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In this paper, we prove by means of a fixed-point theorem an existence result of the Cauchy problem associated to an ordinary
differential equation in modular function spaces endowed with a reflexive convex digraph.

1. Introduction

It is well known that fixed-point theory is a powerful tool that
was frequently exploited to prove existence of solutions of
differential equations not only in Banach spaces but also in
a wider range of spaces, particularly in Orlicz and
Musielak-Orlicz spaces [1, 2] and more generally in modular
function spaces.

The Orlicz spaces were introduced in the early 1930s
when the lack of flexibility of classical Lebesgue function
spaces Lp, in fact the lack of stability under some differential
operators, leads Orlicz and Birnbaum to consider the space

Lφ = f : ℝ⟶ℝ :

ð
ℝ
φ λ f xð Þj jð Þdx⟶ 0 as λ⟶ 0

� �
,

ð1Þ

where φ : ℝ+ℝ+ is a convex increasing function such that
lim
x→∞

φðxÞ =∞ (the convexity of φ was subsequently very

often omitted).
Later, in the end of the 1950s, Orlicz and Musielak con-

sidered the space

Lϕ = f ∈ X :

ð
Ω

ϕ x, λ f xð Þj jð Þdμ⟶ 0 as λ⟶ 0
� �

, ð2Þ

where ðΩ,∑,μÞ is a measure space, X is the set of all real-
valued (or complex-valued) Σ-measurable, μ-almost every-
where finite functions onΩ, and ϕ : Ω ×ℝ+ ⟶ℝ+ is a Car-
atheodory function which means that it is Σ-measurable for
first variable, nondecreasing continuous mapping on the sec-
ond variable and such that ϕðx, 0Þ = 0, ϕðx, uÞ > 0 if u > 0.

The theory of modular function spaces was initiated by
Kozlowski [3–5], and those spaces were a sort of spaces situ-
ated in between the Musielak-Orlicz and modular ones that
were both more concrete of ordinary modular spaces, as
treating about functions sets, and offering much more flexi-
bility than the Musielak-Orlicz spaces.

Furthermore, in [6, 7] jointly with Khamsi, Kozlowski
has initiated fixed-point results in modular function spaces.
Recently, a new direction has been developed, combining
fixed-point results and graph theory; see, for instance, [8–10].

In the same vein, Kozlowski in [11] managed to prove the
existence of solutions of the following differential equation of
type:

O:D:Eð Þ
u 0ð Þ = f ,
u′ tð Þ + I − Tð Þu tð Þ = 0, ∀t ∈ 0, A½ �,

(
ð3Þ

where uðtÞ has values in modular function spaces and T sat-
isfies nonexpansiveness assumption.
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In this work, we intend to solve the equation (O.D.E) in
modular function spaces endowed with a digraph, where
nonexpansiveness of T is restricted to connected points,
which is a far more general result than the one obtained by
Kozlowski. We will first establish a fixed-point result that will
be employed to prove the existence of solutions of (O.D.E)
with less restraint conditions over T .

2. Preliminaries

We begin by recalling some elementary notions about
graphs; see [12] for further properties.

Definition 1. A directed graph or digraph G is determined by
a nonempty set VðGÞ of its vertices and the set EðGÞ ⊂VðG
Þ × VðGÞ of its directed edges. A digraph is reflexive if each
vertex has a loop. Given a digraph G = ðV , EÞ.

(i) If whenever ðx, yÞ ∈ EðGÞ⇒ ðy, xÞ ∉ EðGÞ, then the
digraph G is called an oriented graph

(ii) A digraph G is transitive whenever ½ðx, yÞ ∈ EðGÞ
and ðy, zÞ ∈ EðGÞ�⇒ ðx, zÞ ∈ EðGÞ, for any x, y, z ∈
VðGÞ

(iii) A dipath of G is a sequence a0, a1,⋯, an,⋯ with ð
ai, ai + 1Þ ∈ EðGÞ for each i ∈ℕ

(iv) A finite dipath of length n from x to y is a sequence
of n + 1 vertices ða0, a1,⋯, anÞwith ðai, ai+1Þ ∈ EðGÞ
and x = a0, y = an

(v) A closed directed path of length n > 1 from x to y,
i.e., x = y, is called a directed cycle

(vi) A digraph is connected if there is a finite (di)path
joining any two of its vertices and it is weakly con-
nected if G∼ is connected

(vii) ½x�G is the set of all vertices which are contained in
some path beginning at x (i.e., y ∈ ½x�G ⇔ there exist
ða0, a1,⋯, anÞ with ðai, ai+1Þ ∈ EðGÞ and x = a0, y
= an)

We also need to introduce some properties of modular
function spaces and tools that will be often used later. For
more details, one can consult [3–5, 13, 14].

