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LetH be a complex Hilbert space. Denote byBðHÞ the algebra of all bounded linear operators onH . In this paper, we investigate
the non-self-adjoint subalgebras of BðHÞ of the form T +B, where B is a block-closed bimodule over a masa and T is a
subalgebra of the masa. We establish a sufficient and necessary condition such that the subalgebras of the form T +B has the
double commutant property in some particular cases.

1. Introduction

Let H be a complex Hilbert space. We denote by BðHÞ
the algebra of all bounded linear operators on H . Given
a nonempty subset A of BðHÞ,the commutant of A is
the set A ′ ≔ fT ∈BðHÞ: TA = AT for allA ∈Ag. The
double commutant of A is A ′′≔ ðA ′Þ′. Clearly, A ⊆A ′′.
von Neumann’s double commutant theorem states that if
A ⊆BðHÞ is a self-adjoint algebra of operators whose ker-
nel ker A ≔

T
A∈A ker A = 0, then the closure of A in any

of the weak operator, strong operator, and weak∗ topologies
is the double commutant A ′′. In fact, if A is a WOT-
closed, unital C∗-subalgebra of BðHÞ, then A =A ′′. In
this paper, we analyze the settings of non-self-adjoint subal-
gebras of BðHÞ whose double commutant coincides with
themselves. We say that such algebras satisfy the double
commutant property.

In the past several decades, a great deal of effort has been
devoted to the study of the subalgebras of BðHÞ with the
double commutant property. For a few references, see [1–
8]. In recent years, there has been renewed interest in the
study of double commutant property [9–15]. For singly gen-
erated algebras, Ruston [16] showed that every algebraic
operator in BðHÞ has the double commutant property.
Turner [8] proved that a normal operator satisfies the double
commutant property if and only if it is reductive. For

nonsingly generated algebras, Davidson and Pitts [2]
researched the noncommutative analytic Toeplitz algebra
with the double commutant property. Marcoux and Mastnak
[12] analyzed the non-self-adjoint subalgebras of BðHÞ
whose double commutant agrees with themselves; specifi-
cally, they considered the class of algebras of the form D +
R in finite dimensional space, where R is a bimodule over
a masa and D is a unital subalgebras of the masa.

In this note, we will investigate the subalgebras ofBðHÞ
with the double commutant property, which extends the
result in [13] extensively.

2. Preliminaries

Let H be a Hilbert space, if 0 ≠ x, y ∈H , we denote by x ⊗ y
the rank-one operator on H given by x ⊗ yðzÞ≔ hz, yix. For
a subalgebra W of BðHÞ, we define the annihilator of W
as W ⊥ = fT ∈BðHÞ: TW = 0 =WT for allW ∈W g. Given
a collection fPαgα of orthogonal projections in BðHÞ, we
denote by ∨αPα the orthogonal projection onto ∨fRanPαgα.
Note that all projections considered on the manuscript are
orthogonal projections. Given projections P and Q in BðHÞ,
we define the P,Q-block of BðHÞ as follows:

BP,Q ≔QB Hð ÞP = QTP : T ∈B Hð Þf g: ð1Þ
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Let M ⊆BðHÞ be a maximal abelian self-adjoint
subalgebra (that is, M is a masa), fPγ,Qγgγ∈Γ be a collection

of projections inM, then we say that a subspace B of BðHÞ
is block-generated over M if

B = ∨ BPγ ,Qγ
: γ ∈ Γ

n o
: ð2Þ

With loss of generality, we assume that each Pγ ≠ 0 ≠Qγ.

Definition 1. Let M ⊆BðHÞ be a masa and let B = ∨fBPγ,
Qγ : γ ∈ Γg be a block-generated bimodule for some family
of projections fPγ,Qγgγ∈Γ ⊆M. We say that B is discon-

nected if there exist ∅≠ Γ1, Γ2 ⊆ Γ, and projections E1, F1,
E2, F2 ∈M so that

(1) Γ = Γ1 ∪ Γ2

(2) f0g ≠ ∨fBPγ ,Qγ
: γ ∈ Γkg ⊆BEk ,Fk

, k = 1, 2

(3) E1∨F1 is orthogonal to E2∨F2

Otherwise, we say that B is connected.

Marcoux and Mastnak proved the following proposition
in [12]. Now, we give another simpler proof.

