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A numerical solution for neutral delay fractional order partial differential equations involving the Caputo fractional derivative is
constructed. In line with this goal, the drift term and the time Caputo fractional derivative are discretized by a finite difference
approximation. The energy method is used to investigate the rate of convergence and unconditional stability of the temporal
discretization. The interpolation of moving Kriging technique is then used to approximate the space derivative, yielding a
meshless numerical formulation. We conclude with some numerical experiments that validate the theoretical findings.

1. Introduction

Partial differential equations (PDEs) with time delay play an
important role in the mathematical modeling of complex
phenomena and processes whose states depend not only
on a given moment in time but also on one or more previous
moments. We can mention a simple scenario involving the
hemodynamic behavior of a person suffering from low or
high glucose decompensation. This person can then be given
intravenous insulin to compensate for the low level. Because
the drug must be introduced into the bloodstream for it to
take effect, the preceding scenario can be interpreted as a
delay problem. As a result, there is a growing interest in
studying biological and physical models with delay. The
solutions of delay PDEs may represent voltage, concentra-
tions, temperature, or various particle densities such as bac-
teria, cells, animals, and chemicals [1–3].

Delay PDEs with fractional derivatives have recently
been studied using various numerical and analytical tech-
niques such as [4–8]. It was pointed out in [9] that the deriv-
atives of the dependent variable in the neutral type delay

differential equations are both with and without time delays.
Delay differential equations of neutral type appear in a vari-
ety of new phenomena, and its theory is even more compli-
cated than the theory of nonneutral delay differential
equations. From both a theoretical and practical standpoint,
the oscillatory behavior of neutral system solutions is impor-
tant. For some applications, such as the population growth,
motion of radiating electrons, and the spread of epidemics
in networks with lossless transmission lines, we refer the
interested reader to [9–14].

A consideration of the following fractional PDE with a
constant delay is the goal of this paper. For that end, we
introduce

C
0D

ν

tΨ t, xð Þ +Ψt t, xð Þ = ΔΨt t, xð Þ + ΔΨ t, xð Þ + ΔΨ t − s, xð Þ
+ f t, xð Þ, t ∈ 0, Tð Þ, x ∈Λ,

ð1Þ

with initial and boundary conditions
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Ψ 0, xð Þ = ψ xð Þ, ∂Ψ t, xð Þ
∂t

����
t=0

= φ xð Þ, x ∈Λ,

Ψ t, xð Þ = g t, xð Þ, x ∈ ∂Λ, t ∈ 0, T½ �,
Ψ t, xð Þ = φ∗ t, xð Þ, t, xð Þ ∈ −s, 0ð � ×Λ,

ð2Þ

where C
0D

ν
t is the Caputo fractional derivative which is

defined by

C
0D

ν

t Ψ t, xð Þ = ∂νΨ t, xð Þ
∂tν

= 1
Γ 2 − νð Þ

ðt
0

∂2Ψ s, xð Þ
∂s2

� t − sð Þ1−νds, ν ∈ 1, 2ð Þ:
ð3Þ

A novel interpolating element-free Galerkin approach to
approximate the solution of the two-dimensional elastoplas-
ticity problems was constructed in [15] using the interpolat-
ing moving least squares scheme for obtaining the shape
function. Moreover, an improved element-free Galerkin
scheme to solve nonlinear elastic large deformation prob-
lems was considered in [16]. The interpolating moving least
squares approach using a nonsingular weight function is
employed in [17] to approximate the solution of the problem
of inhomogeneous swelling of polymer gels, and also the
penalty scheme is used to enforce the displacement bound-
ary condition; thus, an improved element-free Galerkin
approach was constructed.

