
Research Article
A Novel Value for the Parameter in the Dai-Liao-Type Conjugate
Gradient Method

Branislav Ivanov ,1 Predrag S. Stanimirović ,2 Bilall I. Shaini,3 Hijaz Ahmad ,4

and Miao-Kun Wang 5

1Technical Faculty in Bor, University of Belgrade, Vojske Jugoslavije 12, 19210 Bor, Serbia
2Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
3University of Tetovo, St. Ilinden, n.n., Tetovo, North Macedonia
4Department of Basic Sciences, University of Engineering and Technology Peshawar, Pakistan
5Department of Mathematics, Huzhou University, Huzhou 313000, China

Correspondence should be addressed to Miao-Kun Wang; wmk000@126.com

Received 29 October 2020; Revised 28 November 2020; Accepted 15 January 2021; Published 30 January 2021

Academic Editor: Ioan Rasa

Copyright © 2021 Branislav Ivanov et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

A new rule for calculating the parameter t involved in each iteration of the MHSDL (Dai-Liao) conjugate gradient (CG) method is
presented. The new value of the parameter initiates a more efficient and robust variant of the Dai-Liao algorithm. Under proper
conditions, theoretical analysis reveals that the proposed method in conjunction with backtracking line search is of global
convergence. Numerical experiments are also presented, which confirm the influence of the new value of the parameter t on the
behavior of the underlying CG optimization method. Numerical comparisons and the analysis of obtained results considering
Dolan and Moré’s performance profile show better performances of the novel method with respect to all three analyzed
characteristics: number of iterative steps, number of function evaluations, and CPU time.

1. Introduction and Background Results

The topic of our research is solving the unconstrained non-
linear optimization problem

min f xð Þ, x ∈ℝn, ð1Þ

where the function f : ℝn ⟶ℝ is continuously differentia-
ble and bounded below. Following the standard notation,
gk = ∇f ðxkÞ denotes the gradient, sk−1 = xk − xk−1 and yk−1
= gk − gk−1. Using an extended conjugacy condition

dTk yk−1 = −tgT
k sk−1,  t > 0, ð2Þ

Dai and Liao in [1] proposed the conjugate gradient (CG)
method

xk+1 = xk + αkdk, ð3Þ

where the step size αk is a positive parameter, xk is an already
generated point, xk+1 is a new iterative point, and dk is a suit-
able search direction. The search directions dk are generated
by the conceptual formula

dk =
−g0, k = 0,

−gk + βDL
k dk−1, k ≥ 1,

(
ð4Þ

where the conjugate gradient coefficient βDL
k is defined by

βDL
k = Y tð Þ≔ gTk yk−1

dTk−1yk−1
− t

gTk sk−1
dTk−1yk−1

, t > 0, ð5Þ

wherein t > 0 is a scalar.
Some well-known formulas for defining βk have been

created by modifying the conjugate gradient parameter
βDL
k [2–9]. One of them is denoted as βMHSDL

k and defined

Hindawi
Journal of Function Spaces
Volume 2021, Article ID 6693401, 10 pages
https://doi.org/10.1155/2021/6693401

https://orcid.org/0000-0001-9179-0965
https://orcid.org/0000-0003-0655-3741
https://orcid.org/0000-0002-5438-5407
https://orcid.org/0000-0002-0895-7128
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6693401


in [7] by

βMHSDL
k = Y1 tð Þ≔ gTk dyk−1

dTk−1yk−1
− t

gTk sk−1
dTk−1yk−1

, ð6Þ

where t > 0 is a scalar as in (5) and dyk−1 = gk − ð∥gk∥/∥
gk−1∥Þgk−1.

The family of CG methods for nonlinear optimization
has reached great popularity lately, thanks to the various
benefits and advantages it possesses. The most important
property is based on computationally efficient iterations
arising from a simple CG rule. This property initiates the
high efficiency of CG methods with respect to analogous
methods for nonlinear optimization. Moreover, global con-
vergence is ensured under suitable conditions. Finally, the
application of various CG methods in solving image resto-
ration problems has become an important research topic
[10, 11].

Since the parameter t is important for the numerical
behavior of Dai-Liao (DL) CG methods [12], one of the most
important problems in the implementation of the DL class
CG method is to determine a proper value t > 0 which will
give desirable results. Many scientists have invested a lot of
time and effort in the previous period to determine the best
definition of the nonnegative parameter t in the DL class
CG methods. So far, the research in finding the appropriate
value of t has evolved in two directions. One group of
methods is aimed at finding an appropriate fixed value for t
[1, 2, 6–8], while methods from another group promote
appropriate rules for computing values of t in each iteration,
which ensure a satisfactory decrease of the objective. In our
research, we will pay attention to the second research stream:
find the parameter t whose values change through iterations
so that the faster convergence is achieved. The value of the
parameter t defined in the kth iteration will be denoted by t
ðkÞ≔ tk.