LetΩ be a nonempty set andP a nontrivial δ-ring of sub-
sets of Ω and let Σ be the smallest σ-algebra of subsets of Ω
such that Σ contains P such that E ∩ A ∈P for every E ∈P
and A ∈ ∑; and Kn↑Ω where Kn ∈P, for all n.

E is the linear space ofP-simple functions, andM∞ is the
set of measurable functions. We denote by 1A the character-
istic function of A, where A ⊂Ω.

Definition 2 [11]. An even convex function ρ : M∞ ⟶ ½0,+
∞� is called regular convex function pseudomodular if

(i) ρð0Þ = 0

(ii) ρ is monotone, i.e., if for f , g ∈M∞, f ðωÞ ≤ gðωÞ for
all ω ∈Ω, then ρð f Þ ≤ ρðgÞ

(iii) ρ is orthogonally subadditive, i.e., ρð f :1A∪BÞ = ρð f
:1AÞ + ρð f :1BÞ whenever A, B ∈ ∑ and A ∩ B = ϕ
and f ∈ ∑

(iv) ρ has the Fatou property, i.e., if ðj f nðωÞjÞn↑j f ðωÞj,
for all ω ∈Ω, f n, f ∈M∞ then ρð f nÞ↑ρð f Þ

(v) ρ is order continuous in E, i.e., gn ∈ E, and jgnj↓0
implies ρjgnj↓0

Let ρ be a regular convex function pseudomodular, the
following notions are borrowed from [11].

(i) A set A ∈ ∑ is said to be ρ-null if ρðg:1AÞ = 0, ∀g ∈ E
(ii) A property ðPÞ is said to hold ρ almost everywhere if

the exceptional set is ρ-null

(iii) We will identify pair of measurable sets whose sym-
metric difference is ρ-null, as well as pair of measur-
able function differing only on a ρ-null set

(iv) MðΩ,∑,P, ρÞ = f f ∈M∞ : j f ðωÞj <∞ρ − a:e:g
briefly noted M

(v) ρ is said to be a regular convex function modular if
ρð f Þ = 0 implies f = 0ρ − a:e

(vi) We denote by R the set of all nonzero regular con-
vex function modulars on Ω

Definition 3 [11]. Let ρ ∈R.

(a) We say that ð f nÞn ∈ Lρρ converges to f and write f n
⟶ f ðρÞ, if ρð f n − f Þ⟶ 0, and a sequence ð f nÞn
∈ Lρ is called ρ-Cauchy if ρð f n − f mÞ⟶ 0 as ðn,m
Þ⟶∞

(b) A set B ⊂ Lρ is called ρ-closed, if for any sequence
ð f nÞn ∈ B, f n ⟶ f ðρÞ implies f ∈ B

(c) A set B ⊂ Lρ is called ρ-bounded, if its diameter δρð
BÞ = sup fρð f − gÞ: f , g ∈ Bg is finite

(d) A set B ⊂ Lρ is called ρ-compact, if for any sequence
ð f nÞn ∈ B there exists a subsequence ð f knÞn and f ∈
B such that f knρ -converges to f

(e) A set B ⊂ Lρ is called ρ-a.e.-closed, if for any sequence
ð f nÞn ∈ B, f n ⟶ f , ρ-a.e. implies f ∈ B

(f) A set B ⊂ Lρ is called ρ-a.e.compact, if for any
sequence ð f nÞn ∈ B there exists a subsequence ð f nkÞk
and f ∈ B such that f nk ⟶ f , ρ-a.e

Definition 4. [11]. Let ρ ∈R.
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The modular function space is the vector space LρðΩ,∑Þ
or briefly Lρis defined

Lρ = f ∈M : lim
λ→0

ρ λ:fð Þ = 0
� �

: ð4Þ

The map k⋅kρ : Lρ ⟶ ½0, +∞Þ defined by

fk kρ = inf α > 0 : ρ
f
α

� �
≤ 1

� �
ð5Þ

is called norm of Luxembourg on Lρ.