The interpolating element free Galerkin method has
been developed to solve a variety of problems, including
two-dimensional elastoplasticity problems [15, 18], two-
dimensional potential problems [19], two- and three-
dimensional Stokes flow problems [20], two-dimensional
large deformation problems [21], incompressible Navier-
Stokes equation [22], steady heat conduction problems
[23], two-dimensional transient heat conduction problems
[24], three-dimensional wave equations [25], two-
dimensional Schrödinger equation [26], two-dimensional
large deformation of inhomogeneous swelling of gels [27],
biological populations [28], two-dimensional elastody-
namics problems [29], and two-dimensional unsteady state
heat conduction problems [30]. The theoretical analysis for
the complex moving least squares approximation, the
properties of its shape function, and its stability was ana-
lyzed in [31]. In [32], a variational multiscale interpolating
element-free Galerkin scheme was established for solving
the Darcy flow. For the numerical solution of generalised
Oseen problems, a novel variational multiscale interpolating
element-free Galerkin scheme was developed in [33] based
on moving Kriging interpolation for obtaining shape func-
tions using the Kronecker delta function. Zaky and Hendy
[34] constructed a finite difference/Galerkin spectral
approach for solving the Higgs boson equation in the de Sit-
ter spacetime universe, which can inherit the discrete energy
dissipation property. A high-order efficient difference/Galer-
kin spectral approach was proposed in [35] for solving the
time-space fractional Ginzburg-Landau equation. Hendy
and Zaky [36] proposed a finite difference/spectral method
based on the L1 formula on nonuniform meshes for time

stepping and the Legendre-Galerkin spectral approach for
solving a coupled system of nonlinear multiterm time-
space fractional diffusion equations.

This paper is built up as follows. In Section 2, the tempo-
ral discretization is discussed. The analysis of the temporal
discretization scheme is constructed in Section 3. The
moving Kriging technique and its implementation are dem-
onstrated in Section 4. Finally, numerical experiments are
presented in Section 5 to illustrate the analysis of the
obtained scheme.

2. Temporal Discretization

Assume that τ = s/m such that m is a positive integer. Take
N = dT/τe and tn = nτ, ∀n ∈ℕ+ ∪ f0g. Also, to make t = s,
2s,⋯ being grid points, the time-variable step size should
be surrounded by s =mτ instead of τ = T/N1 for N1 ∈ℤ

+.
Thus, tn = nτ for n = −m, −m + 1,⋯, 0. Here, we present a
time-discrete scheme for Equation (1). For any function
ξn = ξðx, y, tnÞ, we set

ξn− 1/2ð Þ = 1
2 ξn + ξn−1
� �

,

δtξ
n− 1/2ð Þ = 1

τ
ξn − ξn−1
� �

:

ð4Þ

Lemma 1 (see [37]). Assume ϕðtÞ ∈ C2½0, tn� and ν ∈ ð1, 2Þ.
Then

ðtn
0

ϕ′ tð Þ
tn − tð Þν−1 dt −Bν

C ϕ tnð Þ, ϕ t0ð Þð Þ
�����

����� ≤ Cν max ϕ′′ tð Þ�� ��τ3−ν
0≤t≤tn

,

ð5Þ

in which

Bν
C ϕ tnð Þ, ϕ t0ð Þð Þ = 1

τ
λ0ϕ tnð Þ − 〠

n−1

k=1
λn−k−1 − λn−kð Þϕ tkð Þ − λn−1ϕ t0ð Þ

" #
,

λk =
τ2−ν

2 − ν
k + 1ð Þ2−ν − k2−ν

� �
: ð6Þ

Let Ψ be the exact solution of (1) and

w t, x, y, zð Þ = 1
Γ 2 − νð Þ

ðt
0
t − sð Þ1−ν ∂v s, x, y, zð Þ

∂s
ds, ð7Þ

where vðt, x, y, zÞ = ∂Ψðt, x, y, zÞ/∂t. Thus, Equation (1) at
ðtn, x, y, zÞ can be rewritten as

w tn− 1/2ð Þ, x
� �

+ v tn− 1/2ð Þ, x
� �

= Δv tn− 1/2ð Þ, x
� �

+ ΔΨ tn− 1/2ð Þ, x
� �

+ ΔΨ tn− 1/2ð Þ−m, x
� �

+ f tn− 1/2ð Þ, x
� �

, n

≥ 0:
ð8Þ

Making use of Taylor expansion yields
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vn−12 = δtΨ
n−12 + e1ð Þn−12, ð9Þ

wn− 1/2ð Þ + vn− 1/2ð Þ = Δvn− 1/2ð Þ + ΔΨn− 1/2ð Þ + ΔΨn− 1/2ð Þ−s

+ f n− 1/2ð Þ + e2ð Þn− 1/2ð Þ:

ð10Þ
Employing Lemma 1 and putting v0 = vðx, 0Þ = φðxÞ = φ

give

wn−12 = 1
Γ 2 − νð ÞτB

ν
C vn−12, φ
� �

+ e3ð Þn−12: ð11Þ

Furthermore, there is a constant c > 0 that

e1ð Þn−12�� �� ≤ cτ2, e2ð Þn−12�� �� ≤ cτ2, e3ð Þn−12�� �� ≤ cτ3−ν: ð12Þ

Substituting the above result into (10) arrives at

1
Γ 2 − νð ÞτB

ν
C δtΨ

n− 1/2ð Þ, φ
� �

+ δtΨ
n− 1/2ð Þ

= ΔδtΨ
n− 1/2ð Þ + ΔΨn− 1/2ð Þ + ΔΨn− 1/2ð Þ−m + f n− 1/2ð Þ

+En− 1/2ð Þ
ν , n ≥ 1,

ð13Þ

in which there exists C ∈ℝ+ such that

En− 1/2ð Þ
ν

��� ��� ≤ Cτ3−ν: ð14Þ

Removing En−ð1/2Þ
ν yields

1
Γ 2 − νð ÞτB

ν
C δtU

n− 1/2ð Þ, φ
� �

+ δtU
n− 1/2ð Þ

= ΔδtU
n− 1/2ð Þ + ΔUn− 1/2ð Þ + ΔUn− 1/2ð Þ−m + f n− 1/2ð Þ, n ≥ 1:

ð15Þ

In the current paper, Un is an approximation of exact
solution Ψn.

3. Analysis of the Temporal Discretization

In the current section, we check the stability of the numeri-
cal procedure.

Lemma 2 (see [38]). Let ωs be a nonnegative sequence, and
the sequence χs satisfies

χ0 ≤ a0,

χs ≤ a0 + 〠
s−1

r=0
br + 〠

s−1

r=0
ωrχr , s ≥ 1,

8><
>: ð16Þ

Then, for a0 ≥ 0 and b0 ≥ 0, we have

χs ≤ a0 + 〠
s−1

r=0
br

 !
exp 〠

s−1

r=0
ωr

 !
, s ≥ 1: ð17Þ

Lemma 3 (see [37]). For any K = fK1,K2,⋯g and Q, we
obtain

〠
N

r=1
λ0K r − 〠

r−1

s=1
λr−s−1 − λr−sð ÞK s − λr−1Q

" #
K r

≥
t1−νN

2
τ〠

N

r=1
K2

r −
t2−νN

2 2 − νð ÞQ
2:

ð18Þ

Theorem 4. Let Ψs ∈H1
0ðΛÞ; then scheme (15) is uncondi-

tionally stable.

Proof. We define W s =Ψs −Us. Now, we have

1
τ Γ 2 − νð Þ λ0δtW

s− 1/2ð Þ − 〠
s−1

k=1
λs−k−1 − λs−kð ÞδtW k− 1/2ð Þ

( )
+ δtW

s− 1/2ð Þ

= ΔW s− 1/2ð Þ + ΔW s− 1/2ð Þ−m:

ð19Þ

Multiplying relation (19) by τδtW
s−ð1/2Þ, integrating over

Λ and then summing from s = 1 to M give

1
Γ 2 − νð Þ〠

M

s=1

(
λ0 δtW

s− 1/2ð Þ, δtW s− 1/2ð Þ
� �

− 〠
s−1

k=1
λs−k−1 − λs−kð Þ δtW

k− 1/2ð Þ, δtW s− 1/2ð Þ
� �)