Proposition 2 (see [12]). Let M ⊆BðHÞ be a masa and let
B = ∨fBPγ,Qγ : γ ∈ Γg be a block-generated bimodule over
M with Pγ ≠ 0 ≠Qγ for all γ. Then,

(1) B⊥ =BQ⊥
0 ,P⊥0 , where P0 = ∨γPγ and Q0 = ∨γQγ

(2) B is connected if and only if B′ =B⊥ +ℂI

Proof.

(1) It is clear that BQ⊥
0 ,P⊥

0
⊆B⊥. We only need to show

that B⊥ ⊆BQ⊥
0 ,P⊥

0
.

∀T ∈B⊥, we have TQγBðHÞPγ =QγBðHÞPγT = 0, ∀γ
∈ Γ. Since BðHÞ is prime, we obtain TQγ = 0 = PγT , ∀γ ∈
Γ. So, TQ0 = 0 = P0T . This implies that T = TQ⊥

0 and
T = P⊥

0 T ; therefore, T = P⊥
0 TQ

⊥
0 , so we have T ∈BQ⊥

0 ,P⊥
0
.

(2) If B is connected, it is easy to vertify that B⊥ +ℂI
⊆B′; we will prove that B′ ⊆B⊥ +ℂI.

∀T ∈B′, let A = x ⊗ y ∈BðHÞ, then TQγx ⊗ yPγ =
Qγx ⊗ yPγT . This implies that for each γ ∈ Γ, there exists
λγ ∈ℂ so that TQγ = λγQγ and PγT = λγPγ. We claim
that λγ1 = λγ2, ∀γ1,γ2 ∈ Γ.

Let Γ1 = fγ ∈ Γ : λγ = λγ0g, then γ0 ∈ Γ1, so Γ1 ≠∅. Let
Γ2 = fγ ∈ Γ : λγ ≠ λγ0g. Suppose that Γ2 ≠∅. For γ1 ∈ Γ1,
γ2 ∈ Γ2, we have

λγ1Qγ1
Qγ2

= TQγ1
Qγ2

= TQγ2
Qγ1

= λγ2Qγ2
Qγ1

= λγ2Qγ1
Qγ2

:

ð3Þ

Since λγ1 ≠ λγ2, we get Qγ1Qγ2 = 0. Similarily, we have
Pγ2Qγ1 = 0, Pγ1Qγ2 = 0, and Pγ1Pγ2 = 0. Let

E1 = ∨γ∈Γ1
Pγ∨Qγ

� �
,

E2 = ∨γ∈Γ2
Pγ∨Qγ

� �
,

ð4Þ

then E1⊥E2, and ∨fBPγ, Qγ : γ ∈ Γkg ⊆BEk,Ek, k = 1, 2. This
contradicts the connection of B. Therefore, for all γ ∈ Γ,
there exists λ ∈ℂ so that TQγ = λQγ and PγT = λPγ. Thus,
ðT − λIÞQγ = 0 = PγðT − λIÞ for all γ ∈ Γ. It ensures
that ðT − λIÞB = BðT − λIÞ = 0 for all B ∈B. So, we
have T − λI ∈B⊥, i.e., T ∈B⊥ +ℂI.

On the other hand, suppose thatB is disconnected, then
there exists E1, E2, F1, F2 as Definition 1. Let λ1 ≠ λ2 ∈ℂ and
T = λ1ðE1∨F1Þ + λ2ðE2∨F2Þ. ∀B ∈B, write B = B1 + B2,
where Bi ∈ ∨fBPγ,Qγ, γ ∈ Γig. The fact that TB = λ1B1 +
λ2B2 = BT implies that T ∈B′. However, if B1, B2 ≠ 0,
∀δ ∈ℂ, we have

T − δIð ÞB = TB − δB = λ1 − δð ÞB1 + λ2 − δð ÞB2 ≠ 0: ð5Þ

Thus, T − δI ∉B⊥, T ∉B⊥ +ℂI. This is a contradiction.
☐

Proposition 3 (see [13]). Let M ⊆BðHÞ be a masa and let
B = ∨fBPγ,Qγ : γ ∈ Γg be a block-generated M-bimodule
for some family of projections fPγ,Qγgγ∈Γ ⊆M. Then, there

is a partition fΓi : i ∈Ωg of Γ so that the subspaces Bi =
∨λ∈ΓiBPλ, Qλ are connected for each i ∈Ω, and i ≠ j ∈Ω
implies that Bi∨Bj is disconnected.