The following properties play a prominent role in the
study of modular function spaces.

Definition 5 [11]. Let ρ ∈R.
We say that ρ has the Δ2 -property, if ρð2f nÞ⟶ 0when-

ever ρð f nÞ⟶ 0, ðð f nÞn ∈ LρÞ. We say that ρ has the Δ2 -type
condition, if there exists k ∈ ½0, +∞Þ such that ρð2f Þ ≤ kρð f Þ,
for any f ∈ Lρ.

The following definitions and results could be found in
[6].

Theorem 6. Let ρ ∈R.

(i) ðLρ, k:kρÞ is a complete normed space, and Lρ is ρ
-complete

(ii) k f nkρ ⟶ 0 iff ρðαf nÞ⟶ 0 for every α > 0

(iii) If ρð f n − f Þ⟶ 0 there exists ð f nkÞk subsequence of
ð f nÞn such that f nk ⟶ f , ρ-a.e

(iv) If f n ⟶ f ρ − a:e, then ρð f Þ ≤ lim inf
n→+∞

ρð f nÞ (the

Fatou property)

(v) If ρ has the Δ2 -property and ρðαf nÞ⟶ 0 for α > 0,
then k f nkρ ⟶ 0

Definition 7. Let ρ ∈R, we define

Loρ = f ∈ Lρ : ρ f ,:ð Þ is order continuous� �
,

Eρ = f ∈ Lρ : λf ∈ L
0
ρ,∀λ > 0

n o
:

ð6Þ

Theorem 8. Let ρ ∈R, then Eρ is a k:kρ -closed subspace of Lρ
. Moreover, Eρ is the k:kρ closure of E the set of all ðP Þ simple
functions.

Definition 9. We say that a set C ⊂ Lρ possesses the Vitali
property if C ⊂ Eρ, and for any g ⊂ Lρ and ðgnÞn ⊂ C with
gn ⟶ gðρÞ, there exists a subsequence ðgnk Þk of ðgnÞn such
that for every α > 0 the subadditive measures ρ ðαgnk , :Þ are

order equicontinuous. That is, if ðEpÞp ⊂ Σ such that ðEpÞp↓
∅ then ∀α > 0 lim

ρ→∞
sup
kεN

ρð αgnk, EpÞ0.

The following statement characterizes sets with the Vitali
property as subsets of Eρ where the ρ convergence is equiva-
lent to the k∙kρ convergence.

Theorem 10. Let ρ ∈R. A set C ∈ Lρ has the Vitali property if
and only if the following conditions are satisfied:

(i) C ⊂ Eρ

(ii) If g ∈ Lρ and ðgnÞn ⊂ C and ðgnÞn ⟶ gðρÞ, then
kgn − gkρ ⟶ 0

Definition 11. A convex function modular ρ ∈R is said sep-
arable if ∀ƒ ∈ E, ðk f 1ð:ÞkρÞ is a separable set function for each

ƒ ∈ E, which means that there exists a countable A ⊂P such
that to every A ∈P there corresponds a sequence ðAkÞk of
elements of A with

∀α > 0, ρ αf , AΔAkð Þ⟶0
k→∞

: ð7Þ

We recall this important result, which states that if ρ is
separable, then ðLρ, k:kρÞ is a separable Banach space; it is
then a Polish space.

Theorem 12. Let ρ ∈R. The space ðLρ, k:kρÞ is separable if
and only if ρ is separable.

