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We give a Bézier variant of Baskakov-Durrmeyer-type hybrid operators in the present article. First, we obtain the rate of convergence
by using Ditzian-Totik modulus of smoothness and also for a class of Lipschitz function. Then, weighted modulus of continuity is
investigated too. We study the rate of point-wise convergence for the functions having a derivative of bounded variation.
Furthermore, we establish the quantitative Voronovskaja-type formula in terms of Ditzian-Totik modulus of smoothness at the end.

1. Introduction

To approximate continuous functions, many approximating
operators have been introduced under certain conditions
and with different parameters too. Many researchers have
later generalized and modified these introduced operators
and discussed various approximating properties of these
operators. In 1957, Baskakov [1] introduced and studied such
a class of positive linear operators, called Baskakov operators
defined on the positive semiaxis. For f € @[0,00), the
sequence of Baskakov operators is given as

X (n+k-
%(f;y)=z< L 1>y"(1+y)‘”"‘f(§)> (1)

k=0

for y€[0,00) and neN. Later on, many authors have
been considering the Baskakov operators; for instance,
Aral in [2] defines the parametric generalization of Baskakov
operators as

B(f9)= 2.2 (1) @)

k-1 n+k-1
P (x) = —— G [ = ( ) ~(1-v)(1+x)

(1+x L+x k

n+k-3 n+k-1
(e
k-2 k

n+k-1
with =0ifk=0,1.
k-2

Among interesting studies realized in this context, we cite
those based on the Baskakov-Kantorovitch-type operators in
the generalized form (the original operator given by Kantor-
ovich in [3]) defined as, for f € L'([0, 1]) (the class of Lebes-
gue integrable functions on [0, 1]),

(3)

®(n+k-1 1
BK,(f 5%) = Z( ' )xk(l +x)_"_kJ0Xn,k(f)f(f)df’

k=0 k
(4)
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where . is the characteristic function of the interval
[k/n, k + 1/n).

It is well known that Bézier curves are the mathematically
defined curves successively used in computer-aided geomet-
ric design (CAGD), image processing, and curve fitting.
The miscellaneous Bézier variant of operators is crucial
subject matter in approximation theory. In 1983, Chang [4]
pioneered the Bernstein-Bézier operators. Afterwards,
several researchers established the Bézier variant of various
operators (c.f. [5, 6]). For more details on the approximation
by Durrmeyer-type and Baskakov-Durrmeyer-type opera-
tors, one can refer to [7, 8], respectively. For more about
Bézier variant of operators, one can refer to [9, 10].

We will be mainly interested to the Bézier variant
operator type based on those of Baskakov-Durrmeyer
defined as follows:

10 (f zsr J T (1)t + X5 (x)(0),
(5)

where

L5x) = [Ex )] = (B () Zg’ )k=0,1,2,-
_ . —npt (”Pt)kr1
jﬁ,k(t) =npe " W

(6)

If we take 6=1, then operator (5) reduces to the
following operator studied by [11].

9= 3 P a0+ 210
)

Let us briefly summarize the outline of the paper. Next
section is devoted to the computation of some auxiliary
results which we need to prove our theorems in coming sec-
tions. In Section 3, we will prove some approximations of
functions using Ditzian-Totik modulus and then we will deal
to functions lie in the Lipschitz spaces. We treat in Section 4
the rate of convergence in the context of suitable weighted
spaces and functions having a derivative of bounded varia-
tion. Finally, in Section 5, we state and prove the quantitative
Voronovskaja-type theorem.

2. Preliminary Results
Lemma 1. &, (x) satisfies the following important properties:

(1) & p(x) =& (%) =Py 1 (x) k=0, 1,2, -+
(2) &0(x) > &, 1 (x) >+ & (x) > & gy (x) > o
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ifo>1

— [ g ()] <

0P (x
(3) [E4(x))° { i)

(Pra(2)’ if6<1
Proof. Since (1) and (2) are evident, we prove only the
assertion (3).

If 0>1, it suffices to remark that by the mean value
theorem, we have

be—aegﬂ(b—a)forevery0<a<b<1. (8)

If 0 < 1, we shall prove that

v —a’ < (b-a)’forevery0<a<b. 9)

Dividing this inequality by aY it is equivalent to
prove that

f(r)y=(r-1)% =" +120foreveryr> 1. (10)

We have f'(r) = (8/(r — 1))e? ™ 1) — (0/r)e® * *); then,

£'(r)>0if andonlyif In (——) >In e (11)
(r) andonly 1 A (1) )

and this is true as 6 < 1.
We proved then f is increasing, so f(r) > f(s) for all
r>s>1, letting s to 1, and we deduce that f(r) >0. O

Remark 2. The operators ?Zﬁ( f3;x) have the integral
representation

9 (f %) =j°°%;:?;<x> ) () (12)

0

where % Zl’)z(x, u) is the kernal defined by

K (% u u)+ L5 (x)8(u).  (13)

Zsr
O(u) is the Dirac-delta function.