By the proposition above, we can decompose B into a
direct sum B = ⊕ iBi, where each Bi is a connected sub-
space of BðHÞ.

Definition 4. LetM ⊆BðHÞ be a masa and letB be a block-
generated bimodule overM. LetB = ⊕ iBi be the decompo-
sition of B as in Proposition 3 for each i ∈Ω; let

Ei ≔∨ Pγ : γ ∈ Γi

� �
,

Fi ≔ ∨ Qγ : γ ∈ Γi

� �
:

ð6Þ

We define BEi ,Fi
as the block closure of Bi and Bc =

⊕ iBEi ,Fi as the block closure of B.

By the connection of Bi and Proposition 2, we have
Bi′=ℂI +BF⊥

i ,E⊥i = ðBEi ,FiÞ′. Now,

B′ = ⊕ iBið Þ′ = ∩ iBi′= ∩ i BEi ,Fi

� �′ =Bc′: ð7Þ
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Let T ⊆M and suppose that A =T +B satisfies A =
A ′′. Then

A ′ = T +Bð Þ′ =T ′ ∩B′ =T ′ ∩Bc′⊆Bc′, ð8Þ

it follows that Bc ⊆Bc′′⊆A ′′ =A . It is obvious that B ⊆Bc;
we obtainA =T +B =T +Bc. So, we can consider the form
B = ⊕ iBEi ,Fi

ifA =T +B satisfiesA =A ′′ in the following.

3. The Double Commutant Theorem on BðHÞ
In this section, we discuss non-self-adjoint subalgebras of
BðHÞ which have the double commutant property. We con-
centrate on the case A =T +B, where T is a subalgebra of
M and B ∈BðHÞ is a block-generated M-bimodule. First,
we consider the case B =BE,E⊥ .

Theorem 5. Let M ⊆BðHÞ be a masa. Suppose that
A =T +BE,E⊥ , where E is a projection inM andT is a sub-
space of M. If A =A ′′, then

(1) T =T ′′
(2) for any nonzero projection P in T , we have

P ≰ E, P ≰ E⊥

(3) SpanfRanðE⊥AEÞ: E⊥AE ∈T ′, A ∈BðHÞg is dense
in E⊥, where Span denotes the linear expansion of set

Proof. Since A ′ =T ′ ∩BE,E⊥′ , by Proposition 2, BE,E⊥′ =
ℂI +BE,E⊥ , we have

A ′ =ℂI + E⊥TE : T ∈B Hð Þ, E⊥TE ∈T ′
n o

: ð9Þ

(1) It is clear that A ′ ⊆T ′. So, we have T ′′ ⊆A″ =A .
Let S ∈T ′′, then there exists U ∈T and T ∈BðHÞ
such that S =U + E⊥TE. Since E ∈M,T ⊆M, we
get E ∈T ′. It follows that ES = SE,UE = EU . Thus,
we obtain

E⊥TE = E⊥ S −Uð ÞE = E⊥SE − E⊥UE = E⊥ES − E⊥EU = 0: ð10Þ

Therefore, S =U ∈T . This implies that T ′′ ⊆T . Hence,
T ′′ =T .

(2) We assume that there exists nonzero projection P ∈
T so that P ≤ E⊥.

Then, EP = PE = 0. Let T ∈BðHÞ such that E⊥TE ∈T ′,
then PE⊥TE = E⊥TEP = 0. It follows from (9) that

A ′ =ℂI + E⊥ − P
� �

TEP⊥ : E⊥TE ∈ T ′, T ∈B Hð Þ
n o

: ð11Þ

So, ðE⊥ − PÞBðHÞP ⊆A ′′ =T + E⊥BðHÞE. Hence, ∀
B ∈BðHÞ, there exists

U ∈T and A ∈BðHÞ such that ðE⊥ − PÞBP =U + E⊥AE.
Therefore,

E⊥ − P
� �

BP = E⊥ − P
� �

U + E⊥AE
� �

P

= E⊥ − P
� �

UP + E⊥ − P
� �

E⊥AEP

= 0:
ð12Þ

It implies that ðE⊥ − PÞBðHÞP = f0g. Since BðHÞ is
prime, we get P = E⊥. Together with (11), we obtain A ′ =ℂI.
Thus, A =A ′′ =BðHÞ. This is a contradiction.