Remark 13. Let Z be a separable linear subspace of Eρ, k:kρ
and let C ⊂ Z have the Vitali property. Assume that the func-
tion u : ½a, b�⟶ C ða, b ∈ℝÞ, is ρ-continuous. Then, u is
Bochner integrable function with respect to the Lebesgue
measurem on ½a, b�. That is, if for τ≔ t0 < t1 <⋯ < tm a sub-
division of ½a, b�, we define jτj = sup

0≤i≤m−1
ðti+1 − tiÞ (called the

step of τ), then

lim
τj j→0

〠
m−1

i=0
ti+1 − tið Þu tið Þ exists, ð8Þ

and we write

ðb
a
u sð Þds = lim

τj j→0
〠
m−1

i=0
ti+1 − tið Þu tið Þ: ð9Þ

3. Main Results

Definition 14. Let C ⊂ Lρ, a, b, ∈ℝ and C ⊂ Lρ.

(i) A function u : ½a, b�⟶ C is said to be continuous if
uðtnÞ⟶ uðtÞðρÞ provided tn ⟶ t. We denote by
Cð½a:b�, CÞ the set of all these continuous functions
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(ii) A mapping T : C⟶ C is said to be ρ-continuous if
Tð f nÞ⟶ Tð f ÞðρÞ provided f n ⟶ f ðρÞ

Proposition 15. Let ρ ∈R be separable and C ⊂ Eρ be a non-
empty convex and ρ-closed set that has the Vitali property. Let
T : C⟶ C be a ρ-continuous mapping and f ∈ C. Then, for
every u ∈ Cð½0,A�, CÞ the mapping ϕðuÞ defined by

ϕ uð Þ tð Þ = e−t f +
ðt
0
es−tT u sð Þð Þds for every t ∈ 0, A½ � ð10Þ

takes values in C and is continuous, i.e., ϕðuÞ ∈ Cð½0, A�, CÞ.

Proof. Let u ∈ Cð½0, A�, CÞ. We will first prove that ϕðuÞðtÞ
∈ C for every t ∈ ð0, AÞ. Let t ∈ ð0, AÞ, for τ≔ t0 < t1 <⋯ <
tm, a subdivision of ½0, t�, we define

Sτ T uð Þð Þ tð Þ = 〠
m−1

i=0
ti+1 − tið Þeti−tT u tð Þð Þ: ð11Þ

By definition of Bochner integral

ðt
0
es−tT u sð Þð Þds = lim

τj j→0
Sτ T uð Þð Þ tð Þ: ð12Þ

We have f ∈ C, TðuðtiÞÞ ∈ C for every i ∈ f1,⋯:,ng and

e−t + 〠
m−1

i=0
ti+1 − tið Þeti−t ≤ e−t +

ðt
0
es−tds = 1: ð13Þ

Using convexity of C, we get

e−t f + 〠
m−1

i=0
ti+1 − tið Þeti−tT u tið Þð Þ + 1 − e−t + 〠

m−1

i=0
ti+1 − tið Þeti−t

 ! !
f ∈ C:

ð14Þ

Since C is ρ-closed, it is also closed with respect to k:kρ.
Thus,

lim
τj j→0

e−t f + 〠
m−1

i=0
ti+1 − tið Þeti−tT u tið Þð Þ + 1 − e−t + 〠

m−1

i=0
ti+1 − tið Þeti−t

 ! !
f ∈ C

" #
:

ð15Þ

Observing that

lim
τj j→0

1 − e−t + 〠
m−1

i=0
ti+1 − tið Þeti−t

 ! !
= 1 − e−t −

ðt
0
es−tds = 0,

ð16Þ

we conclude

ϕ uð Þ tð Þ = e−t f +
ðt
0
es−tT u sð Þð Þds ∈ C: ð17Þ

Furthermore, as C has the Vitali property, T is continu-
ous with respect to the norm of Luxembourg, and then ϕðu
Þ is continuous as t↦

Ð t
0e

s−tTðuðsÞÞds is continuous; it is
even differentiable.

The following notion of convex digraph was already intro-
duced in [15].

Definition 16. Let C ∈ Lρ be a convex subset and G a digraph
ðE ðgÞ = CÞ, we say that G is convex if ∀λ ∈ ½0, 1� and ∀f , g,
u, v, ∈C such that f ∈ ½u�G and g ∈ ½v�G; then

λf + 1 − λð Þg ∈ λu + 1 − λð Þv½ �G: ð18Þ

Definition 17. Let ρ ∈R and G a digraph EðGÞ ⊂ Lρ. We say
that G has the ðP0Þ property, if for all ð f nÞn, ðgnÞn, f , g ∈ Lρ
, g ∈ ½ f �G provided gn ∈ ½ f n�G for everyn ∈ℕ and f n ⟶ f ð
ρÞ, gn ⟶ gðρÞ.