+ τ〠
M

s=1
δtW

s− 1/2ð Þ, δtW s− 1/2ð Þ
� �

= τ〠
M

s=1
ΔδtW

s− 1/2ð Þ, δtW s− 1/2ð Þ
� �

+ τ〠
M

s=1
ΔWs− 1/2ð Þ, δtWs− 1/2ð Þ
� �

+ τ〠
M

s=1
ΔWs− 1/2ð Þ−m, δtWs− 1/2ð Þ
� �

:

ð20Þ

Recalling the left hand side of the above relation, invok-
ing Schwartz inequality and Lemma 3 yields

1
Γ 2 − νð Þ〠

M

s=1
λ0 δtW

s− 1/2ð Þ
			 			2

L2 Λð Þ
− 〠

s−1

k=1
λs−k−1 − λs−kð Þ

(

· δtW
k− 1/2ð Þ, δtW s− 1/2ð Þ

� �)

≥
1

Γ 2 − νð Þ〠
M

s=1
λ0 δtW

s− 1/2ð Þ
			 			2

L2 Λð Þ
− 〠

s−1

k=1
λs−k−1 − λs−kð Þ

(

· δtW
k− 1/2ð Þ

			 			
L2 Λð Þ

δtW
s− 1/2ð Þ

			 			
L2 Λð Þ

)

= 1
Γ 2 − νð Þ〠

M

s=1
Bν
C δtW

s− 1/2ð Þ
			 			

L2 Λð Þ
, 0


 �
δtW

s− 1/2ð Þ
			 			

L2 Λð Þ

≥
τt1−νM

2Γ 2 − νð Þ〠
M

s=1
δtW

s− 1/2ð Þ
			 			2

L2 Λð Þ
:

ð21Þ
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Moreover, for the first term in the right hand side of
Equation (20), we have

τ〠
M

s=1
ΔδtW

s−12, δtW s−12� �
= −τ〠

M

s=1
∇δtW

s−12,∇δtW s−12� �

= −τ〠
M

s=1
∇δtW

s−12		 		2
L2 Λð Þ:

ð22Þ

On the other hand, according to some simple mathemat-
ical actions, we have

τ〠
M

s=1
ΔW s− 1/2ð Þ, δtW s− 1/2ð Þ
� �

= −τ〠
M

s=1
∇W s− 1/2ð Þ,∇δtW s− 1/2ð Þ
� �

= −τ〠
M

s=1

ð
Λ

∇W s+∇W s−1

2


 �
∇W s−∇W s−1

τ


 �
dΛ

= −
1
2〠

M

s=1

ð
Λ

∇W sð Þ2 − ∇W s−1� �2h i
dΛ

� 

= 1
2〠

M

s=1

ð
Λ

∇W s−1� �2
dΛ −

ð
Λ

∇W sð Þ2dΛ
� 

= 1
2〠

M

s=1
∇W s−1		 		2

L2 Λð Þ − ∇W sk k2L2 Λð Þ
n o

= 1
2 ∇W 0		 		2

L2 Λð Þ − ∇WM
		 		2

L2 Λð Þ

n o
:

ð23Þ

Also, for the delay term, we arrive at

τ〠
M

s=1
ΔW s−m−12, δtW s−12� �

= −τ〠
M

s=1
∇W s−m−12,∇δtW s−12� �

≤ τ〠
M

s=1
∇W s−m−12		 		

L2 Λð Þ ∇δtW
s−12		 		

L2 Λð Þ

≤
τ

2〠
M

s=1
∇W s−m− 1/2ð Þ
			 			2

L2 Λð Þ
+ τ

2〠
M

s=1

� ∇δtW
s− 1/2ð Þ

			 			2
L2 Λð Þ

:

ð24Þ

Replacing the above relations in Equation (20) yields

τt1−νM

2Γ 2 − νð Þ〠
M

s=1
δtW

s−12		 		2
L2 Λð Þ + τ〠

M

s=1
δtW

s−12		 		2
L2 Λð Þ

≤ −τ〠
M

s=1
∇δtW

s−12		 		2
L2 Λð Þ +

1
2 ∇W 0		 		2

L2 Λð Þ − ∇W M		 		2
L2 Λð Þ

n o

+ τ

2〠
M

s=1
∇W s−m−12		 		2

L2 Λð Þ +
τ

2〠
M

s=1
∇δtW

s−12		 		2
L2 Λð Þ,

ð25Þ

or

τt1−νM

Γ 2 − νð Þ〠
M

s=1
δtW

s−12		 		2
L2 Λð Þ + 2τ〠

M

s=1
δtW

s−12		 		2
L2 Λð Þ

≤ −2τ〠
M

s=1
∇δtW

s−12		 		2
L2 Λð Þ + ∇W 0		 		2

L2 Λð Þ − ∇WM
		 		2

L2 Λð Þ

n o

+ τ〠
M

s=1
∇W s−m−12		 		2

L2 Λð Þ + τ〠
M

s=1
∇δtW

s−12		 		2
L2 Λð Þ:

ð26Þ

Now, Equation (26) can be simplified as

∇WM
		 		2

L2 Λð Þ ≤ ∇W 0		 		2
L2 Λð Þ + τ〠

M

s=1
∇W s−m−12		 		2

L2 Λð Þ: ð27Þ

Changing index from M to s arrives at

∇W sk kL2 Λð Þ ≤ ∇W 0		 		
L2 Λð Þ + 2τ〠

s

k=1
∇W k−m
			 			

L2 Λð Þ

= ∇W 0		 		
L2 Λð Þ + 2τ〠

s

k=1
∇ φ∗ð Þk−m
			 			

L2 Λð Þ
:

ð28Þ

The use of Equation (29) and Lemma 2 yields

∇W sk kL2 Λð Þ ≤ ∇W 0		 		
L2 Λð Þ + 2τ〠

s

k=1
∇ φ∗ð Þk−m
			 			

L2 Λð Þ

" #
exp 2sτð Þ

≤ ∇W 0		 		
L2 Λð Þ + 2τ〠

s

k=1
∇ φ∗ð Þk−m
			 			

L2 Λð Þ

" #
exp 2Tð Þ:

ð29Þ

Thus, there exists C ∈ℝ+ that

∇W sk kL2 Λð Þ ≤ C ∇W 0		 		
L2 Λð Þ + 2τ〠

s

k=1
∇ φ∗ð Þk−m
			 			

L2 Λð Þ

" #
:

ð30Þ

4. Moving Kriging Interpolation and
Its Implementation

Following [39, 40], we will invoke the technique of moving
Kriging. Up to our knowledge and armed by the fact of the
advantage of less CPU time consuming needed for the ele-
ment free Galerkin approach based on the shape functions
of moving Kriging than what needed for the element free
Galerkin approach based on the shape functions of moving
least squares approximation. In the meantime, the shape
functions of moving Kriging interpolation can be deduced,
which is analogous to moving least squares approximation
over subdomain Λ1 ⊂Λ. Let ΨhðxÞ is the approximate solu-
tion of ΨðxÞ on Λ. The local approximation is formulated
for any subdomain as
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Ψh xð Þ = 〠
m

r=1
qr xð Þar + S xð Þ = qT xð Þa + S xð Þ, ð31Þ

such that qr and ar are monomial basis functions and mono-
mial coefficients, respectively. Also, SðxÞ be the realization of
a stochastic process. The covariance matrix of SðxÞ is given
as

cov S xið Þ, S xrð Þf g = σ2E E xi, xrð Þ½ �, ð32Þ

in which

(i) E½Eðxi, xrÞ� is the correlation matrix

(ii) Eðxi, xrÞ is the correlation function between any pair
of nodes located at xi and xr