In order to complete the presentation, we will restate the
main principles proposed so far for computing tk. Hager and
Zhang in [13, 14] proposed the DL CGmethod (5), known as
CG-DESCENT, where tðkÞ ≡ tk1 is defined by

t kð Þ ≡ tk1 ≔ 2 ∥yk−1∥
2

yTk−1sk−1
: ð7Þ

Dai and Kou [15] suggested the conjugate gradient coef-

ficient βDK
k of the form

βDK
k = Y τk +

yk−1k k2
yTk−1sk−1

−
yTk−1sk−1
sk−1k k2

� �
=

gT
k yk−1

yTk−1dk−1
− τk +

∥yk−1∥
2

yTk−1sk−1
−
yTk−1sk−1
∥sk−1∥

2

� �
gT
k sk−1

dTk−1yk−1
,

ð8Þ

where τk is the scaling parameter arising from the self-scaling
memoryless BFGS method. Clearly, the Dai and Kou (DK)
method is a member of the DL class CG methods, which is
determined by

t kð Þ ≡ tk2 ≔ τk +
∥yk−1∥

2

yTk−1sk−1
−
yTk−1sk−1
∥sk−1∥

2 : ð9Þ

The results given in [15] confirm that the DK iterations
outperform many existing CG methods. Following the devel-
opment of DL methods, Babaie-Kafaki and Ghanbari [16]
defined two new ways to calculate the value of the parameter
t in (5), as in the following two formulas:

t kð Þ ≡ tk3 ≔
sTk−1yk−1
sk−1k k2 +

yk−1k k
sk−1k k ,

t kð Þ ≡ tk4 ≔
yk−1k k
sk−1k k :

ð10Þ

Andrei in [17] proposed the new rule for calculating t in
order to define YðtÞ in (5) and defined a new variant of the
DL class CG methods, denoted by DLE, with

t kð Þ ≡ tk5 ≔
sTk−1yk−1
sk−1k k2 : ð11Þ

Lotfi and Hosseini in [18] proposed the following rule for
determining the parameter tðkÞ, using the expression

t kð Þ ≡ tk6 ≔max t∗k6, υ
yk−1k k2

sTk−1yk−1

� �
, ð12Þ

The backtracking line search.
Require: Nonlinear objective function f ðxÞ, search direction dk, previous point xk, and real quantities 0 < ω < 0:5 and φ ∈ ð0, 1Þ.
1: α = 1.
2: While f ðxk + αdkÞ > f ðxkÞ + ωαgTk dk, do α≔ αφ.
3: Return αk = α.

Algorithm 1:

2 Journal of Function Spaces



where

t∗k6 ≔
1 − hk gk−1rk kð ÞsTk−1gk + gTk yk−1/yTk−1sk−1

� �
hk gk−1k kr sk−1k k2

gTk sk−1 + gTk sk−1/sTk−1yk−1
� �

hk gk−1k kr sk−1k k2 ,

hk = C +max −
sTk−1yk−1
sk−1k k2 , 0

� �
gk−1k k−r ,

ð13Þ

and υ > 1/4, C, and r are three positive constants.
On the basis of the above overview of the main CG

methods and motivated by the strong theoretical properties
and computational efficiency of modified Dai-Liao CG
methods proposed by many researchers, we suggest a new
way of calculating the value of the parameter tðkÞ. As a con-
sequence, the corresponding CG method of DL type, termed
as the Effective Dai-Liao (EDL) method, is proposed and its
convergence is proven. Numerical testing and comparison
with other known DL variants are presented in order to show
the effectiveness of the introduced method. Analysis of gen-
erated numerical results exhibits that the proposed EDL
method is efficient compared with other DL-type methods.

The global organization of sections is described as fol-
lows. Introduction, motivation, and a brief overview of the
preliminary results are given in Section 1. A new rule for cal-
culating the variable parameter tðkÞ is proposed in Section 2.
An effective algorithm and global convergence of the EDL
method initiated by tðkÞ are given in the same section. The
new EDL method is tested in Section 3 on some unlimited
optimization test problems and compared against some
known variants of the DL class methods. Finally, concluding
remarks are presented in the last concluding section.

2. A Modified Dai-Liao Method and
Its Convergence

Popularity in defining new rules for calculating tðkÞ is a guaran-
tee that such an approach is effective and still insufficiently
explored. The idea for defining a new parameter t∗k comes from
previously described rules for computing tðkÞ, particularly from

the paper Li and Ruan [19] and from the idea which can be
found in the paper Yuan et al. [11]. Further, analyzing the
results from [1, 2, 6–8], we conclude that the scalar t was
defined by a fixed value of 0:1 in related numerical experiments.
Also, numerical experience related to the fixed valued t = 1 was
reported in [1]. According to this experience, our intention is to
define variable values tðkÞ inside the interval ð0, 1Þ.

To successfully define tðkÞ with values belonging to the
interval ð0, 1Þ, let us start from the definition of the quantity
Lk which was used in defining the direction dk in [19]. The
parameter Lk was defined by Lk = sTk−1sk−1/sTk−1y∗k−1 ∈ ð0, 1Þ, k
≥ 0, where

y∗k−1 = yk−1 + max 0,−
sTk−1yk−1
∥sk−1∥

2

� �
+ 1

� �
sk−1: ð14Þ

By putting y∗k−1 into Lk, the following can be obtained:

Lk =
sTk−1sk−1

sTk−1 yk−1 + max 0,− sTk−1yk−1/ sk−1k k2� �� 	
+ 1

� �
sk−1

� �
=

sk−1k k2
sTk−1yk−1 + max 0,− sTk−1yk−1/∥sk−1∥

2� �� 	
+ 1

� �
sk−1k k2 :

ð15Þ

Further, with certain modifications and substitutions in
the equation defining Lk, as well as using the function max,
which chooses the maximum between the value of the
expression dTk−1gk and 1, we come to a new definition of the
parameter tðkÞ. As described in advance imposed desired
restrictions, the novel parameter t∗k is defined by

t∗k =
gkk k2

max 1, dTk−1gk

n o
+ max 0, dTk−1gk/∥gk∥

2

 �n o

+ 1

 �

gkk k2
:

ð16Þ

Effective Dai-Liao (EDL) CG method.
Require: An initial point x0 and quantities 0 < ε < 1, 0 < δ < 1.
1: Assign k = 0 and d0 = −g0.
2: If

kgkk ≤ ε and ðð∣f ðxk+1Þ − f ðxkÞ ∣ Þ/ð1 + j f ðxkÞjÞÞ ≤ δ,
STOP;
else go to Step 3.