Definition 18. Let C ⊂ Lρ,G a digraph EðGÞ = C and T : C
⟶ C. We say that T is G-monotone ρ-nonexpansive if for
all f , g ∈ C such that g ∈ ½ f �G we have

T gð Þ ∈ T fð Þ½ �G,
ρ T fð Þ − T gð Þð Þ ≤ ρ f − gð Þ:

ð19Þ

The following lemma will play a preponderant role in the
proof of the next theorem; its proof can be found in [11].

Lemma 19. Let ρ ∈R be separable. Let x, y : ½0, A�⟶ Lp two
Bochner integrable k:k�ρ bounded functions, where A > 0.
Then, for every t ∈ ½0,A�, we have

ρ e−ty tð Þ +
ðt
0
es−tx sð Þds

� �
≤ e−tρ y tð Þð Þ + 1 − e−t

� 	
sup
s∈ 0,t½ �

ρ x sð Þð Þð Þ:

ð20Þ

Now, we are able to state the main result.

Theorem 20. Let ρ ∈R be separable, C ⊂ Eρ a nonempty con-
vex, ρ-bounded, ρ-closed set that has the Vitali property, and
let G ðEðGÞ = CÞ be a reflexive, convex digraph, with property
ðP0Þ. Let T : C⟵ C be a ρ-continuous and G-monotone ρ
-nonexpansive mapping and suppose there exists f ∈ C such
that Tð f Þ ∈ ½ f �G; then, the mapping

ϕ : C 0, A½ �, Cð Þ⟶ C 0, A½ �, Cð Þ
u↦ ϕ uð Þ

ð21Þ

has a fixed point, where ϕðuÞðtÞ = e−t f + Ð t0es−tTðuðsÞÞds, for
every t ∈ ½0, A�.
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Proof.Note that the mapping φ is well defined by Proposition
15. We define the sequence ðunÞn by

u0 tð Þ = f , ∀t ∈ 0, A½ �,
un+1 = ϕ unð Þ, ∀n ∈ℕ:

(
ð22Þ

It is easy to see that ðunÞn ⊂ Cð½0, A�, CÞ. We will prove by
induction over n ∈ℕ that

∀t ∈ 0, A½ �,∀n, p ∈ℕ, ρ un+p tð Þ − un tð Þ� 	
≤ 1 − eA
� 	n+1

δρ Cð Þ:
ð23Þ

For n = 0, it comes for every t in ½0, A�,

up tð Þ − u0 tð Þ =
ðt
0
es−tT up−1

� 	
sð Þds − 1 − e−t

� 	
f =
ðt
0
es−t T up−1

� 	
sð Þ − f

� 	
ds:

ð24Þ

Lemma 19 applied for y = 0 and xðtÞ = Tðup−1ðtÞ Þ − f for
every t ∈ ½0, A� gives

∀t ∈ 0, A½ �, ρ up tð Þ − u0
� 	

≤ 1 − e−t
� 	

sup
s∈ 0,t½ �

ρ T up−1 sð Þ� 	
− f

� 	
≤ 1 − e−A
� 	

δρ Cð Þ:

ð25Þ

We suppose now that for all t ∈ ½0, A� and for all p ∈ℕ

ρ un+p tð Þ − un tð Þ� 	
≤ 1 − e−A
� 	n+1

δρ Cð Þ: ð26Þ

Let us first prove that un+1ðtÞ ∈ ½unðtÞ�G, ∀n ∈ℕ and ∀t
∈ ½0, A�. By induction on n, for n = 0, we have ∀t ∈ ½0, A�,

u1 tð Þ = e−t f + 1 − e−t
� 	

T fð Þ ∈ u0 tð Þ½ �G = f½ �G, ð27Þ

as G is convex and Tð f Þ ∈ ½ f �G. If we suppose that for every
t ∈ ½0, A�, un+1ðtÞ ∈ ½unðtÞ�G, then for τ≔ t0 < t1 ⋯ <tm a sub-
division of ½0, t�. Set for k ≥ 1