The correlation function is defined as [39, 40]

E xi, xrð Þ = exp −θr2ir
� �

, rir = xi − xrk k, ð33Þ

such that θ > 0 is a value of the correlation parameter
[39, 40]. Using the best linear unbiased (BLUP) [39], we
can write Equation (31) as follows [39, 40]

Ψh xð Þ = qT xð Þη + rT xð ÞE−1 u −Qηð Þ, ð34Þ

in which

η = QTE−1Q
� �−1

QTE−1u: ð35Þ

We will introduce some notations. The vector of known
m functions can be written as follows [39, 40]

q xð Þ =

q1 xð Þ
q2 xð Þ
⋮

qm xð Þ

2
666664

3
777775
1×m

, ð36Þ

and the matrix of defined function values at the nodes
x1, x2,⋯, xn has the following representation [39, 40]

Q =

q1 x1ð Þ q2 x1ð Þ ⋯ qm x1ð Þ
q1 x2ð Þ q2 x2ð Þ ⋯ qm x2ð Þ
⋮ ⋮ ⋱ ⋮

q1 xnð Þ q2 xnð Þ ⋯ qm xnð Þ

2
666664

3
777775
n×m

: ð37Þ

The correlation matrix is given as [39, 40]

E E xi, xrð Þ½ � =

1 E x1, x2ð Þ ⋯ E x1, xnð Þ
E x2, x1ð Þ 1 ⋯ E x2, xnð Þ

⋮ ⋮ ⋱ ⋮

E xn, x1ð Þ E xn, x2ð Þ ⋯ 1

2
666664

3
777775
n×n

:

ð38Þ

The correlation vector at the nodes x1, x2,⋯, xn has the
following form

r xð Þ =

E x1, xð Þ
E x2, xð Þ

⋮

E xn, xð Þ

2
666664

3
777775: ð39Þ

The matrices A and B are given as

A = QTE−1Q
� �−1QTE−1,

B = E−1 I −QAð Þ,
ð40Þ

where I is the n × n identity matrix. Accordingly, Equa-
tion (34) can be written as follows [39, 40]

Ψh xð Þ = qT xð ÞAu + rT xð ÞBu, ð41Þ

or

Ψh xð Þ = qT xð ÞA + rT xð ÞB� �
u = 〠

n

k=1
ϕk xð ÞΨk = φ xð Þu, ð42Þ

where the moving Kriging approach’s shape functions are as
follows [39, 40]:

φ xð Þ = qT xð ÞA + rT xð ÞB� �
r
= ϕ1, ϕ2,⋯, ϕn½ �T : ð43Þ

Now, we are ready to implement that kind of interpola-
tion to the problem under consideration. Let the approxima-
tion solution of this equation be

Un x, y, zð Þ = 〠
N

j=1
ϖn
j ϕj x, y, zð Þ, ð44Þ

in which ϕjðxÞ are shape functions of moving Kriging
approximation. Substituting Equation (44) in relation (15)
gives
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1
Γ 2 − νð ÞτB

ν
C δt 〠

N

j=1
ϖ
n− 1/2ð Þ
j ϕj x, y, zð Þ, φ

 !
+ 〠

N

j=1
δtϖ

n− 1/2ð Þ
j ϕj x, y, zð Þ

= 〠
N

j=1
δtϖ

n− 1/2ð Þ
j Δϕj x, y, zð Þ + 〠

N

j=1
ϖ
n− 1/2ð Þ
j Δϕj x, y, zð Þ

+ 〠
N

j=1
δtϖ

n− 1/2ð Þ−m
j Δϕj x, y, zð Þ + f n− 1/2ð Þ:

ð45Þ

By collocating a set of arbitrary distributed nodes
fðxi, yi, ziÞgNi=1 in the computational domain Λ concludes