3: Calculate αk ∈ ð0, 1Þ using Algorithm 1 (backtracking line search).
4: Compute xk+1 = xk + αkdk.
5: Calculate gk+1, yk = gk+1 − gk, sk = xk+1 − xk.
6: Compute t∗k by (16).
7: Calculate βEDL

k+1 by (18).
8: Compute dk+1 = −gk+1 + βEDL

k+1 dk.
9: Let k≔ k + 1, and go to Step 2.

Algorithm 2:

3Journal of Function Spaces



It is easy to verify that t∗k defined by (16) satisfies

0 < t∗k ≤
gkk k2

1 + 0 + 1ð Þ gkk k2 =
gkk k2

1 + gkk k2 < 1: ð17Þ

Accordingly, t∗k ∈ ð0, 1Þ, which was our initial intention.
Clearly, greater values of ∥gk∥ lead to values t∗k↗1. Further,
since the trend ∥gk∥⟶0 is expectable, we can expect smaller
values t∗k↘0 in late iterations. Therefore, t∗k is suitable for
defining corresponding conjugate gradient coefficient YðtÞ
or Y1ðtÞ and further DL CG iterations (4).

Considering t = t∗k in (6), it is reasonable to propose a
novel variant of the Dai-Liao CG parameter βEDL

k which is
subject to the following rule during the iterative process:

βEDL
k = Y1 t∗kð Þ≔ gkk k2 − gkk k/ gk−1k kð Þ gTk gk−1

�� ��
dTk−1yk−1

− t∗k
gTk sk−1
dTk−1yk−1

:

ð18Þ

Before the main algorithm, it is necessary to define the

backtracking line search as one of the most popular and prac-
tical methods for computing the step length αk in (3). The
procedure for the backtracking line search proposed in [20]
starts from the initial value α = 1 and generates output values
which ensure that the goal function decreases in each itera-
tion. Consequently, it is appropriate to use Algorithm 1,
restated from [21], in order to determine the primary step
size αk.

Algorithm 2 describes a computational framework for
the EDL method.

It is necessary to examine the properties of the EDL
method and prove its convergence.

Assumption 1.

(1) The level set M = fx ∈ℝn ∣ f ðxÞ ≤ f ðx0Þg, defined
upon the initial point x0 of the iterative method (3),
is bounded.

(2) The goal function f is continuous and differentiable
in a neighborhood P of M with the Lipschitz

Table 1: Summary results of EDL, MHSDL3, MHSDL4, MHSDL5, and MHSDL6 methods with respect to NI.

Test function MHSDL3 MHSDL4 MHSDL5 EDL MHSDL6

Extended penalty 1466 2243 2231 1259 1371

Perturbed quadratic 1203710 754291 746557 305622 423037

Raydan 1 159055 110587 106586 55477 75154

Raydan 2 1636 441 441 70 209

Diagonal 1 116788 78844 73512 30978 20332

Diagonal 2 176983 270434 271595 515000 271295

Diagonal 3 150328 98647 104417 47155 37711

Hager 8666 5219 5157 3234 3625

Generalized tridiagonal 1 1862 1471 1485 639 877

Extended TET 1357 5954 5915 4030 2664

Diagonal 4 30693 19589 19332 8040 12012

Diagonal 5 1721 25120 25120 60 216

Extended Himmelblau 1777 8023 7946 1376 3682

Perturbed quadratic diagonal 2940970 2115659 2027128 1136414 1352704

Quadratic QF1 1270802 799192 786032 309509 325415

Extended quadratic penalty QP1 770 594 575 560 543

Extended quadratic penalty QP2 399671 240530 245254 96620 137799

Extended quadratic exponential EP1 462 606 606 513 526

Extended tridiagonal 2 3119 2176 2177 1132 1455

ARWHEAD (CUTE) 88824 69868 67413 40713 48669

ENGVAL1 (CUTE) 2323 1407 1415 552 820

INDEF (CUTE) 20 31 1080 23 36240

QUARTC (CUTE) 173913 262291 262291 524299 262181

Diagonal 6 1824 508 508 70 227

Generalized quartic 1208 1403 2846 1265 1154

Diagonal 7 3217 655 655 653 580

Diagonal 8 511 698 698 686 596

Full Hessian FH3 1456 5353 5350 2523 3176

4 Journal of Function Spaces



continuous gradient g. This assumption implies the
existence of a positive constant L > 0 satisfying

g uð Þ − g vð Þk k ≤ L u − vk k, ∀u, v ∈P : ð19Þ

Assumption 1 initiates the existence of positive constants
D and γ satisfying

u − vk k ≤D, ∀u, v ∈P ,

g uð Þk k ≤ γ, ∀u ∈P :
ð20Þ

The conditions from Assumption 1 are assumed. In view
of the uniform convexity of f , there is a constant θ > 0 that
satisfies

g uð Þ − g vð Þð ÞT u − vð Þ ≥ θ u − vk k2, for all u, v ∈M, ð21Þ

or equivalently,

f uð Þ ≥ f vð Þ + g vð ÞT u − vð Þ + θ

2
u − vk k2,  for all u, v ∈M:

ð22Þ

It follows from (21) and (22) that

sTk−1yk−1 ≥ θ sk−1k k2, ð23Þ

f xk−1ð Þ − f xkð Þ ≥ −g xkð ÞTsk−1 +
θ

2
sk−1k k2: ð24Þ

By (19) and (23), one concludes

θ sk−1k k2 ≤ sTk−1yk−1 ≤ L sk−1k k2, ð25Þ

where the inequality implies θ ≤ L.
The inequality (25) initiates

sTk−1yk−1 = αk−1d
T
k−1yk−1 > 0: ð26Þ

Table 2: Summary results of EDL, MHSDL3, MHSDL4, MHSDL5, and MHSDL6 methods with respect to NFE.

Test function MHSDL3 MHSDL4 MHSDL5 EDL MHSDL6

Extended penalty 54876 73764 73429 46820 49791

Perturbed quadratic 56691737 34287604 33885701 13168688 18486375

Raydan 1 5066739 3364983 3236335 1551846 2170553

Raydan 2 6554 1162 1162 159 428

Diagonal 1 5004640 3256274 3022015 1200086 744278

Diagonal 2 353976 540878 543200 1030010 542600

Diagonal 3 6339146 3998904 4229565 1798032 1400076

Hager 192474 107413 106534 59187 69735

Generalized tridiagonal 1 37429 27860 28138 10760 15177

Extended TET 19546 77422 76925 40340 29334

Diagonal 4 713120 425023 418666 155027 242443

Diagonal 5 6874 50460 50460 140 442

Extended Himmelblau 45972 192362 190524 26104 80854

Perturbed quadratic diagonal 135901222 94177165 90238441 48147512 57702654

Quadratic QF1 55972697 33836473 33243711 12316721 12853424

Extended quadratic penalty QP1 17016 12882 12565 11116 10544

Extended quadratic penalty QP2 13015888 7454686 7584960 2743358 4030601

Extended quadratic exponential EP1 14914 18463 18463 14132 15133

Extended tridiagonal 2 36450 22564 22379 9687 12920

ARWHEAD (CUTE) 4296028 3305257 3182138 1846606 2230650

ENGVAL1 (CUTE) 40462 22432 22898 8209 12858

INDEF (CUTE) 1808 2182 5995 2060 104962

QUARTC (CUTE) 347926 524662 524662 1048648 524422

Diagonal 6 7394 1416 1408 159 468

Generalized quartic 14364 21842 48770 16695 14103

Diagonal 7 6454 6838 6838 3891 4521

Diagonal 8 6098 6938 6938 4161 5494

Full Hessian FH3 60792 212799 212701 89890 114962

5Journal of Function Spaces



Taking into account αk−1 > 0 and the last inequality, we
conclude

dTk−1yk−1 > 0: ð27Þ

Lemma 2. [22, 23]. Let Assumption 1 be accomplished and the
points fxkg be generated by the method (3)–(4). Then, it holds

〠
∞

k=0

∥gk∥
4

∥dk∥
2 < +∞: ð28Þ

Lemma 3. Consider the proposed Dai-Liao CG method,
including (3), (4), and (18). If the search procedure guarantees
(27), for all k ≥ 0, then the next inequality holds

gT
k dk ≤ −c gkk k2, ð29Þ

for some 0 ≤ c ≤ 1.

Proof. The inequality (29) will be verified by induction. In the
initial situation k = 0, one obtains gT

0d0 = −kg0k2. Since c ≤ 1,

Table 3: Summary results of EDL, MHSDL3, MHSDL4, MHSDL5, and MHSDL6 methods with respect to CPU time (sec).