uτk = e−t f + 〠
m−1

i=0
ti+1 − tið Þeti−tT uk−1 tið Þð Þ, ð28Þ

then

uτn+2 = e−t f + 〠
m−1

i=0
ti+1 − tið Þeti−tT un+1 tið Þð Þ, ð29Þ

as G is convex and Tðun+1ðtiÞÞ ∈ ½TðunðtiÞÞ�G for every i = 1
,⋯,m we have

uτn+2 + 1 − e−t + 〠
m=1

i=0
ti+1 − tið Þeti−t

 ! !
f ∈ uτn+1 + 1 − e−t 〠

m−1

i=0
ti+1 − tið Þeti−t

 ! !
f

" #
G

,

ð30Þ

since G has the ðP0Þ property it follows that

lim
τj j→0

uτn+2 + 1 − e−t + 〠
m−1

i=0
ti+1 − tið Þeti−t

 ! !
f ∈ lim

τj j→0
uτn+1 + 1 − e−t + 〠

m−1

i=0
ti+1 − tið Þeti−t

 ! !
f

" #
G

,

ð31Þ

which is exactly un+2ðtÞ ∈ ½un+1ðtÞ�G. And then un+1ðtÞ ∈
½unðtÞ�G and un+pðtÞ ∈ ½unðtÞ�G for every n, p ∈ℕ and t ∈ ½0,
A�.

Now, as ρðun+1+pðtÞ − un+1ðtÞÞ = ρðÐ t0es−tðTðun+pðsÞÞ − T
ðunðsÞÞÞdsÞ, applying again Lemma 19 for yðtÞ = 0, xðtÞ = T
ðun+pðsÞÞ − TðunðsÞÞ, we get

ρ un+1+p tð Þ − un+1 tð Þ� 	
≤ 1 − e−t
� 	

sup
s∈ 0,t½ �

ρ T un+p sð Þ� 	
− T un sð Þð Þ� 	

,∀t ∈ 0,A½ �,

ð32Þ

but ρðTðun+pðsÞÞ − TðunðsÞÞÞ ≤ ρðun+pðsÞ − unðsÞÞ, ∀s ∈ ½0, t�
(as un+pðsÞ ∈ ½unðsÞ�G and T is G-monotone ρ-nonexpan-
sive); consequently,

ρ un+1+p tð Þ − un+1 tð Þ� 	
≤ 1 − et
� 	

sup
s∈ 0,t½ �

ρ un+p sð Þ� 	
− un sð Þð Þ� 	

,∀t ∈ 0, A½ �,

ð33Þ

by the inductive assumption, we get

ρ un+1+p tð Þ − un+1 tð Þ� 	
≤ 1 − e−t
� 	

1 − e−Α
� 	n+1

δp Cð Þ,∀t ∈ 0,Α½ �,
ð34Þ

i.e.,

ρ un+1+p tð Þ − un+1 tð Þ� 	
≤ 1 − e−Α
� 	n+2

δρ Cð Þ,∀t ∈ 0,Α½ �:
ð35Þ

Using inequality (23), it is clear that for every t ∈ ½0,Α�,
ðunðtÞÞn is a ρ-Cauchy sequence in C. Since C is ρ-closed in
Lρ, then it is ρ-complete and then ðunðtÞÞnρ − converges to
some uðtÞ ∈ C, and thus, it converges to uðtÞ with respect to
k:kρ. We also have ∀t ∈ ½0,Α�, and ∀n ∈ℕ, uðtÞ ∈ ½unðtÞ�G
as G has ðP0Þ property. Indeed, for n ∈ℕ, un+pðtÞ ∈ ½unðtÞ�G
, ∀p ∈ℕ and when p⟶∞, uðtÞ ∈ ½unðtÞ�G.