Similarly, we get P ≰ E.

(3) Let P be a projection onto SpanfRanðE⊥AEÞ: E⊥AE
∈ T ′,A ∈BðHÞg.

Then, P ≤ E⊥. For any E⊥AE ∈T ′, we have ðE⊥ − PÞE⊥

AE = 0 and E⊥AEðE⊥ − PÞ = 0. Hence, ðE⊥ − PÞ ∈A ′′ =A .
Therefore, there exists T ∈T and B ∈BðHÞ such that
E⊥ − P = T + E⊥BE. It follows that E⊥BE = 0. So, ðE⊥ − PÞ
∈T . From (2), we get E⊥ − P = 0, i.e., P = E⊥. ☐

Then, we concern the general case B = ⊕ iBEi ,Fi , i ∈Ω.

Theorem 6. Let M ⊆BðHÞ be a masa, and B = ⊕ iBEi ,Fi

be a block-closed bimodule over M. If A =T +B satifies
A =A ′′, then the following are equivalent:

(1) ∑iEi = I (convergence being in the SOT)

(2) ∑iFi = I (convergence being in the SOT)

Proof. (1)⇒(2). Let T ∈A ′, then we have T ∈B′. Thus, for
all S ∈BðHÞ,

TFiSEi = FiSEiT , i ∈Ω. Then, for 0 ≠ x, y ∈H , TFix ⊗ y
Ei = Fix ⊗ yEiT , i ∈Ω, it implies that there exists ηi ∈ℂ so
that EiT = ηiEi, i ∈Ω. Therefore, T =∑iEiT = ⊕ iηiEi. It
follows that

A ′ ⊆ ⊕ iℂEi: ð13Þ

For any i ∈Ω, since∑jEj = I, we have Fi = ð∑ jEjÞFi = EiFi.

It implies that Fi ≤ Ei, i ∈Ω. From (13), we get Ei BðHÞEi ⊆
A ′′ =A =T +B for any i ∈Ω. So,

Ei − Fið ÞB Hð ÞFi = Ei − Fið Þ EiB Hð ÞEið ÞFi ⊆ Ei − Fið Þ T +Bð ÞFi

= Ei − Fið ÞTFi + Ei − Fið ÞFiB Hð ÞEiFi

= 0f g:
ð14Þ

Thus, ðEi − FiÞBðHÞFi = f0g. Therefore, Ei − Fi = 0,
Ei = Fi, i ∈Ω. Hence, ∑iFi =∑iEi = I.

(2)⇒(1). The argument is similar to (1)⇒(2). ☐
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Particularly, if T =ℂI, then we obtain the necessary and
sufficient conditions for A to satisfy the double commutant
property.

Theorem 7. LetM ⊆BðHÞ be a masa and letB = ⊕ iBEi ,Fi
be a block-closed bimodule overM. Suppose thatA =ℂI +B.
Then, A =A ′′ if and only if one of the following is true:

(1) ∑iEi = I andB = ⊕ iBEi ,Ei

(2) ∑iEi ≠ I ≠ ∑iFi

Proof. First, we prove the necessary part. Let A =A ′′. If ∑i
Ei = I, then from the proof of Theorem 6, we have Fi =
Ei, i ∈Ω. So, B = ⊕ iBEi ,Ei

; if ∑iEi ≠ I, then ∑iEi ≠ I ≠
∑iFi. Otherwise, ∑iFi = I. Thus, we get ∑iEi = I from
Theorem 6. This is a contradiction.

Now, we consider the sufficient part. If ∑iEi = I and
B = ⊕ iBEi ,Ei

, then A =ℂI +B =B is the von Neumann
algebra with identity element. Hence, from von Neu-
mann’s double commutant theorem, we have A =A ′′; if
∑iEi ≠ I ≠∑iFi, then E⊥

0 ≠ 0 ≠ F⊥
0 , where E0 = ∨iEi, F0 = ∨iFi.

