Research Article

Logarithmic Coefficient Bounds and Coefficient Conjectures for Classes Associated with Convex Functions

Davood Alimohammadi, Ebrahim Analoei Adegani, Teodor Bulboacă, and Nak Eun Cho

1Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
2Faculty of Mathematical Sciences, Shahrood University of Technology, P.O. Box 361-36155, Shahrood, Iran
3Faculty of Mathematics and Computer Science, Babes-Bolyai University, 400084 Cluj-Napoca, Romania
4Department of Applied Mathematics, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea

Correspondence should be addressed to Davood Alimohammadi; d-alimohammadi@araku.ac.ir

Received 16 December 2020; Accepted 29 May 2021; Published 14 June 2021

Academic Editor: John R. Akeroyd

Copyright © 2021 Davood Alimohammadi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

It is well-known that the logarithmic coefficients play an important role in the development of the theory of univalent functions. If \(\mathcal{A} \) denotes the class of functions \(f(z) = z + \sum_{n=1}^{\infty} a_n z^n \) analytic and univalent in the open unit disk \(\mathbb{U} \), then the logarithmic coefficients \(\gamma_n(f) \) of the function \(f \in \mathcal{A} \) are defined by \(\log \left(\frac{f(z)}{z} \right) = 2 \sum_{n=1}^{\infty} \gamma_n(f) z^n \). In the current paper, the bounds for the logarithmic coefficients \(\gamma_n \) for some well-known classes like \(\mathcal{B}(1+az) \) for \(a \in (0, 1) \) and \(\mathcal{B}_{\mathcal{V}}(1/2) \) were estimated. Further, conjectures for the logarithmic coefficients \(\gamma_n \) for functions \(f \) belonging to these classes are stated. For example, it is forecasted that if the function \(f \in \mathcal{B}(1+az) \), then the logarithmic coefficients of \(f \) satisfy the inequalities \(|\gamma_n| \leq a/(2n(n+1)) \), \(n \in \mathbb{N} \). Equality is attained for the function \(L_{a,n} \), that is, \(\log \left(L_{a,n}(z)/z \right) = 2 \sum_{n=1}^{\infty} \gamma_n(L_{a,n}) z^n = (a/n(n+1)) z^n + \cdots, z \in \mathbb{U} \).

Dedicated to the memory of Professor Gabriela Kohr (1967-2020)

1. Introduction

Let \(\mathbb{U} = \{ z \in \mathbb{C} : |z| < 1 \} \) denote the open unit disk in the complex plane \(\mathbb{C} \). Let \(\mathcal{A} \) be the category of analytic functions \(f \) in \(\mathbb{U} \) for which \(f \) has the following representation:

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad z \in \mathbb{U}.
\]

These coefficients play an important role for different estimates in the theory of univalent functions, and note that we use \(\gamma_n \) instead of \(\gamma_n(f) \). Kaukumov [1] solved Brennan’s conjecture for conformal mappings with the help of studying the logarithmic coefficients. The significance of the logarithmic coefficients follows from Lebedev-Milin inequalities ([2], chapter 2; see also [3, 4]), where estimates of the logarithmic coefficients were applied to obtain bounds on the coefficients of \(f \). Milin [2] conjectured the inequality

\[
\sum_{n=1}^{\infty} \sum_{k=1}^{n} \left(k |\gamma_k| - \frac{1}{k} \right) \leq 0, \quad n = 1, 2, 3, \ldots,
\]

that implies Robertson’s conjecture [5] and hence Bieberbach’s conjecture [6], which was the well-known coefficient problem in the theory of univalent functions. De Branges

Recall that we can rewrite (2) in the power series form as follows:

\[
2 \sum_{n=1}^{\infty} \gamma_n z^n = a_2 z + a_3 z^2 + a_4 z^3 + \cdots \frac{1}{2} (a_2 z + a_3 z^2 + a_4 z^3 + \cdots)^2 \\
+ \frac{1}{3} (a_2 z + a_3 z^2 + a_4 z^3 + \cdots)^3 + \cdots, \quad z \in \mathbb{U},
\]

and equating the coefficients of \(z^n\) for \(n = 1, 2, 3\), it follows that

\[
\begin{aligned}
2 \gamma_1 &= a_2, \\
2 \gamma_2 &= a_3 - \frac{1}{2} a_2^2, \\
2 \gamma_3 &= a_4 - a_2 a_3 + \frac{1}{3} a_2^3.
\end{aligned}
\]