Now, for t ∈ ½0,Α�, let τ≔ t0 < t1 <⋯ < tm be a subdivi-
sion of ½0, t�. We have

ρ Sτ T un tð Þð Þð Þ − Sτ T u tð Þð Þð Þð Þ

= ρ 〠
m−1

i=0
ti+1 − tið Þeti−t T un tið Þð Þ − T u tið Þð Þð Þ

 !
,

ð36Þ

and by convexity of ρ

ρ Sτ T un tð Þð Þð Þ − Sτ T u tð Þð Þð Þð Þ ≤ 〠
m−1

i=0
ti+1 − tið Þeti−tρ T un tið Þð Þ − T u tið Þð Þð Þ:

ð37Þ
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Since uðtiÞ ∈ ½unðtiÞ�G for every i = 0, 1,⋯,m and T is G
-monotone ρ-nonexpansive

ρ Sτ T un tð Þð Þð Þ − Sτ T u tð Þð Þð Þð Þ ≤ 〠
m−1

i=0
ti+1 − tið Þeti−tρ un tið Þ − u tið Þð Þ


!

n→∞
0,

ð38Þ

that is, lim
n→∞

ρðSτðTðunðtÞÞÞ − SτðTðuðtÞÞÞÞ = 0.
Hence,

lim
n→∞

Sτ T un tð Þð Þð Þ − Sτ T u tð Þð Þð Þk kρ = 0: ð39Þ

Now, for every t ∈ ½0,Α� and n ∈ℕ

Sτ T u tð Þð Þ − u tð Þ + e−f
� � 

ρ
≤ Sτ T u tð Þð Þ − Sτ T un tð Þð Þð Þð Þk kρ

+ Sτ T un tð Þð Þð Þ −
ðt
0
es−tT un sð Þð Þds



ρ

+
ðt
0
es−tT un sð Þð Þds − u tð Þ + e−t f



ρ

:

ð40Þ

From kÐ t0es−tTðunðsÞÞds − uðtÞ + e−t f k
ρ
=

kun+1ðtÞ − uðtÞkρ, we get

lim
τj j→0

Sτ T u tð Þð Þð Þ − u tð Þ + e−t f
 

ρ
= 0, ð41Þ

i.e., s↦ eðs−tÞTðuðsÞÞ is Bochner integrable and Ð t0es−tTðuðsÞ
Þds = uðtÞ − e−t f . Finally, we get for every t ∈ ½0,Α�

ϕ uð Þ tð Þ = e−t f +
ðt
0
es−tT u sð Þð Þds = u tð Þ, ð42Þ

that is, u is a fixed point of ϕ.

A similar result can be obtained without assuming the
Vitali property, but we need to assume that ρ has the Δ2
-property.

Theorem 21. Let ρ ∈R be separable and has the Δ2-property,
C ⊂ Lρ a nonempty convex, ρ-bounded, ρ-closed set, and let
G ðEðGÞ = CÞ be a reflexive, convex digraph, with property ð
P0Þ. Let T : C⟶ C be a ρ-continuous and G-monotone ρ
-nonexpansive mapping, and suppose that there exist f ∈ C
such that Tð f Þ ∈ ½ f �G; then, the mapping

ϕ : C 0,Α½ �, Cð Þ⟶ C 0,Α½ �, Cð Þ
u↦ ϕ uð Þ

ð43Þ

has a fixed point where ϕðuÞðtÞ = e−t f + Ð t0es−tTðuðsÞÞds,, for
every t ∈ ½0,Α�.

Proof. Since ρ has the Δ2-property, the ρ-convergence is
equivalent to the convergence with respect to k:kρ all over

in Lρ; the proof of this corollary runs along similar lines to
the proof of Theorem 20.

The last result is devoted to prove the existence of solu-
tion of the equation (O.D.E).

Theorem 22. Let ρ ∈R be separable, C ⊂ Eρ a nonempty con-
vex, ρ-bounded, ρ-closed set that has the Vitali property, and
let GðEðGÞ = CÞ be a reflexive, convex digraph, with property
ðP0Þ. Let T : C⟶ C be a ρ-continuous and G-monotone ρ
-nonexpansive mapping, and suppose that there exists f ∈ C
such that Tð f Þ ∈ ½ f �G; then, the differential equation

O:D:Eð Þ
u 0ð Þ = f ,
u′ tð Þ + I − Tð Þu tð Þ = 0, ∀t ∈ 0,Α½ �,

(
ð44Þ

where u : ½0,Α�⟶ C,Α > 0, has a solution.