By Proposition 2,

A ′ =B′ = ∩ iBEi ,Fi
′ = ∩ i ℂI +B⊥

Ei ,Fi

� �

= ∩ i ℂI +BF⊥
i ,E⊥

i

� �
⊇ ∩ iBF⊥

i ,E⊥
i

=BF⊥
0 ,E⊥0 :

ð15Þ

So,A ′′ ⊆ ðBF⊥0 ,E⊥0 Þ′ =ℂI + ðBF⊥
0 ,E⊥

0
Þ⊥ =ℂI +BE0,F0

.

Let X ∈A ′′. Then, there exists T ∈BðHÞ and η ∈ℂ so
that X = F0TE0 + ηI. For any i ∈Ω, let Pi be a projection onto
RanðEi∨FiÞ and let P0 = I −∑iPi. It is clear that Pi ∈A ′,
i ∈Ω ∪ f0g. Thus, XPi = PiX, i ∈Ω ∪ f0g. Therefore, we
can write X =∑i∈Ω∪f0gXi, where Xi = PiXPi. ∀i ∈Ω,

Xi = PiXPi = Pi F0TE0 + ηIð ÞPi = FiTEi + ηPi: ð16Þ

Since X0 = P0XP0 = P0ðF0TE0 + ηIÞP0 = ηP0, we have

X = ηP0 + 〠
i∈Ω

FiTEi + ηPið Þ = ηI +〠
i∈Ω

FiTEi ∈A : ð17Þ

So, A ′′ ⊆A . Hence, A =A ′′. ☐

Now, we concern the class of algebras of the form
A =T +B which satisfies A =A ′′, where T ⊆M spans
by projections, B ∈BðHÞ is a block-closed M bimodule,
and T ∩B = f0g.

Let M ⊆BðHÞ be a masa and P ∈M be an orthogonal
projection. ForA ⊆BðRanPÞ, we denote the relative commu-
tant of A with respect to BðRanPÞ as A† = fT ∈BðRanPÞ:
AT = TA for allA ∈Ag and the relative annihilator of A with
respect to BðRanPÞ as A0 = fT ∈BðRanPÞ: AT = 0 = TA
for allA ∈Ag.

Theorem 8. Let M ⊆BðHÞ be a masa, B = ⊕ iBEi ,Fi be a
block-closed M-bimodule, and P0 be the maximal projection
spanned by the projections over B, i.e., P0 = ⊕ iFiEi. Suppose
that T = SpanfP1, P2,⋯,Psg is a subalgebra of M, where P0,
P1, P2,⋯, Ps are mutually orthogonal projections which ranks
are no less than 2 and ∑s

i=0Pi = I. Suppose that A =T +B,
T ∩B = f0g. Then the following are equivalent:

(1) A =A ′′
(2) For each 1 ≤ j ≤ s, Pj ≰∑iEi, and Pj ≰∑iFi

To prove the theorem, we need several lemmas.

Lemma 9. Let D, E, F ∈M be nonzero projections. Let T
∈BðHÞ and TX = XT for all X ∈BD⊥E,DF , then TðDFÞ =
λðDFÞ for some λ ∈ℂ.

Proof. Since TX = XT for all X ∈BD⊥E,DF , we have
TDFBðHÞD⊥E =DFBðHÞD⊥ET . For x0, y0 ∈H , TDFx0
⊗ y0D

⊥E =DFx0 ⊗ y0D
⊥ET . Thus, TDFx0 = λDFx0 and

ðD⊥ETÞ∗y0 = �λðD⊥EÞ∗y0 for some λ ∈ℂ. We also have TD
Fx ⊗ y0D

⊥E =DFx ⊗ y0D
⊥ET , ∀x ∈H . So, we get TDFx =

λDFx for all x ∈H. Thus, TðDFÞ = λðDFÞ. ☐

Lemma 10. Let B = ⊕ iBEi ,Fi
, then B′ =BF⊥0 ,E⊥

0
+ Span

fðEi∨FiÞ: i ∈Ωg, where E0 = ∨iEi and F0 = ∨iFi.

Proof. It is clear that B′ ⊇BF⊥
0 ,E⊥0 + SpanfðEi∨FiÞ: i ∈Ωg.