Lemma 3. Let e, (t)=t" and ¢(t)=1/(1+1t)"">. For the

operator 9B, ,(f ;x), we have

(1) B, ,(e05x) = Y20 P k(%) =
(—1)*o® (x)/k! = p(0) = 1
QI (e3%) = S0 (). (kp + m— 1) (kp + 11— 2)
- (kp)l(np)",m=1,2,3,--

Ziiog’ﬁ,k(x) =Yreo

As an easy consequence of last lemma, we will prove the
following result.
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Lemma 4. We have the following moments:

(1) B, ,(t;x)=x+2x(v—1)/n

(2) B, ,(t75%) =27 +x*(4v = 3)In+x(=2+n+2v+np
+4p(v 1))In’p

(3) B, ,(t=x;5x)=2x(v—1)/In

(4) B, ,((t- x)%5%) = x2n+ (xinp)n(1 + p) + 2(v—1)
(1 +2p)

(5)n° B, ,((t —x)*5x) = (), + (6x° 1P p)ax, + (x2(1
+p)n’p?)az + (x(1+ p)/n'p’)ay

where

o, =3n+16v-10,
a,=n+6v-4+p(n+8v-06), (14)
a;=3n(I1+p)+4v(7+8p)—25p—17

=n(l+p)(3+p)+4(v—-1)(3+4p(2+p)). (15)

Remark 5. We have

(1) lim,__,n%B, ,(t - x;x) =2x(v-1)

(2) lim =x(1+p+px)lp

nZ%Z)p((t—x)4 ;x) =

n—=o00

1193;’0((1‘—96)2 ;%)

(3) lim 3(x(1+p+px))*/p?

Remark 6. For n large enough, we have the following
inequalities:

2 .

(1) |‘%:¢,p((t_x) 4

) |8,,,((t-x)";

x)| < Cy(x(1+ p+ px)inp)
%) < C((x(1+ p+ px))*/(np)*)
Throughout this article, let €5(R}) denote the space of

all functions f on R{ which are bounded and continuous.
We endowed it by the norm ||f|| = sup, . | f(x) |-

Lemma 7. Let f € €5(R}), and we have

(D) 1Z,0(f 5
) ?Ve(f x)<0%, (f;

X)<8)0 (eq; X)If I and €30 (ey5x) = 1
x) <Olfll

Proof.

(1) On the one hand, we have

3
7000 = | X 2| s T0r0)
k=1
<> &’;ﬁ(x)j 70 (O)dt+ 220 ()| 1)
k=1 0
<% ey 1) IfI.
(16)
On the other hand,
0
O(eqsx Z a0 (Z P > =19=1
(17)

(2) We have

GATED) fr;:i<x>j:°f5,k<t>f<t>dt + 20(x)(0)

= 3 ([0 - Baea)]”) | 7atoroas

+([En®)] = [E.)°)F(0).
(18)

Using Lemma 1, it is easy to see that

70 (f <929° j 70 (O (1)dt + 0o () (0)

geg%gyp(f; X).

3. Direct Approximation

Before we discuss the different approximations, we need
some definitions. First, we recall the definition of the well-
known Ditizian-Totik modulus of smoothness w,,(.,.) and

Peetre’s K-functional [12].

Definition 8. Let ¢(x) =
define

Vxand f € €5(R). For0<7<1,we

(7)o (77

(20)

(f 0) = sup sup

0<h<8x+heT (x)/2€R}

and the K-functional



Kp(f:0)= inf {If ~gll +o]e"g|[}, (1)

where
- {geACloc : Hgng'H<oo}, (22)

with AC,,, is the set of all absolutely continuous function on
every finite subinterval of Rj.

Remark 9. w(f,0) and K (f,0) are equivalent, that is,
there exists a constant C>0 such that

’lwq,,(f,(?)qu,r(f,é‘)SCwq,r(f,(?). (23)
In the next definition, we cite Lipschitz-type functions:

Definition 10 [13]. For a > 0, b > 0 to be fixed, the class of two
parametric Lipschitz-type functions is defined as

& x>0
(y+axz+bx)ﬁ/2’ . '
(24)

Lipiy () = {9 €G(Ry): 1f(y) —f(x)l<M

where M is any positive constant and 0 < S < 1.