If the functions \(f\) and \(g\) are analytic in \(\mathbb{U}\), the function \(f\) is called to be \textit{subordinate} to the function \(g\), written \(f(z) < g(z)\), if there exists a function \(w\) analytic in \(\mathbb{U}\) with \(|w(z)| < 1, z \in \mathbb{U}\), and \(w(0) = 0\), such that \(f = g \circ w\). In particular, if \(g\) is univalent in \(\mathbb{U}\), then the following equivalence relationship holds true:

\[
f(z) \prec g(z) \iff f(0) = g(0), \\
f(\mathbb{U}) \subset g(\mathbb{U}).
\]

Using the principle of subordination, Ma and Minda [8] introduced the classes \(\Delta^*(\varphi)\) and \(\mathcal{C}(\varphi)\), where we make here the weaker assumptions that the function \(\varphi\) is analytic in the open unit disk \(\mathbb{U}\) and satisfies \(\varphi(0) = 1\), such that it has a series expansion of the form

\[
\varphi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \cdots, \quad z \in \mathbb{U}, \quad \text{with } B_1 \neq 0.
\]

They considered the abovementioned classes as follows:

\[
\Delta^*(\varphi) = \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} < \varphi(z) \right\},
\]

\[
\mathcal{C}(\varphi) = \left\{ f \in \mathcal{A} : 1 + \frac{zf''(z)}{f'(z)} < \varphi(z) \right\}.
\]

Some special subclasses of the class \(\Delta^*(\varphi)\) and \(\mathcal{C}(\varphi)\) play a significant role in the \textit{Geometric Function Theory} because of their geometric properties.

For example, taking \(\varphi(z) = (1 + Az)/(1 + Bz)\) where \(A \in \mathbb{C}, \quad -1 \leq B \leq 0\), and \(A \neq B\), we get the classes \(\Delta^*[A, B]\) and \(\mathcal{C}[A, B]\), respectively (see also [9, 10]). The mentioned classes with the restriction \(-1 \leq B < A \leq 1\) reduce to the popular \textit{Janowski starlike} and \textit{Janowski convex functions}, respectively. By replacing \(A = 1 - 2\alpha\) and \(B = -1\), where \(0 \leq \alpha < 1\), we obtain the classes \(\Delta^*(\alpha)\) and \(\mathcal{C}(\alpha)\) of the \textit{starlike functions of order} \(\alpha\) and \textit{convex functions of order} \(\alpha\), respectively. In particular, \(\Delta^* = \Delta^*(0)\) and \(\mathcal{C} = \mathcal{C}(0)\) are the classes of starlike functions and of convex functions in the open unit disk \(\mathbb{U}\), respectively. Further, by altering \(A = \alpha\) and \(B = 0\), where \(0 \leq \alpha < 1\), we get the classes \(\Delta^*(1 + \alpha z)\) and \(\mathcal{C}(1 + \alpha z)\), which are the extensions of the classes \(\Delta^*(1 + z)\) and \(\mathcal{C}(1 + z)\), respectively (see [11]), that is,

\[
\Delta^*(1 + \alpha z) = \left\{ f \in \mathcal{A} : \left| \frac{zf'(z)}{f(z)} - 1 \right| < \alpha \right\},
\]

\[
\mathcal{C}(1 + \alpha z) = \left\{ f \in \mathcal{A} : \left| \frac{zf''(z)}{f'(z)} \right| < \alpha \right\},
\]

where \(0 < \alpha \leq 1\).

Supposing that \(\Psi_{\alpha, n} \in \Delta^*(1 + \alpha z)\) is such that

\[
\frac{z\Psi_{\alpha, n}'}{\Psi_{\alpha, n}}(z) = 1 + \alpha z^n, \quad n \in \mathbb{N},
\]

each function \(\Psi_{\alpha, n}\) is of the form

\[
\Psi_{\alpha, n}(z) = z \exp \left(\int_0^z \frac{1 + \alpha t^{n-1} - 1}{t} \, dt \right) = z + \frac{\alpha}{n} z^{n+1} + \cdots, \quad z \in \mathbb{U},
\]

and is the extremal function for various problems in \(\Delta^*(1 + \alpha z)\). Also, suppose that \(L_{\alpha, n} \in \mathcal{C}(1 + \alpha z)\) is such that

\[
1 + \frac{zL_{\alpha, n}'}{L_{\alpha, n}} = 1 + \alpha z^n, \quad n \in \mathbb{N}.
\]