On the other hand, ∀T ∈B′, since B′ = ∩ iBEi ,Fi
′ =

∩ iðB⊥
Ei ,Fi +ℂIÞ, there exists Ti ∈B

⊥
Ei ,Fi

and λi ∈ℂ for all i
∈Ω so that T = Ti + λiI. Since Ti ∈B

⊥
Ei ,Fi =BF⊥

i ,E⊥i , we have
TiFi = 0, i ∈Ω. It follows that λiFi = ðT − TiÞFi = TFi, i ∈Ω.
Thus, jλij ≤ kTk for each i ∈Ω. Let X =∑iλiðEi∨FiÞ, then
X ∈ SpanfðEi∨FiÞ: i ∈Ωg and

T − X = Ti + λi I − Ei∨Fið Þ½ � −〠
k≠i

λk Ek∨Fkð Þ

= Ti + λi I − Ei − Fi + EiFið Þ −〠
k≠i

λk Ek∨Fkð Þ

= Ti + λi I − Eið Þ I − Fið Þ −〠
k≠i

λk Ek∨Fkð Þ:

ð18Þ

Because ðI − EiÞðI − FiÞ ∈B⊥
Ei ,Fi

and Ek∨Fk ∈B
⊥
Ei ,Fi

, k ≠ i,
we have ðT − XÞ ∈B⊥

Ei ,Fi
for all i ∈Ω. Furthermore, ðT − XÞ

∈ ∩ iB
⊥
Ei ,Fi

=BF⊥
0 ,E⊥

0
. So, T ∈BF⊥

0 ,E⊥
0
+ SpanfðEi∨FiÞ: i ∈Ωg.

☐

Proof of Theorem 8. (1)⇒(2). With loss of generality, we only
need to show that P1 ≤∑iFi and P1 ≰∑iFi. We argue by con-
tradiction. Assume P1 ≤ ∑iFi.

∀i ∈Ω, P1Ei ≤ ð∑iFiÞEi = FiEi ≤ P0. So, P1Ei = P0P1Ei = 0.
Thus, P⊥

1 Ei = Ei, i ∈Ω. In fact, ∀T ∈ fP1g′ , TP1 = P1T.
We can write T = P1TP1 + P1TP

⊥
1 + P⊥

1 TP1 + P⊥
1 TP

⊥
1 . But

P1TP
⊥
1 + TP1P

⊥
1 = 0 = P⊥

1 P1. So, T = P1TP1 + P⊥
1 TP

⊥
1 . Hence,
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fP1g′ ⊆ P1BðHÞP1 + P⊥
1BðHÞP⊥

1 . It is clear that P1BðHÞ
P1 + P⊥

1BðHÞP⊥
1 ⊆ fP1g′. Therefore, fP1g′ = P1BðHÞP1 +

P⊥
1BðHÞP⊥

1 .
Since A ′ ⊆ fP1g′ = P1BðHÞP1 + P⊥

1BðHÞP⊥
1 , we have

∀T ∈A ′, TP1 = P1T .
From above, we can write T = T1 + T4, where T1 = P1T

P1, T4 = P⊥
1 TP

⊥
1 . Since BP⊥1 Ej ,P1F j

= P1BEj ,F j
P⊥
1 ∈A , for all

S ∈BP⊥1 Ej ,P1F j
, we have TS = ST . Then, T1S = ST4. For each

i ∈Ω, let Qi = P1Fi, then ∑iQi = P1∑iFi = P1. Thus, there
exists i ∈Ω such that Qi ≠ 0. By reindexing if necessary,
we assume that Q1 ≠ 0.

By Lemma 9, for each Q1 ≠ 0, there exists αi ∈ C so that
TQi = αiQi. So, with the decomposition of H = RanQ1 ⊕
RanQ2 ⊕⋯⊕ RanP⊥

1 , we can write

T =

α1 0 0 0
0 α2 0 0
⋮ ⋮ ⋱ ⋮

0 0 0 T4

0
BBBBB@

1
CCCCCA
: ð19Þ

Because of the arbitrary of T ,

A ′ ⊆ℂQ1 ⊕⋯⊕ P⊥
1B Hð ÞP⊥

1 : ð20Þ

Thus, Q1BðHÞQ1 ⊆A ′′ =A . For all 0 ≠ A ∈Q1BðHÞ
Q1, A =Q1AQ1. Since A ∈A , we can write A =∑s

j1⋋ jP j + ⊕ i

FiAiEi for some λj ∈ℂ, 1 ≤ j ≤ s, and Ai ∈BðHÞ,i ∈Ω. Then,
A = AQ1 = λ1Q1, it implies that Q1BðHÞQ1 ⊆ℂQ1 and
Q1 = P1. P1 is a rank-1 projection. It is a contradiction.