Proof. The application ϕ defined above has a fixed point u
∈ Cð½0,Α�, CÞ, that is,

u tð Þ = e−t f +
ðt
0
es−tT u sð Þð Þds,∀ ∈ 0,Α½ �, ð45Þ

then u is differentiable and

u′ tð Þ = −e−t f −
ðt
0
es−tT u sð Þð Þds + e−t etT u tð Þð Þ� 	

= T u tð Þð Þ − u tð Þ, ∀t ∈ 0,Α½ �,
ð46Þ

that is, u is the solution of (O.D.E).

Note that the result of Theorem 22 remains true if ρ has
the Δ2-property instead of C having the Vitali property.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] A. Benkirane and M. Sidi El Vally, “An existence result for
nonlinear elliptic equations in Musielak-Orlicz-Sobolev
spaces,” Bulletin of the Belgian Mathematical Society - Simon
Stevin, vol. 20, no. 1, pp. 57–75, 2013.

[2] J. J. Nieto and R. Rodríguez-López, “Contractive mapping the-
orems in partially ordered sets and applications to ordinary
differential equations,”Order, vol. 22, no. 3, pp. 223–239, 2005.

[3] W. M. Kozlowski, Modular Function Spaces, Marcel Dekker,
Inc., 1988.

[4] W. M. Kozlowski, “Notes on modular function spaces I,” Com-
mentationes Mathematicae, vol. 28, no. 1, pp. 91–104, 1988.

6 Journal of Function Spaces



[5] W. M. Kozlowski, “Notes on modular function spaces II,”
Commentationes Mathematicae, vol. 28, no. 1, pp. 105–120,
1988.

[6] M. A. Khamsi and W. M. Kozlowski, Fixed Point Theory in
Modular Function Spaces, Birkhäuser, 2015.

[7] M. A. Khamsi, W. M. Kozlowski, and S. Reich, “Fixed point
theory in modular function spaces,” Nonlinear Analysis: The-
ory, Methods & Applications, vol. 14, no. 11, pp. 935–953,
1990.

[8] M. R. Alfuraidan and M. A. Khamsi, “On Gregus-Ćirić map-
pings on weighted graphs,” Fixed Point Theory, vol. 20, no. 1,
pp. 19–30, 2019.

[9] J. Jeddi, M. Kabil, and S. Lazaiz, “Common fixed-point theo-
rems in modular function spaces endowed with reflexive
digraph,” International Journal of Mathematics and Mathe-
matical Sciences, vol. 2020, Article ID 9794134, 5 pages, 2020.

[10] A. Nicolae, D. O’Regan, and A. Petrusel, “Fixed point theo-
rems for singlevalued and multivalued generalized contrac-
tions in metric spaces endowed with a graph,” Georgian
Mathematical Journal, vol. 18, no. 1, pp. 307–327, 2011.

[11] W. M. Kozlowski, “On nonlinear differential equations in gen-
eralized Musielak-Orlicz spaces,” Commentationes Mathema-
ticae, vol. 53, no. 2, pp. 13–33, 2013.

[12] M. Rigo, Advanced Graph Theory and Combinatorics, John
Wiley & Sons, 2016.

[13] T. Dominguez-Benavides, M. A. Khamsi, and S. Samadi,
“Asymptotically regular mappings in modular function
spaces,” Scientiae Mathematicae Japonicae, vol. 53, no. 2,
pp. 295–304, 2001.

[14] J. Musielak, Orlicz Spaces and Modular Spaces, Springer-Ver-
lag, 1983.

[15] J. Jeddi, M. Kabil, and S. Lazaiz, “Some fixed point theorems in
modular function spaces endowed with a graph,” Abstract and
Applied Analysis, vol. 2020, Article ID 2135859, 7 pages, 2020.

7Journal of Function Spaces


	A Study of a Nonlinear Ordinary Differential Equation in Modular Function Spaces Endowed with a Graph
	1. Introduction
	2. Preliminaries
	3. Main Results
	Data Availability
	Conflicts of Interest