Then, each function \(L_{\alpha, n}\) is of the form

\[
L_{\alpha, n}(z) = \int_0^z \exp \left(\int_0^t \frac{1 + \alpha u^{n-1} - 1}{u} \, du \right) \, dx = z + \frac{\alpha}{n(n+1)} z^{n+1} + \cdots, \quad z \in \mathbb{U},
\]

and plays as extremal function for some extremal problems in the set \(\mathcal{C}(1 + \alpha z)\).

Lately, Kanas et al. [12] introduced the categories \(\mathfrak{J}_{hp}(s)\) and \(\mathcal{C}(s)\) by

\[
\mathfrak{J}_{hp}(s) = \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} < q_s(z) = \frac{1}{(1-z)^s}, 0 < s \leq 1 \right\},
\]

\[
\mathcal{C}(s) = \left\{ f \in \mathcal{A} : 1 + \frac{zf''(z)}{f'(z)} < q_s(z) = \frac{1}{(1-z)^s}, 0 < s \leq 1 \right\},
\]

and obtained some geometric properties in these categories. Further, the functions
\[\Phi_{r,n}(z) = z \exp \left(\int_0^r \frac{q_n(t^n) - 1}{t} \, dt \right) = z + \frac{s}{n} z^{n+1} + \cdots, \quad z \in U, \ n \in \mathbb{N}, \]

\[-\left(1 - e^{\theta^2} z^2 \right)^{-2} \quad \text{for each} \ \theta \in \mathbb{R} \]

play as extremal functions for some issues of the families \(\mathcal{S}_{\text{hyp}}(s) \) and \(\mathcal{S}_{\text{hyp}}^-(s) \), respectively.

Lately, several researchers have subsequently investigated some problems regarding the logarithmic coefficients and the coefficients problems [9, 13–23], to mention a few of them. For instance, the rotation of the Koebe function \(k(z) = (1-e^{\theta^2} z^2)^{-2} \) for each \(\theta \in \mathbb{R} \) has the logarithmic coefficients \(\gamma_n = e^{\theta n}/n, n \geq 1 \). If \(f \in \mathcal{S}' \), then applying the Bieberbach inequality for the first relation of (5), it follows that \(|\gamma_1| \leq 1 \), and using the Fekete-Szeg"o inequality for the second relation of (5) (see [24], Theorem 3.8) leads to

\[|\gamma_2| = \frac{1}{2} \left| a_3 - \frac{1}{2} a_2^2 \right| \leq \frac{1}{2} \left(1 + 2e^{-2} \right) = 0.635 \cdots. \] (16)

It was established in ([25], Theorem 4) that the logarithmic coefficients \(\gamma_n \) of \(f \in \mathcal{S}' \) satisfy the inequality

\[\sum_{n=1}^{\infty} |\gamma_n|^2 \leq \frac{\pi^2}{6}, \] (17)

and the equality is obtained for the Koebe function. For \(f \in \mathcal{S}' \), the inequality \(|\gamma_n| \leq 1/n \) holds but is not true for the full class \(\mathcal{S}' \), even in order of magnitude (see [24], Theorem 8.4).

In 2018, some first logarithmic coefficients \(\gamma_n \) were estimated for special subclasses of close-to-convex functions in [15, 20]. However, the problem of the best upper bounds for the logarithmic coefficients of univalent functions for \(n \geq 3 \) is presumably still a concern. In [13], the authors obtained the bounds of logarithmic coefficients \(\gamma_n, n \in \mathbb{N} \), for the general class \(\mathcal{S}'^{\phi}(\mathbb{R}) \), and the bounds of the logarithmic coefficients \(\gamma_n \) when \(n = 1, 2, 3 \) for the class \(\mathcal{S}(\mathbb{R}) \), while the estimated bounds would generalize many of the previous outcomes.