The space Lip},(B) is the space Lipj,(B) given by
Szasz [14].

We now proceed with the approximation results.

Theorem 11. For f € €5(IR}), we have

w53 -] <y (1 D), )

where w,, is given by (20) and C is a constant free from the

choice of n and x.
For the proof of this theorem, we use the following lemma
proved in [15].

Lemma 12. Let ¢(x) =
X,y >0, we have

V/xand 0 <1 < I; then, for f € W, and

SZTx*T/2\|x—y||Hgon'||. (26)

Jyf'(u)du

X

Proof (Theorem 11). Let g € W . Using Lemma 7, we have

Zis U39 =) =[50 - 939 + (9 - 9
+1970(g5x) - g(x)’
< (1+0)|/(0) - 9]

[9i8(0:0-ato]

(27)
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Since g(y) =g(x) + [’g' (u)du and ?”9(1 x)=1, we

conclude that

28035 - =25 | (28

X

g’(u)du;x> :

Therefore, Lemma 12 implies
|9:5(95%) - 9()| <2 97g || G5 (e~ yl). (29)

By Cauchy-Schwarz inequality and Remark 6, it is easy to
check that

G0 (k= ylsx) =\ G20 (13010 (x=)? %)

Cx0(1+ p+ px) (30)
np '
Combining (27)-(30), we get
9180 3%) - £(0)| < L+ ) (3) - 9()]
b 97T (1+ x) (31)
+Gle'a ||

T ,

Let now taking the infimum over g € W, and we have

wiar s -se] ek (1 D).

We thank to (26).

|95 52) - £(x)| < Cw,, <f, W) (33)

O

Theorem 13. For f € Lipi?(B), then for every n€ N, p > 0,0
> 1 and x € (0,+00), we have
x) B2
. (34)

0%’ —x)?;
w2

where &, ,((y - x)° 5 x) is given in Lemma 4.

Proof. Let f € Lip%’(B) and x € (0+00), and we have

Gb(f32) = ()] = [Z500) - Fx)5%)|

<G (f ) = f(x)l) (35)

—x|B
comt(m— )
n”’( (y+ax2+bx)ﬁ/2
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Let us consider the case B=1. By the Cauchy-
Schwarz inequality and the fact ?Z’f’(l ;x) =1, we have
immediately that

v,0 . _ M v,0 AV 172
Gipf3x) = f0)| < e (10 (0 =)
M 12

<— (6098 2
Vo (s (0= :9)

v ) 172

SM<G%""’(U v ’x)> :

ax? + bx

(36)

This proves the result for f=1.
If 0 < B <1, Holder’s inequality with exponents p=1/f
and p' = 1/1 - B, we get
M

(ax? + bx)ﬁ 2

ZHGURICIE (i y-k)"
(7)

Using again the Cauchy-Schwarz inequality, we obtain

w0 e N M B2
Gplf %) f(x)’ < W (g (y-x%; ))
M v 2. pi2
< o (OB (0-27)
" 12
0%"° (- x)%;x) A
S M >
ax2 + bx

(38)
and this gives the result. O

4. Rate of Convergence in Weighted Spaces

In this section, we focus about the rate of convergence of
operators (5) in the context of suitable weighted function
spaces and functions having a derivative of bounded varia-
tion. We will use the following spaces:

(Ry) = {f If ()] ng(l +x2),Mfisaconstantdependonf}.

(39)
Introduce also
%, (Ry) ={f € B,(R{): fiscontinuous },

If( )| OO}. (40)

x—»oo + X

HORENE
These spaces are endowed with the norm

L) )

1+2'

I, = S

The weighted modulus of continuity is defined as
(see [16])

flx+0)=f(0) |

1+ (x+1)° (42)

O(f,8) = sup sup

x20 |f<d

Theorem 14. Let f € €5(R}). Then, for xR}, p,6 >0,
0>1 and for large enough n, we have

w8730 - | s21+2)0( 1. )

112
X[I+GC1 (1+p+xp \/—< +p+xp)>
(oovara)

(43)

where C;,C,>1 are constants independent of x and n.