Test function MHSDL3 MHSDL4 MHSDL5 EDL MHSDL6

Extended penalty 29.75 34.11 31.42 18.30 24.27

Perturbed quadratic 40532.66 24358.20 24947.84 8335.80 13225.80

Raydan 1 3054.67 1904.48 1692.06 690.91 1184.86

Raydan 2 6.77 1.58 1.66 0.31 0.77

Diagonal 1 7834.03 5106.41 4592.28 1476.89 486.09

Diagonal 2 885.13 1428.05 1447.02 2352.11 1513.50

Diagonal 3 13614.27 8416.77 9064.30 3132.02 1916.30

Hager 586.63 325.75 333.41 142.06 198.13

Generalized tridiagonal 1 66.14 35.59 34.42 15.19 21.63

Extended TET 20.50 78.34 82.94 41.23 31.45

Diagonal 4 134.53 77.86 87.88 30.41 55.34

Diagonal 5 18.06 134.73 121.09 0.56 1.84

Extended Himmelblau 11.13 44.47 44.36 6.19 18.30

Perturbed quadratic diagonal 91655.55 58226.16 60920.06 32179.38 36383.83

Quadratic QF1 62610.50 31552.48 28679.91 8832.11 8465.34

Extended quadratic penalty QP1 7.56 7.25 6.98 4.98 4.94

Extended quadratic penalty QP2 3814.16 2128.86 2288.55 671.52 1204.72

Extended quadratic exponential EP1 9.11 10.23 8.55 8.00 8.02

Extended tridiagonal 2 11.13 8.83 6.95 4.08 5.25

ARWHEAD (CUTE) 2709.42 2336.92 2369.28 1266.80 1689.80

ENGVAL1 (CUTE) 19.47 11.33 11.81 4.03 6.70

INDEF (CUTE) 2.44 2.89 10.70 1.92 774.34

QUARTC (CUTE) 3106.56 4818.58 4808.70 7138.72 4735.39

Diagonal 6 6.75 1.92 2.03 0.38 1.34

Generalized quartic 7.16 11.53 21.05 7.53 9.78

Diagonal 7 5.98 8.20 8.28 4.56 6.25

Diagonal 8 6.17 8.20 8.08 4.72 7.69

Full Hessian FH3 30.08 66.45 79.48 35.77 43.42

0 2 4 6
𝜏

8 10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pp
:r 

(p
,s)

 ≤
 𝜏

MHSDL3
MHSDL4
MHSDL5

EDL
MHSDL6

Figure 1: NI performance profile for EDL, MHSDL3, MHSDL4,
MHSDL5, and MHSDL6 methods.

6 Journal of Function Spaces



obviously (29) is satisfied in the basic case. Suppose that (29)
is valid for some k ≥ 1. Taking the inner product of both the
left- and right-hand sides in (4) with the vector gTk , the fol-
lowing can be obtained:

gTk dk = − gkk k2 + βEDL
k gT

k dk−1

= − gkk k2 + gkk k2 − gkk k/ gk−1k kð Þ gTk gk−1
�� ��

dTk−1yk−1
− t∗k

gTk sk−1
dTk−1yk−1

 !
gTk dk−1

= − gkk k2 + gkk k2 − gkk k/ gk−1k kð Þ gT
k gk−1

�� ��
dTk−1yk−1

gT
k dk−1 − t∗k

gT
k sk−1

dTk−1yk−1
gT
k dk−1

= − gkk k2 + gkk k2 − gkk k/ gk−1k kð Þ gT
k gk−1

�� ��
dTk−1yk−1

gT
k dk−1 − t∗k

αk−1 gT
k dk−1

� �2
dTk−1yk−1

:

ð30Þ

Using (17) in common with (27) and αk−1 > 0, we con-
clude

t∗k
αk−1 gTk dk−1

� �2
dTk−1yk−1

> 0: ð31Þ

Now from (30), (31), and

0 ≤ βMHS
k =

gkk k2 − gkk k/ gk−1k kð Þ gTk gk−1
�� ��

dTk−1yk−1
≤

∥gk∥
2

λ ∣ gTk dk−1 ∣
, λ ≥ 1,

ð32Þ

it follows that

gTk dk ≤ − gkk k2 + gkk k2 − gkk k/ gk−1k kð Þ gT
k gk−1

�� ��
dTk−1yk−1

gT
k dk−1

≤ − gkk k2 + gkk k2
λ gTk dk−1
�� �� gTk dk−1�� �� = − 1 −

1
λ

� �
gkk k2:

ð33Þ

In view of λ ≥ 1, the inequality (29) is satisfied for c = ð1
− ð1/λÞÞ in (33) and arbitrary k ≥ 0.

The global convergence of the proposed EDL method is
confirmed by Theorem 4.

Theorem 4. Let Assumption 1 be true and f be uniformly con-
vex. Then, the sequence fxkg generated by (3), (4), and (18)
fulfills

lim inf
k→∞

gkk k = 0: ð34Þ

Proof. Suppose the opposite, i.e., (34) is not true. This implies
the existence of a constant c1 > 0 such that

gkk k ≥ c1, for all k: ð35Þ

Squaring both sides of (4) implies

dkk k2 = gkk k2 − 2βEDL
k gT

k dk−1 + βEDL
k


 �2
dk−1k k2: ð36Þ

Taking into account (18), we can get

−2βEDL
k gTk dk−1 = −2

gkk k2 − gkk k/ gk−1k kð Þ gTk gk−1
�� ��

dTk−1yk−1
− t∗k

gTk sk−1
dTk−1yk−1

 !
gTk dk−1

= −2
gkk k2 − gkk k/ gk−1k kð Þ gTk gk−1

�� ��
dTk−1yk−1

gT
k dk−1 − t∗k

αk−1 gTk dk−1
� �2
dTk−1yk−1

 !
:

ð37Þ

0 1 2 3 4 5 6 7 8 9
𝜏

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Pp

:r 
(p

,s)
 ≤

 𝜏

MHSDL3
MHSDL4
MHSDL5

EDL
MHSDL6

Figure 2: NFE performance profile for EDL, MHSDL3, MHSDL4,
MHSDL5, and MHSDL6 methods.

0 1 2 3 4 5 6 7 8 9
𝜏

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pp
:r 

(p
,s)

 ≤
 𝜏

MHSDL3
MHSDL4
MHSDL5

EDL
MHSDL6

Figure 3: CPU performance profile for EDL, MHSDL3, MHSDL4,
MHSDL5, and MHSDL6 methods.