(2)⇒(1). It is clear that A ⊆A ′′. We need to prove that
A ′′ ⊆A . Let T ∈A ′′. With the decomposition of H = Ran
P0 ⊕ RanP1 ⊕⋯⊕ RanPs, we can write T = ½Ti,j�0 ≤ i, j ≤ s,
where Ti,j = PiTPj. Given 0 ≤ j, k ≤ s, let Aj,k = fPjAPk ∣ Ran
Pk : A ∈ Ag ⊆ BðRanPk, RanPjÞ and ðA ′′Þj, k = fPjAPk ∣
RanPk : A ∈A ′′g.

Claim 11. A††
k,k =Ak,k, 0 ≤ k ≤ s.

Fix 0 ≤ k ≤ s, for each i ∈Ω, we define Ei½k� = EiPk, Fi½k�
= FiPk and E0½k� =∑iEi½k�, F0½k� =∑iFi½k�. By the hypothe-
sis, ∑iEi½k� ≠ Pk ≠∑iFi½k�, 1 ≤ k ≤ s. It is clear that Pk is the
identify element of BðRanPkÞ. So, by Theorem 7, we have
A††

k,k =Ak,k, 1 ≤ k ≤ s.
For k = 0, since P0 = ⊕ iFiEi, we have FiP0 = FiEi =

P0Ei = EiP0. It implies that Ei½0� = Fi½0�, and ∑iEi½0� =
∑iFiEi = P0, by Theorem 7, A††

0,0 =A0,0:

Claim 12. ðA ′′Þk,k ⊆Ak,k, 0 ≤ k ≤ s.
Since for 0 ≤ k ≤ s, Pk ∈A ⊆A ′′, we have Tk,k = PkTPk

∈A ′′ and Tk,k ∈BðRanPkÞ. Let W ∈A ′, then WPk = PkW,
0 ≤ k ≤ s. So W =W0 ⊕W1 ⊕⋯⊕Ws, where Wk = PkWPk.
Thus, WT = TW implies that

WkTk,r = Tk,rWr , 0 ≤ k, r ≤ s: ð21Þ

In particular, WkTk,k = Tk,kWk, 0 ≤ k ≤ s. Therefore,
we have

Tk,k ∈ PkA ′Pk

� �
′, 0 ≤ k ≤ s: ð22Þ

For 1 ≤ k ≤ s, define E0½k�0 = Pk −∑iEi½k�, F0½k�0 = Pk −
∑iFi½k�. Let Ak ∈A

†
k,k ⊆BðRanPkÞ, 1 ≤ k ≤ s. By Lemma 10,

Ak ∈BF0 k½ �0,E0 k½ �0 + Span Ei k½ �∨Fi k½ �ð Þ: i ∈Ωf g: ð23Þ

Hence, there exists Bk ∈BF0½k�0,E0½k�0 and αi ∈ℂ, i ∈Ω,
so that Ak = Bk +∑iαiðEi½k�∨Fi½k�Þ. Let Y = Bk +∑iαiðEi∨
FiÞ; now, we prove Y ∈A ′. Since Ei∨Fi ∈A ′ for each i
∈Ω, we need to show that Bk ∈A ′. In fact,

Bk = E0 k½ �0BkF0 k½ �0 = PkE0 k½ �0BkF0 k½ �0Pk: ð24Þ

If 1 ≤ j ≠ k ≤ s, thenBkPj = PjBk = 0; if 1 ≤ j = k ≤ s,

then PkBk = Bk = BkPk. Thus, Bk ∈T ′. Furthermore, for
all X ∈B, X =∑iFiXEi, then

XBk =〠
i

XEiPkE0 k½ �0Bk =〠
i

XEi k½ �E0 k½ �0Bk = 0,

BkX = BkF0 k½ �0Pk〠
i

FiX = BkF0 k½ �0F0 k½ �X = 0:
ð25Þ

Hence, Bk ∈B′. Therefore, Bk ∈A ′. Now, Ak =
PkYPk ∈ PkA ′Pk; this implies that A†

k,k ⊆ PkA0Pk. So, from

(22), we have Tk,k ∈ ðPkA ′P
k Þ

† ⊆A††
k,k =Ak,k.