Proof. Let u, x € R}, 8 > 0. An immediate consequence of the
definition of weighted modulus of continuity is

lu—x|

\f(u)—f(x)|S2(1+x2)(1+(u—x)2)<1+ >Q(f,8)

(44)

. w0 [ . . . . .
Since &, (f;x) is linear and increasing, we have
from (44)

Gplf () =S ()l0)| <21+ )0, 0)
)14 +?r£<(l+(u—x§2) |u—x| ,x>}

(45)

SERA(E

Cauchy-Schwarz inequality was applied in the last
term, and it gives us

GAf () - F)ln)| <2(1+5)2(£.9)
[0 (55"

. (%’f,((u —x)Z ;x)) 1/2+é (%ﬁ((u _x)z ;x)) 1/2} .
(46)

1/2

Choosing 8 =1/y/n, we get the required result in
virtue of Remark 6. O



5. Rate of Convergence for Functions of
Bounded Variation

Let DBV(RR}) be the space of functions on R} having a deriv-
ative of bounded variation on every finite subinterval of R}.
Consider the space

DBV, (R}) = {f € DBV(R}) : |f(x)|<M; (1 +x%) for some constant M > 0}.
(47)

It is known that every function f in DBV,(RR
representation of the form

) has a

X

g(u)du +f(0), (48)

0

7=

where g is a function of bounded variation on each finite
subinterval of Rf.

Lemma 15. Let x € R, and let ,%Zlf,(x, u) be the kernel
defined by (13). Then, for C,>1 and for n large enough,

we have
1,0 . _ 1,0
(1) fn,p(x’)’) _f)é‘%n,p<x
U(x-y),0<y<x
2) I—E"G (x32) f %
Inp)1/(z - x)° ,x<z<oo

,u)du <0C,(x(1+p+xp)/np)

,u)du<0C,(x(1+p+xp)

Proof. Using Remark 6, we get
v,0 1,0 Y (u -y : v,0
Epp(x5y) = (%n)p(x, u)du < N o F g p (% u)du
1

< —
(x=y)°

<oc, x(1+p+xp) 1 N

o (x-y)

?"9 ((u -x)% X)

(49)

Similarly, we can show the second part; hence, the proof
is omitted. O

Theorem 16. Let f € DBV ,(R}), and for every x € (0, 00),
consider the function f,. defined by

f,(”)—f’(x_), if0<u<x,
fw=x%o, if u=x, (50)
fl(w)-f'(x"), ifx<u<oo.

Let us denote by VAf! the total variation of f. on [c,d]
R}. Then, for every x € (0, 00) and large n,
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Guo(f5%) ()

0, ., . o (Cx(1+p+xp)\ 7
mlf(x)wf(x)\(n—f)
Cix(1+p+xp)\ "

np

[v7]
Ci(I1+p+xp) x
+QT;(ka> \/ﬁ(jﬁ%ﬁf}()

x+-3= [ﬁ] x
X noy C11 X Xy !
*ﬁ(yf@”%%(m'

(51)

93/2

- gl e v )l

Proof. For any f € DBV,(IR}), from the definition off;(u),
we can write

£ = g (£ 46 (0)) 0, (w)

(=3 (e ere))
, 1/, ) 0-1
)5 (76 1)) (sen (=4 5,
52

where

o) ( )— boi ’ (53)
u)=
0, ifu+x.

V0 (1. 4) =
By the fact that &, (1;x) = 1, we have

F0(F %) F(x) = B3 w) ~ £ %)
= | mhes @ e g,

_ fzf;g(x, ) (J f! (v)dv> du.

From (52), we obtain
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From the definition of §,(v), it is clear that
[ ([8.00(r/0 -5 (7)) Jav =0
(56)

The first integral on the right hand side of (55) can be
estimated as follows:

’JT%ZZZ(X’ u) (J:{Tlre (f’(x)++9f’(x*)> }dv) du
() +0f (x) \Eo,%;’g(x, w)|u - x|du.

(57)

’ B

<

(es)

1+

Applying the Cauchy-Schwarz inequality and Remark 2,
we have, for n large enough,

fzf,:f,(x, ) (J{ﬁ (£ +or' () }dv) du

< o f ) +OF () [T (w0 )

- 1 o (COx(1+ p+xp)\

< pyghren) o) (AL
Vo 1o r— [Crx(1 X 172

< Ul ) s ) (ST L)

(58)
Similarly, it is easy to find

J:,%G (. ) (J{% (e -1'60) <sgn (v-x)+ f;;) }dv> du

63/2 Cix(1+p+xp)\
O ey vorc ()

(59)
Write the last term of (55) as

[ e (|| ruontv)du=ati (r15) + B35 (155).

(60)

Now, we estimate the terms /"% ol f;x) and Brup O (fl5 x).