7Journal of Function Spaces



Now from (31) and (32), it follows that

−2βEDL
k gTk dk−1 ≤ 2

gkk k2 − gkk k/ gk−1k kð Þ gTk gk−1
�� ��

dTk−1yk−1

�����
����� gT

k dk−1
�� ��

≤ 2
∥gk∥

2

λ gTk dk−1
�� �� gTk dk−1�� �� = 2

∥gk∥
2

λ
:

ð38Þ

Now, an application of (18) initiates

βEDL
k =

gkk k2 − gkk k/ gk−1k kð Þ gT
k gk−1

�� �� − t∗kg
T
k sk−1

dTk−1yk−1

≤
gTk gk − gkk k/ gk−1k kð Þ gT

k gk−1
�� �� − t∗kg

T
k sk−1

dTk−1yk−1

�����
�����

≤
gTk gk − gkk k/ gk−1k kð Þgk−1 − t∗k sk−1ð Þ�� ��

θαk−1 dk−1k k2

=
gTk gk − gk−1 + gk−1 − gkk k/ gk−1k kð Þgk−1 − t∗k sk−1ð Þ�� ��

θαk−1 dk−1k k2

≤
gkk k gk − gk−1k k + gk−1 1 − gkk k/ gk−1k kð Þð Þk k + t∗k sk−1k kð Þ

θαk−1 dk−1k k2

=
gkk k gk − gk−1k k + 1 − gkk k/ gk−1k kð Þj j gk−1k k + t∗k sk−1k kð Þ

θαk−1 dk−1k k2

=
gkk k gk − gk−1k k + gk−1k k − gkk kj j + t∗k sk−1k kð Þ

θαk−1 dk−1k k2

≤
gkk k gk − gk−1k k + gk−1 − gkk k + t∗k sk−1k kð Þ

θαk−1 dk−1k k2

=
gkk k 2 gk − gk−1k k + t∗k sk−1k kð Þ

θαk−1 dk−1k k2
≤

gkk k 2L sk−1k k + t∗k sk−1k kð Þ
θαk−1 dk−1k k2

=
2L + t∗kð Þ gkk k sk−1k k

θαk−1 dk−1k k2
=

2L + t∗kð Þ gkk kαk−1 dk−1k k
θαk−1 dk−1k k2

=
2L + t∗kð Þ gkk k
θ dk−1k k :

ð39Þ

Using t∗k ∈ ð0, 1Þ and (38) and (39) in (36), we obtain

∥dk∥
2 ≤ ∥gk∥

2 + 2
∥gk∥

2

λ
+

2L + t∗kð Þ2 gkk k2
θ2 dk−1k k2

∥dk−1∥
2

= ∥gk∥
2 + 2

∥gk∥
2

λ
+

2L + t∗kð Þ2
θ2

gkk k2

= 1 +
2
λ
+

2L + t∗kð Þ2
θ2

 !
gkk k2 = λ + 2

λ
+

2L + t∗kð Þ2
θ2

 !
gkk k2

=
λ + 2ð Þθ2 + λ 2L + t∗kð Þ2

λθ2
gkk k2:

ð40Þ

Next, dividing both sides of (40) by kgkk4 and using (35),

it can be concluded that

∥dk∥
2

∥gk∥
4 ≤

λ + 2ð Þθ2 + λ 2L + t∗kð Þ2
λθ2

·
1
c21
,

∥gk∥
4

∥dk∥
2 ≥

λθ2 · c21
λ + 2ð Þθ2 + λ 2L + t∗kð Þ2 :

ð41Þ

The inequalities in (41) imply

〠
∞

k=0

gkk k4
dkk k2

≥ 〠
∞

k=0

λθ2 · c21
λ + 2ð Þθ2 + λ 2L + t∗kð Þ2

=∞: ð42Þ

Therefore, kgkk ≥ c1 causes a contradiction with Lemma
2.

3. Numerical Experiments

The implementation of the EDL method is based on Algo-
rithm 2. This section is intended to analyze and compare
the numerical results obtained by the EDL method and four
variants of the MHSDL class methods (6). These variants
are defined by t ≡ tk3, t ≡ tk4, t ≡ tk5, and t ≡ tk6 and denoted,
respectively, as MHSDL3, MHSDL4, MHSDL5, and
MHSDL6. The obtained results are not compared with the
values tk1 and tk2, because in [16], the authors have already
shown that tk3 and tk4 initiate better numerical performances
compared to tk1 and tk2.

The codes used in the testing experiments for the above
methods are written in MATLAB R2017a and executed on
the Intel Core i3 2.0GHz workstation with the Windows 10
operating system. Three important criteria are analyzed in
each individual test case: number of iterations (NI), number
of function evaluations (NFE), and processor time (CPU).

The numerical experiment is performed using 28 test
functions presented in [24], where much of the problems
are taken over from the CUTEr collection [25]. All methods
used in the testing of an arbitrary objective function start
from the same initialization x0. Each function is tested 10
times with gradually increasing dimensions n = 100, 500,
1000, 3000, 5000, 7000, 8000, 10000, 15000, and 20000.

The uniform terminating criteria for each of the five con-
sidered algorithms (EDL, MHSDL3, MHSDL4, MHSDL5,
and MHSDL6) are

gkk k ≤ ε,

f xk+1ð Þ − f xkð Þj j
1 + f xkð Þj j ≤ δ,

ð43Þ

where ε = 10−6 and δ = 10−16. The backtracking line search is
based on the parameters ω = 0:0001 and φ = 0:8 for all five
algorithms. Specific parameters used only in the MHSDL6
method are defined as C = 1, υ = 0:26, and r = rk = υ∥gk−1∥.