Thus, ðAÞk,k′′ ⊆Ak,k, 1 ≤ k ≤ s.
Now, we consider A0,0 =∑iEi½0�BðHÞEi½0�. It is easy to

verify that A†
0,0 = ⊕ Ei½0�≠0ℂEi½0�. Given Z ∈A†

0,0, there exists
αi ∈ℂ so that Z =∑Ei½0�≠0αiEi½0�. Let Y =∑Ei½0�≠0αiðEi∨FiÞ,
then Y ∈A ′ and Z = P0YP0 ∈ P0A ′P0. It implies that

A†
0,0 ⊆ P0A ′P0. So, T0,0 ∈ ðP0A ′P0Þ

† ⊆A††
0,0 =A0,0 by (22).

Hence, ðAÞ0,0′′ ⊆A0,0.

Claim 13. ðAÞ0,k′′ ⊆A0,k, ðAÞk,0′′ ⊆Ak,0, 1 ≤ k ≤ s.
Let B ∈BF0½k�0,E0½k�0 ⊆BðRanPkÞ, 1 ≤ k ≤ s, then from

Claim 12, we have B = PkBPk and B ∈A ′. Therefore, B0 =
P0BP0 = 0, Bk = PkBPk = B. So, from (21), we get

0 = B0T0,k = T0,kBk = T0,kB: ð26Þ

Let y0 ∈H satisfying F0½k�0y0 ≠ 0. From the above,
∀x ∈H , T0,kE0½k�0x ⊗ y0F0½k�0 = 0. Thus, T0,kE0½k�0 = 0. It
implies that

T0,k = T0,kE0 k½ �: ð27Þ

For each i ∈Ω, since ðEi∨FiÞ ∈A ′ and T0,k = P0TPk

∈A ′′, we get ðEi∨FiÞT0,k = T0,kðEi∨FiÞ. Thus,

5Journal of Function Spaces



Ei 0½ �T0,k = P0 Ei∨Fið ÞP0T0,k
= T0,kPk Ei∨Fið ÞPk

= T0,k Ei k½ �∨Fi k½ �ð Þ:
ð28Þ

Together with (27) and (28), we have

Fi 0½ �T0,k = Ei 0½ �T0,k = T0,kE0 k½ � Ei k½ �∨Fi k½ �ð Þ = T0,kEi k½ �:
ð29Þ

So, T0,k ∈ ⊕ iBEi½k�,Fi½0� ∈A0,k.
A similar argument shows that Tk,0 ∈Ak,0.

Claim 14. ðA ′′Þm,n ⊆ Am,n, 1 ≤m ≠ n ≤ s.
Let Y ∈BF0½m�0,E0½m�0 , then Y = PmYPm and Y ∈A ′ by

Claim 12. So, we have Yn = PnYPn = 0, Ym = PmYPm = Y .
Together with (21), we have

0 = Tm,nYn = YmTm,n = YTm,n: ð30Þ

Thus, Tm,n = F0½m�Tm,n. Similarly, Tm,n = Tm,nE0½n�.
Therefore,

Tm,n = F0 m½ �Tm,nE0 n½ �: ð31Þ

Since ðEi∨FiÞ ∈A ′, i ∈Ω, Tm,n ∈A ′′, we have ðEi∨FiÞPm
Tm,n = Tm,nPnðEi∨FiÞ. So, ðEi½m�∨Fi½m�ÞTm,n = Tm,nðEi½n�∨
Fi½n�Þ. By (31), Fi½m�Tm,n = ðEi½m�∨Fi½m�ÞF0½m�Tm,n = Tm,n
E0½n�ðEi½n�∨Fi½n�Þ = Tm,nEi½n�. Thus, Tm,n ∈ ⊕ iBEi½n�,Fi½m� ∈
Am,n.

Now from the above, for any 0 ≤ i, j ≤ s, we have ðA ′′Þi,j
⊆A i,j. So, A ′′ ⊆A .

We complete the proof.
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