In the present study, which is motivated essentially by the recent works [13, 16], the bounds for the logarithmic coefficients \(\gamma_n, n \in \mathbb{N} \), of the class \(\mathcal{C}(1 + az) \) for \(a \in (0, 1] \) and \(\mathcal{C}_{\text{hyp}}(1/2) \) were estimated. Further, conjectures for the logarithmic coefficients \(\gamma_n \) for \(f \) belonging to these classes are stated.

2. **Main Results**

First, we will obtain the bounds for \(\gamma_n \) of the classes \(\mathcal{S}'^{\phi}(1 + az) \) and \(\mathcal{C}(1 + az) \) for \(a \in (0, 1] \). In this regard, the following outcomes will be employed in the key results.

Lemma 1 (see [13], Theorem 1). Let \(f \in \mathcal{S}'^{\phi}(\mathbb{R}) \). If \(\phi \) is convex univalent, then the logarithmic coefficients \(f \) satisfy the following inequalities:

\[|\gamma_n| \leq \frac{|B_1|}{2n}, \quad n \in \mathbb{N}, \] (18)

\[\sum_{n=1}^{\infty} |\gamma_n|^2 \leq \frac{1}{4} \sum_{n=1}^{\infty} \frac{|B_n|^2}{n^2}. \] (19)

The inequalities in (18) and (19) are sharp, such that for any \(n \in \mathbb{N} \), there exist the function \(f_n \) given by \(z f_n(z)/f_n(z) = \phi(z^n) \) and the function \(f \) given by \(z f(z)/f(z) = \phi(z) \), respectively, for those equalities we obtain.

Lemma 2 (see [13], Theorem 2). Let \(f \in \mathcal{C}_{\text{hyp}}(\mathbb{R}) \). Then, the logarithmic coefficients of \(f \) satisfy the inequalities

\[|\gamma_1| \leq \frac{|B_1|}{4}, \] (20)

\[\begin{cases} |\gamma_2| \leq \frac{|B_1|}{12}, & \text{if} \quad |4B_2 + B_1^2| \leq 4|B_1|, \\ |\gamma_2| \leq \frac{|4B_2 + B_1^2|}{48}, & \text{if} \quad |4B_2 + B_1^2| > 4|B_1|, \end{cases} \] (21)

and if \(B_1, B_2, \) and \(B_3 \) are real values, then

\[|\gamma_3| \leq \frac{|B_1|}{24} H(q_1, q_2). \] (22)

where \(H(q_1, q_2) \) is given in ([26], Lemma 2) (or [9], Lemma 5), \(q_1 = (B_1 + (4B_2/B_1))/2, \) and \(q_2 = (B_2 + (2B_3/B_1))/2 \). The bounds (20) and (21) are sharp.

Lemma 3 (see [18], Theorem 30). If \(f \in \mathcal{C}_{\text{hyp}}(1/2) \), then

\[|\gamma_1| \leq \frac{1}{8}, \quad |\gamma_2| \leq \frac{1}{24}, \quad |\gamma_3| \leq \frac{1}{48}. \] (23)

The first two bounds are sharp for \(f = K_{1/2,1} \) and \(f = K_{1/2,2} \), respectively.

If we consider Lemma 1 with the function \(\phi(z) = 1 + az \), then we immediately get the next result:

Theorem 4. If \(f \in \mathcal{S}'^{\phi}(1 + az) \), then

\[|\gamma_n| \leq \frac{a}{2n}, \quad n \in \mathbb{N}, \] (24)

\[\sum_{n=1}^{\infty} |\gamma_n|^2 \leq \frac{a}{4}. \]

These inequalities are sharp for \(f = \Psi_{a,n} \) and \(f = \Psi_{a,1} \), respectively.
Corollary 5. Let \(f \in \mathcal{C}(1 + az) \). Then, the logarithmic coefficients of \(f \) satisfy the inequalities
\[
|y_1| \leq \frac{\alpha}{4}, \\
|y_2| \leq \frac{\alpha}{12}, \\
|y_3| \leq \frac{\alpha}{24}.
\]
(Eq. 25)

Equalities in these inequalities are attained for the functions \(L_{a,n} \) for \(n = 1, 2, 3 \), respectively.