Summary numerical results for EDL, MHSDL3,
MHSDL4, MHSDL5, and MHSDL6 methods, executed on
28 test functions, are arranged in Tables 1–3. Tables 1–3
show the numerical outcomes corresponding to all three

8 Journal of Function Spaces



criteria (NI, NFE, and CPU) for the EDL, MHSDL3,
MHSDL4, MHSDL5, and MHSDL6 methods.

We utilized the performance profile given in [26] to com-
pare numerical results for three criteria (NI, NFE, and CPU)
generated by five methods (EDL, MHSDL3, MHSDL4,
MHSDL5, and MHSDL6). The upper curve of the selected
performance profile corresponds to the method that shows
the best performance.

Figures 1–3 plot the performance profiles for the numer-
ical values included in Tables 1–3, respectively. Figure 1 pre-
sents the performance profiles of the NI criterion generated
by the EDL, MHSDL3, MHSDL4, MHSDL5, and MHSDL6
methods. In this figure, it is noticeable that EDL, MHSDL3,
MHSDL4, MHSDL5, andMHSDL6methods solved all tested
functions, wherein the EDL method shows the best perfor-
mances in 57.14% of test functions compared with MHSDL3
(25.00%), MHSDL4 (0.00%), MHSDL5 (0.00%), and
MHSDL6 (17.86%). From Figure 1, it is observable that the
graph of the EDLmethod comes first to the top, which means
that the EDL outperforms other considered methods with
respect to the NI.

Figure 2 presents the performance profiles of the NFE of
the EDL, MHSDL3, MHSDL4, MHSDL5, and MHSDL6
methods. It is observable that EDL, MHSDL3, MHSDL4,
MHSDL5, and MHSDL6 generated solutions to all tested
cases, and the EDL method is the best in 67.86% of the func-
tions compared with MHSDL3 (17.86%), MHSDL4 (0.00%),
MHSDL5 (0.00%), and MHSDL6 (14.28%). From Figure 2, it
is observed that the EDL graph first comes to the top, which
confirms that the EDL is the winner with respect to the NFE.

Figure 3 contains graphs of the performance profiles cor-
responding to the CPU time of the EDL, MHSDL3,
MHSDL4, MHSDL5, and MHSDL6 methods. It is obvious
that EDL, MHSDL3, MHSDL4, MHSDL5, and MHSDL6
solved all tested functions. Further analysis gives that the
EDL method is the winner in 67.86% of the test cases com-
pared with MHSDL3 (17.86%), MHSDL4 (0.00%), MHSDL5
(0.00%), and MHSDL6 (14.28%). Figure 3 demonstrates that
the graph of the EDL method first comes to level 1, which
indicates its superiority with respect to the CPU time.

From the previous analysis of the results shown in
Tables 1–3 and Figures 1–3, it can be concluded that the
EDL method produces superlative results in terms of all three
basic metrics: NI, NFE, and CPU.

4. Conclusion

A novel rule which determines the value tðkÞ of the parame-
ter t in each iteration of the Dai-Liao-type CGmethod is pre-
sented. The proposed expression for defining tðkÞ is denoted
by t∗k . Considering t = t∗k in (6), a novel variant of the Dai-
Liao CG parameter βEDL

k is defined and a novel Effective
Dai-Liao (EDL) conjugate gradient method is proposed.
The convergence of the EDL method is investigated, and
the global convergence on a class of uniformly convex func-
tions is established. By numerical testing, we have shown that
there is a significant influence of the scalar size of t∗k on the
convergence speed of the EDL method. Numerical compari-

sons on large-scale unconstrained optimization test func-
tions of different structures and complexities confirm the
computational efficiency of the algorithm EDL and its supe-
riority over the previously known DL CG variants, such as
MHSDL3, MHSDL4, MHSDL5, and MHSDL6. During the
testing, we tracked the number of iterations (NI), number
of function evaluations (NFE), and spanned processor time
(CPU) performances for each function and each method.
Analysis of the obtained performance profiles introduced
by Dolan andMoré revealed that the EDLmethod is the most
efficient.

We are convinced that the obtained results will be a moti-
vation for further research in defining new values of the
parameter tk in the Dai-Liao CG methods. Future research
would include research in finding some more efficient rules
to calculate the parameter tk during the iterative process.
We hope that our proposal of the new expression for defining
the parameter t will initiate further research in that direction.
It is evident that finding novel approaches in defining differ-
ent values of t and the conjugate gradient parameter βk is an
inexhaustible topic for scientific research, and our approach
is only one possible direction in this research.

Data Availability

Data will be provided on request to the first author.

Conflicts of Interest

The authors declare no conflict of interest.

Acknowledgments

The research was supported by the National Natural Science
Foundation of China (Grant Nos. 11971142, 11871202,
61673169, 11701176, 11626101, and 11601485).

References

[1] Y. -H. Dai and L. -Z. Liao, “New conjugacy conditions and
related nonlinear conjugate gradient methods,” Applied Math-
ematics and Optimization, vol. 43, no. 1, pp. 87–101, 2001.

[2] Y. Cheng, Q. Mou, X. Pan, and S. Yao, “A sufficient descent
conjugate gradient method and its global convergence,” Opti-
mization Methods and Software, vol. 31, no. 3, pp. 577–590,
2016.

[3] I. E. Livieris and P. Pintelas, “A descent Dai-Liao conjugate
gradient method based on a modified secant equation and its
global convergence,” ISRN Computational Mathematics,
vol. 2012, Article ID 435495, 8 pages, 2012.