1
Γ 2 − νð ÞτB

ν
C δt 〠

N

j=1
ϖ
n− 1/2ð Þ
j ϕ j xi, yi, zið Þ, φ

 !
+ 〠

N

j=1
δtϖ

n− 1/2ð Þ
j ϕj xi, yi, zið Þ

= 〠
N

j=1
δtϖ

n− 1/2ð Þ
j Δϕj xi, yi, zið Þ + 〠

N

j=1
ϖ
n− 1/2ð Þ
j Δϕ j xi, yi, zið Þ

+ 〠
N

j=1
δtϖ

n− 1/2ð Þ−m
j Δϕ j xi, yi, zið Þ + f n− 1/2ð Þ xi, yi, zið Þ:

ð46Þ

After doing some simplifications, we have

μλ0 + 1ð Þ〠
N

j=1
ϖn
j ϕj xi, yi, zið Þ − 1 + τ

2
� �

〠
N

j=1
ϖn
j Δϕj xi, yi, zið Þ

= μλ0 + 1ð Þ〠
N

j=1
ϖn−1
j ϕ j xi, yi, zið Þ x, y, zð Þ

+ −1 + τ

2
� �

〠
N

j=1
ϖn−1
j Δϕj xi, yi, zið Þ + μτλn−1φ

+ μτ〠
n−1

k=1
λn−k−1 − λn−kð Þ 〠

N

j=1
ϖk
jϕj xi, yi, zið Þ − 〠

N

j=1
ϖk−1
j ϕ j xi, yi, zið Þ

 !

+ τ

2 〠
N

j=1
ϖn−m
j ϕ j xi, yi, zið Þ − 〠

N

j=1
ϖn−m−1
j ϕj xi, yi, zið Þ

 !
+ τf n− 1/2ð Þ,

ð47Þ

where μ = 1/Γð2 − νÞτ. Now, the above formulation
yields the following system of equations

AΛn = Fn, ð48Þ

in which

Aij = μλ0 + 1ð Þϕj xi, yi, zið Þ − 1 + τ

2
� �

Δϕj xi, yi, zið Þ,

Fi = μλ0 + 1ð Þ〠
N

j=1
ϖn−1
j ϕj x, y, zð Þ + −1 + τ

2
� �

〠
N

j=1
ϖn−1
j Δϕj x, y, zð Þ

+ μτ〠
n−1

k=1
λn−k−1 − λn−kð Þ 〠

N

j=1
ϖk
jϕj x, y, zð Þ − 〠

N

j=1
ϖk−1
j ϕj x, y, zð Þ

 !

+ μτλn−1φ + τ

2 〠
N

j=1
ϖn−m
j ϕj x, y, zð Þ − 〠

N

j=1
ϖn−m−1
j ϕj x, y, zð Þ

 !

+ τf n− 1/2ð Þ:

ð49Þ

5. Numerical Verification

In the current section, we investigate the convergence, capa-
bility, and stability of the developed numerical procedure.
Also, the computational rate is calculated by

C − order = log 2ð Þð Þ−1 × log E h, 2τð Þ
E h, τð Þ


 �
: ð50Þ

We consider the following problem

1
Γ 2 − νð Þ

ðt
0

∂2Ψ x, y, sð Þ
∂s2

ds

t − sð Þν−1 + ∂Ψ x, y, tð Þ
∂t

= ∂
∂t

∂2Ψ x, y, tð Þ
∂x2

+ ∂2Ψ x, y, tð Þ
∂y2

 !
+ ∂2Ψ x, y, tð Þ

∂x2

+ ∂2Ψ x, y, tð Þ
∂y2

+ ∂2Ψ x, y, t − sð Þ
∂x2

+ ∂2Ψ x, y, t − sð Þ
∂y2

+ f x, y, tð Þ,

ð51Þ

Table 1: Results obtained with 500 collocation points for Example 1.