Proof. For \(\varphi(z) = 1 + az \), where \(B_1 = a, B_2 = B_3 = 0 \), in Theorem 6, we obtain the required result. Also, since
\[
\log \frac{L_{a,1}(z)}{z} = 2 \sum_{n=1}^{\infty} y_n(L_{a,1}) z^n = \frac{\alpha}{2} z + \cdots, \quad z \in \mathbb{U},
\]
\[
\log \frac{L_{a,2}(z)}{z} = 2 \sum_{n=1}^{\infty} y_n(L_{a,2}) z^n = \frac{\alpha}{6} z^2 + \cdots, \quad z \in \mathbb{U},
\]
\[
\log \frac{L_{a,3}(z)}{z} = 2 \sum_{n=1}^{\infty} y_n(L_{a,3}) z^n = \frac{\alpha}{12} z^3 + \cdots, \quad z \in \mathbb{U},
\]

it follows that these inequalities are attained for the functions \(L_{a,n} \) for \(n = 1, 2, 3 \), respectively. \(\square \)

Theorem 6. Let \(f \in \mathcal{C}(1 + az) \). Then, the logarithmic coefficients of \(f \) satisfy the inequalities
\[
|y_n| \leq \frac{\alpha}{4n}, \quad n \in \mathbb{N}.
\]
(Eq. 27)

This inequality is sharp for \(|y_1| \) for the function \(L_{a,1} \).

Proof. If \(f \in \mathcal{C}(1 + az) \), this is equivalent to \(f \in \mathcal{A} \) and
\[
1 + \frac{zf^{(n)}(z)}{f(z)} < 1 + az = \varphi_a(z).
\]
(Eq. 28)

If we define \(p(z) = zf^{(n)}(z)/f(z) \), then \(p(0) = 1 \), and the above subordination relation can be written as
\[
p(z) + \frac{zp^{(n)}(z)}{p(z)} < \varphi_a(z).
\]
(Eq. 29)

Supposing that the function \(\psi_a \) satisfies the differential equation
\[
\psi_a(z) + \frac{z\psi_a(z)'}{\psi_a(z)} = \varphi_a(z), \quad \psi_a(0) = 1,
\]
(Eq. 30)

we will prove that \(\psi_a \) is a convex univalent function in \(\mathbb{U} \).

The function \(\varphi_a \) has positive real part in \(\mathbb{U} \) whenever \(\alpha \in (0, 1] \). Therefore, using ([27], Theorem 1) for \(\beta = 1, \gamma = 0, \) and \(c = 1 \), it follows that the solution \(\psi_a \) of the differential equation (30) is analytic in \(\mathbb{U} \), with \(\Re \psi_a(z) > 0 \) for all \(z \in \mathbb{U} \), and
\[
\psi_a(z) = H(z) \left(\int_0^z \frac{H(t)}{t} \; dt \right)^{-1} = \frac{az \exp(az)}{\exp(az) - 1}
\]
(Eq. 31)

where
\[
H(z) = z \exp \left(\int_0^z \frac{\varphi_a(t) - 1}{t} \; dt \right) = z \exp(az),
\]
(Eq. 32)

and all powers are considered at the principal branch, that is, \(\log 1 = 0 \).

Since \(\varphi_a \) is convex and \(\psi_a \) is analytic with \(\Re \psi_a(z) > 0 \) for all \(z \in \mathbb{U} \), using [28] (Theorem 3.2i) for \(n = 1 \), we deduce that \(\psi_a \) is univalent in \(\mathbb{U} \). Moreover, from Figure 1 made with MAPLE software, we get
\[
\Psi(z) = \Re \left(1 + \frac{z\psi_a(z)}{\psi_a(z)} \right) > 0, \quad z \in \mathbb{U},
\]
(Eq. 33)

and \(\psi_a(0) = a/2 \neq 0 \), so \(\psi_a \) is a convex function. Hence, it follows that \(\psi_a \) is a convex univalent function in \(\mathbb{U} \).