[4] M. R. Peyghami, H. Ahmadzadeh, and A. Fazli, “A new class of
efficient and globally convergent conjugate gradient methods
in the Dai-Liao family,” Optimization Methods and Software,
vol. 30, no. 4, pp. 843–863, 2015.

[5] H. Yabe and M. Takano, “Global convergence properties of
nonlinear conjugate gradient methods with modified secant
condition,” Computational Optimization and Applications,
vol. 28, no. 2, pp. 203–225, 2004.

9Journal of Function Spaces



[6] S. Yao and B. Qin, “A hybrid of DL and WYL nonlinear con-
jugate gradient methods,” Abstract and Applied Analysis,
vol. 2014, Article ID 279891, 9 pages, 2014.

[7] S. Yao, X. Lu, and Z. Wei, “A conjugate gradient method with
global convergence for large-scale unconstrained optimization
problems,” Journal of Applied Mathematics, vol. 2013, Article
ID 730454, 9 pages, 2013.

[8] Y. Zheng and B. Zheng, “Two new Dai-Liao-type conjugate
gradient methods for unconstrained optimization problems,”
Journal of Optimization Theory and Applications, vol. 175,
no. 2, pp. 502–509, 2017.

[9] W. Zhou and L. Zhang, “A nonlinear conjugate gradient
method based on the MBFGS secant condition,” Optimization
Methods and Software, vol. 21, no. 5, pp. 707–714, 2006.

[10] W. Hu, J. Wu, and G. Yuan, “Some modified Hestenes-Stiefel
conjugate gradient algorithms with application in image resto-
ration,” Applied Numerical Mathematics, vol. 158, pp. 360–
376, 2020.

[11] G. Yuan, T. Li, and W. Hu, “A conjugate gradient algorithm
for large-scale nonlinear equations and image restoration
problems,” Applied Numerical Mathematics, vol. 147,
pp. 129–141, 2020.

[12] N. Andrei, “Open problems in nonlinear conjugate gradient
algorithms for unconstrained optimization,” Bulletin of the
Malaysian Mathematical Sciences Society, vol. 34, no. 2,
pp. 319–330, 2011.

[13] W. W. Hager and H. Zhang, “A new conjugate gradient
method with guaranteed descent and an efficient line search,”
SIAM Journal on Optimization, vol. 16, no. 1, pp. 170–192,
2005.

[14] W. W. Hager and H. Zhang, “Algorithm 851,” ACM Transac-
tions on Mathematical Software, vol. 32, no. 1, pp. 113–137,
2006.

[15] Y. -H. Dai and C. -X. Kou, “A nonlinear conjugate gradient
algorithm with an optimal property and an improved Wolfe
line search,” SIAM Journal on Optimization, vol. 23, no. 1,
pp. 296–320, 2013.

[16] S. Babaie-Kafaki and R. Ghanbari, “The Dai-Liao nonlinear
conjugate gradient method with optimal parameter choices,”
European Journal of Operational Research, vol. 234, no. 3,
pp. 625–630, 2014.

[17] N. Andrei, “A Dai-Liao conjugate gradient algorithm with
clustering of eigenvalues,” Numerical Algorithms, vol. 77,
no. 4, pp. 1273–1282, 2018.

[18] M. Lotfi and S. M. Hosseini, “An efficient Dai-Liao type conju-
gate gradient method by reformulating the CG parameter in
the search direction equation,” Journal of Computational and
Applied Mathematics, vol. 371, article 112708, 2020.

[19] X. Li and Q. Ruan, “A modified PRP conjugate gradient algo-
rithm with trust region for optimization problems,”Numerical
Functional Analysis and Optimization, vol. 32, no. 5, pp. 496–
506, 2011.

[20] N. Andrei, “An acceleration of gradient descent algorithmwith
backtracking for unconstrained optimization,” Numerical
Algorithms, vol. 42, no. 1, pp. 63–73, 2006.

[21] P. S. Stanimirovic and M. B. Miladinovic, “Accelerated gradi-
ent descent methods with line search,” Numerical Algorithms,
vol. 54, no. 4, pp. 503–520, 2010.

[22] W. Cheng, “A two-term PRP-based descent method,” Numer-
ical Functional Analysis and Optimization, vol. 28, no. 11–12,
pp. 1217–1230, 2007.

[23] G. Zoutendijk, “Nonlinear programming, computational
methods,” in Integer and Nonlinear Programming, North-Hol-
land, J. Abadie, Ed., pp. 37–86, North-Holland, Amsterdam,
1970.

[24] N. Andrei, “An unconstrained optimization test functions col-
lection,” Advanced Modeling and Optimization, vol. 10, no. 1,
pp. 147–161, 2008.

[25] I. Bongartz, A. R. Conn, N. Gould, and P. L. Toint, “CUTE:
constrained and unconstrained testing environments,” ACM
Transactions on Mathematical Software, vol. 21, no. 1,
pp. 123–160, 1995.

[26] E. D. Dolan and J. J. Moré, “Benchmarking optimization soft-
ware with performance profiles,”Mathematical Programming,
vol. 91, no. 2, pp. 201–213, 2002.

10 Journal of Function Spaces


	A Novel Value for the Parameter in the Dai-Liao-Type Conjugate Gradient Method
	1. Introduction and Background Results
	2. A Modified Dai-Liao Method and Its Convergence
	3. Numerical Experiments
	4. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