τ
ν = 1:1 ν = 1:2 ν = 1:9

CPU time(s)
L∞ Cτ-order L∞ Cτ-order L∞ Cτ-order

0:1 1:20 × 10−1 — 1:04 × 10−1 — 7:74 × 10−1 — 0:5
0:05 3:00 × 10−2 2:00 2:69 × 10−2 1:94 6:02 × 10−1 0:36 0:9
0:025 7:51 × 10−3 1:99 7:20 × 10−3 1:90 3:31 × 10−1 0:86 3:2
0:0125 1:88 × 10−3 1:99 1:97 × 10−3 1:87 1:61 × 10−1 1:04 10:4
0:00625 4:70 × 10−4 1:99 5:46 × 10−4 1:85 7:37 × 10−2 1:13 37:1
0:003125 1:17 × 10−4 1:99 1:53 × 10−4 1:83 3:29 × 10−2 1:16 87:5
0:0015625 2:94 × 10−5 1:99 4:36 × 10−5 1:81 1:45 × 10−2 1:18 163:4
0:00078125 7:38 × 10−6 1:99 1:25 × 10−5 1:80 6:35 × 10−3 1:19 277:3
TO 1:9 1:8 1:1
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in which

f x, y, tð Þ = cos πxð Þ cos πyð Þ 2t + 2π2 s − tð Þ2 + 4π2t + 2π2t2
� �

,
ð52Þ

the initial conditions are

Ψ x, y, tð Þjt=0 = 0, ∂Ψ x, y, tð Þ
∂t

����
t=0

= 0, x, yð Þ ∈Λ, ð53Þ
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Figure 1: Approximate solution and its absolute error on square domains.
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and also

Ψ x, y, tð Þ = t2 cos πxð Þ cos πyð Þ, x, y, tð Þ ∈Λ × −s, 0ð �, ð54Þ

with no-flux boundary condition. The exact solution is
Ψðx, y, tÞ = t2 cos ðπxÞ cos ðπyÞ.

Table 1 shows the results obtained based on the 500 col-
location points, ν = 1:1, ν = 1:2, ν = 1:9, and different values
of τ. Table 1 confirms that the theoretical order (TO) in tem-
poral direction is near to the computational order, i.e., 3 − ν.
Figure 1 demonstrates the approximate solutions (a) and its
absolute errors (b) on square domains ½0, 1� × ½0, 1� (top
figures), ½0, 4� × ½0, 4� (middle figures), and ½0, 8� × ½0, 8�
(bottom figures) with τ = 0:001, ν = 1:5, and also 1000
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collocation points. Figure 2 illustrates the approximate solu-
tions (a) and its absolute errors (b) on irregular domains

r θð Þ = 3
10n2 1 + 2n + n:2 − n + 1ð Þ cos nθð Þ� �

, ð55Þ

where n = 4 (top figures), n = 8 (middle figures), and n = 12
(bottom figures) with τ = 0:001, ν = 1:5, and also 1000 collo-
cation points. Figure 3 presents the approximate solutions
(a) and its absolute errors (b) on irregular domains

r θð Þ = 3
10n2 1 + 2n + n:2 − n + 1ð Þ cos nθð Þ� �

, ð56Þ

with τ = 0:001, ν = 1:5, and also 1000 collocation points.
Figure 4 presents the approximate solutions (a) and its abso-
lute errors (b) on irregular domains

r θð Þ = 0:3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos 2θð Þ + sqrt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:1 − sin θð Þ2

q
 �s
, ð57Þ

with τ = 0:001, ν = 1:5, and also 1000 collocation points.

6. Conclusion

The current paper presented a new numerical procedure
for solving fractional damped diffusion-wave equations
with delay. In this process, the time derivative is discre-
tized by a finite difference scheme, and we constructed a
time-discrete scheme. The stability and convergence of
the proposed numerical formulation are studied, analyti-
cally and numerically. Then, the moving Kriging interpola-
tion technique, as a meshless method, is used to get a fully
discrete scheme. The proposed numerical method is flexi-
ble to simulate a wide range of PDEs including delay PDEs
on irregular computational domains. Finally, an example is
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provided to demonstrate the stability and convergence of
the new technique.
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