Therefore, according to [28] (Theorem 3.2i), the differential subordination (29) implies
\[
p(z) < \psi_a(z),
\]
(Eq. 34)

for all \(0 < \alpha \leq 1 \), and \(\psi_a \) is the best dominant. Thus,
\[
\frac{zf^{(n)}(z)}{f(z)} < \psi_a(z),
\]
(Eq. 35)

for all \(0 < \alpha \leq 1 \). Hence,
\[
\mathcal{C}(1 + az) \subset \mathcal{D}^*(\psi_a).
\]
(Eq. 36)

From the above relation, we get
\[
\sup \{ |y_n(f)| : f \in \mathcal{C}(1 + az) \} \leq \sup \{ |y_n(f)| : f \in \mathcal{D}^*(\psi_a) \}.
\]
(Eq. 37)

Hence, from Lemma 1, we obtain
\[
\sup \{ |y_n(f)| : f \in \mathcal{C}(1 + az) \} \leq \frac{\alpha}{4n},
\]
(Eq. 38)

Therefore, for \(f \in \mathcal{C}(1 + az) \) and for all \(n \in \mathbb{N} \), we conclude that
\[
|y_n(f)| \leq \frac{\alpha}{4n},
\]
(Eq. 39)

\(\square \)
Remark 7. If we compare the results of Corollary 5 with those of Theorem 6, then we conclude that the results of Theorem 6 are not the best possible. We conjecture that if the function \(f \in \mathcal{C}(1 + \alpha z) \), then the logarithmic coefficients of \(f \) satisfy the inequalities

\[
|y_n| \leq \frac{\alpha}{2n(n + 1)}, \quad n \in \mathbb{N}.
\] (40)

Equality is attained for the function \(L_{\alpha,n} \), that is,

\[
\log \frac{L_{\alpha,n}(z)}{z} = 2 \sum_{n=1}^{\infty} y_n(L_{\alpha,n}) z^n = \frac{\alpha}{n(n + 1)} z^n + \cdots, \quad z \in \mathbb{U}.
\] (41)

Theorem 8. Let \(f \in \mathcal{C}^{\mu}(1/2) \). Then, the logarithmic coefficients of \(f \) satisfy the inequalities

\[
|y_n| \leq \frac{1}{8n}, \quad n \in \mathbb{N}.
\] (42)

This inequality is sharp for \(|y_n| \) for the function \(K_{1/2,1} \).

Proof. Letting \(f \in \mathcal{C}^{\mu}(1/2) \), it follows that

\[
1 + \frac{zf''(z)}{f'(z)} < \frac{1}{\sqrt{1 - z}} = q_1(z).
\] (43)

Suppose that \(p \) satisfies the differential equation

\[
p(z) + \frac{zp'(z)}{p(z)} = \frac{1}{\sqrt{1 - z}}.
\] (44)

If we define \(p(z) = zq_1(z)/f(z) \), then the subordination (43) can be rewritten as

\[
p(z) + \frac{zp'(z)}{p(z)} < q_1(z).
\] (45)

According to the inequality (20) of [12] (Theorem 2.3), the function \(q_{1/3} \) is analytic with positive real part in \(\mathbb{U} \). Therefore, using [27] (Theorem 1) for \(\beta = 1, \gamma = 0, \) and \(c = 1 \), it follows that the solution \(p \) of the differential equation (44) is analytic in \(\mathbb{U} \) with \(\text{Re} \ p(z) > 0, z \in \mathbb{U} \), and

\[
p(z) = H(z) \left(\int_0^z \frac{H(t)}{t} \, dt \right)^{-1} = \frac{4z}{\left(1 + \sqrt{1 - z} \right)^2} - \frac{1}{8} \frac{1}{\left(1 + \sqrt{1 - z} \right)} - 8 \ln \left(1 + \sqrt{1 - z} \right) + 4 + 8 \ln 2
\]

\[
= 1 + \frac{1}{4} z + \cdots, \quad z \in \mathbb{U},
\] (46)
and we obtain the result. This completes the proof. \(\square\)

Remark 9. If we compare the results of Lemma 1 with those of Theorem 8, then we conclude that the results of Theorem 8 are not the best possible. We conjecture that if the function \(f \in \mathcal{C} \mathcal{Y} \mathcal{Y} \mathcal{Y}_{hpl}(1/2)\), then the logarithmic coefficients of \(f\) satisfy the inequalities

\[
|\gamma_n| \leq \frac{1}{4n(n+1)}, \quad n \in \mathbb{N}.
\]

Equality is attained for the function \(K_{1/2,n}\), that is,

\[
\log \frac{K_{1/2,n}(z)}{z} = 2 \sum_{n=1}^{\infty} \gamma_n(K_{1/2,n})z^n = \frac{1}{2n(n+1)}z^n + \cdots, \quad z \in \mathbb{U}.
\]

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The fourth author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2019R1I1A3A01050861).

References