Using the definition of f:[,ep
integrating by parts, we can write

ety (fisx) = [ (| o) ki),

(.;.) given in Lemma 15 and

e (62)
- [ ety
0
Thus,
x—x/\/n
e ()| [ ol
i (63)
' Jx_x/ﬁ ) [E55 s ) du
Since £/(¥) =0 and &)x51) < 1, we gt
JX | Fo(w) | €08 (x5 w)du
x—x/\/n
:J [F2w) = £0) & (x5 w)du
x=x/\/n
(64)

o siea]_ (3

Concerning the first integral on the right hand side of
(63), using Lemma 15, we have

x—x/\/n vh
Jo ‘f ‘Enp (x5 u)du

Cix(1+p+xp) Xl |f;,c(“)|
np 0o (x-y)

Cox(1+p+xp) [V |f1(u) = f1(x)]
np 0 (x =)

Cyx(1+ p+xp) [F¥V" (\:; ,) du
np 0 Y (x-y)

<0
(65)
=0 du

=0

u 2"

By changing of variable u = x — x/v, we deduce that

sz/ﬁv;(u) |£;‘f,(x su)du < 6C1(1+—£+W£/a (X\Zf;> dv
LpGllrprap) ](c f’).
np =S
k (66)



8
Therefore,
[v7]
0 [ 1 Ci(1+p+xp) X )
s (759)| <00y (4 ) (1)

What concerns the second term of the right hand side of
(60), integrating by parts and Lemma 15 with z =x + x/,/n,
we can write

[25(/5) <

[0 (1= g5 )
Joof;c(“) (1 - ff,’,e (x; u))du

(e pexp)
np J Vf (u— x)

X+
X Vﬁf}’( +6C1x(1+p+xp)
v\ x np

+

sJ ¥ fldu+0St

IN

J Vf u-x)"du.
x+x/\/_x

(68)
Putting u = x + x/v, we get

np xtxl/n * *
S0C1(1+p+xp)‘[‘/_"+-f v
np

0

(69)

< ecl(lﬂ;/;”m [f (x\;xf )

Combining (68) and (69), we have
X+ [ﬁ] x
v (o X Vi Ci(1+p+xp) <,
’%”’p(fx’x>‘gﬁ<¥fx>+6 np ; \){f" ’

Finally, by combining (52)-(70), we get (51). O

6. Quantitative Voronovskaja-Type
Asymptotic Formula

In this last section, we deal with the Voronovskaja-type
asymptotic theorem for ?Z’z. More precisely we will prove
the following result:

Journal of Function Spaces

Theorem 17. For f € Gy(R}) such that f',f'" € Gx(R}).
Then,

In{ @0 52) = () = (0Z (- x5%)
1

5@ (u=x)75%) }| (71)

x(1+p+xp)w ¢ (1+x)
<Co ; o (f, NG >

where C is independent of n and x.

Proof. By Taylor’s formula, we write

(73)

On the one hand, we apply ?Z’Z(J’C) to both sides of the

above equality, and we get

’g?’?’(f;x) ~f(x) =1 ()G (u—x:x)

- T (-5 )|

-z ([ e (7w ) avix) "

<o (|[ (770 -0 ] 0.

On the other hand, for g € W, we have

[[w=n(rm-re)ar )

<||f" = glj(u-x)*+2797 979" || |u—xP,

which implies, by (74),
G0 3%) ~£x) - f ()T (u = x32)

_ lf"(x)?vﬂ ((u—x)z;x)( 76)

<[If" - gll@nn((u-x)*:x)
+27¢" Hgo g H?Z,Z(|u—x|3;x).

After using the Cauchy-Schwarz inequality in the last
term, we obtain
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Ly v 2
G (=27 5x)

172

Go (52 ~f() ~f ()9 (u—x53) -

<29 o7 | (925 (" s) " (S35 (e 2072
+[|f"" = gl|30 (4= x)*s5%).

(77)
In view of Remark 6, we have
G0 3) ~ F() ~f () - x53) = 2" ()38 (= 2)7:%)

/ x(1+p+xp)\ 2 x(1+p+xp)\° "
<297 |¢7g H<c197> <cze() )

np np
|- gllc,0 L)
1 T(1
< Clex(++[;m{”f’! _g” +M*u\/{x)”¢1gl||}

(78)

Taking the infimum on the right-hand side of the above
inequality over g € W, we get

[n{@0(F 52) = () - F ()G (1= x5)
T (-5 )| (79)

2-T
<cpXLtptxp) K, <f’M* (1 +><)>.
P vn

Recalling (23), the theorem is proved. O
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