol. 23, pp. 473-501, 2018.

[12] Z. Liu, X. Li, S. Kang, and S. Cho, “Fixed point theorems for
mappings satisfying contractive conditions of integral type
and applications,” Fixed Point Theory and Applications,
vol. 2011, no. 1, 2011.

[13] Z. Liu, Y. Wang, S. M. Kang, and Y. C. Kwun, “Some fixed
point theorems for contractive mappings of integral type,”



16 Journal of Function Spaces

The Journal of Nonlinear Sciences and Applications, vol. 10,
no. 7, pp. 3566-3580, 2017.

[14] Z. Liu, H. Wu, J. Ume, and S. Kang, “Some fixed point theo-
rems for mappings satisfying contractive conditions of integral
type,” Fixed Point Theory and Applications, vol. 2014, no. 1,
2014.

[15] B. E. Rhoades, “Some theorems on weakly contractive maps,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 47,
no. 4, pp. 2683-2693, 2001.

[16] W. Takahashi, “Existence theorems generalizing fixed point
theorems for multivalued mappings,” in Fixed Point Theory
and Applications, M. A. Théra and J. B. Baillon, Eds., vol. 252
of Pitman Research Notes in Mathematics Series, 406 pages,
1991.

[17] F. Zhang, H. Wang, S. Wu, and L. Zhao, “Fixed-point theo-
rems for -admissible mappings with -distance and applications
to nonlinear integral equations,” Mathematical Problems in
Engineering, vol. 2020, Article ID 2804802, 7 pages, 2020.



	Fixed Points for Contractive Mappings of Integral Type Involving ω-Distance and Applications
	1. Introduction
	2. Preliminaries
	3. Fixed Point Results with respect to ω-Distance
	4. Four Examples
	5. Applications
	6. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments

