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This paper provides numerical estimation of Newtonian fluid flow past through rectangular channel fixed with screen movable
from 10° to 45° by increasing the Reynolds number from 1000 to 10,000. The two-dimensional incompressible Navier Stokes
equations are worked out making use of the popular software COMSOL MultiPhysics version 5.4 which implements the
Galerkin’s least square scheme to discretize the governing set of equations into algebraic form. In addition, the screen boundary
condition with resistance coefficient (2.2) along with resistance coefficient 0.78 is implemented along with slip boundary
conditions applied on the wall. We engaged to find and observe the relationship between the optimum velocity, drag force
applied by the screen, and pressure occurred in the channel with increasing Reynolds number. Because of the linear relationship
between the optimum velocities and the Reynolds number, applying the linear regression method, we will estimate the linear
equation so that future prediction and judgment can be done. The validity of results is doing with the asymptomatic solution for
stream-wise velocity at the outlet of the channel with screens available in the literature. A nondimensional quantity, i.e., ratio
from local to global Reynolds number Rex/Re, is introduced which found stable and varies from -0.5 to 0.5 for the whole
problem. Thus, we are in the position to express the general pattern of the velocity of the particles as well as the pressure on the
line passing through the middle of the channel and depart some final conclusion at the end.

1. Introduction

The screens are commonly used in the gauze machines of the
air crafts and electronic elements like air conditions, air
cooler, and fans, to transmit the air or turning down the heat
into the medium by speeding the fluid flow. For supervisory,
the speed, pressure, and drag forces once the fluid of any type
turns up into the area are the foremost problem in the field of
engineering sciences. For the resolution and to overwhelm
the enigma of the problem, the screens have been recycled
for the decades. A solid screen or any type of the screen has
the competency to turn or subdue the tangential component
of the velocity field to enhance a little speed of the fluid.
Although any metallic screen included the channel, the angle
of inclination at which the screen is put into the channel
bears the matter. The angle will become convenient for the

purpose where we want to optimize one of the parameter
from velocity magnitude, pressure, drag force, etc. In order
to develop the perfect design for an engineering tool, it is
the best to perceive the flow distribution among the channels
with screens. This problem will help the researchers or scien-
tists to understand the mechanism of optimized velocity and
pressure connected with Reynolds number while performing
the experiment of flow through the screens and also a general
pattern of the velocity of the particles and the pressure with
respect to the local to global ratio of the Reynolds numbers.

Numerous scientists and engineers laid their trials in
order to comprehend the fluid flow phenomenon observed
when the screens are ascribed in the channel. The Elder [1],
in 1959, discovered the asymptotic solution for the small
angle of inclination of the screen by testing the fluid flow
via the channel consists of the single screen. Several
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experiments were conducted by Wang and Santiago [2] to
detect the head loss/energy loss while the fluid moves with
screen added at some angles. They came up with that the
head loss or energy loss alters to slower as reducing the angles
of the screens. Abid et al. [3] applied the Galerkin’s least
square scheme of finite element method and to perform on
the whole procedure by commercial software COMSOLMul-
tiPhysics 5.4 discussed the fluid flow thorough the three
screens arranged -45° to 45° judged from the center of the
screens at the equal distance from each other. He uncovered
that adding more screens will speedy the fluid flow and rela-
tionship between the optimized velocity with the angle and
optimized pressure with the angle of inclination of the screen
that can be shaped. To comprehend the fluid flow phenome-
non of the rough particles when a vibrating screen attached
in the angle, Sawant et al. [4] used Discrete Element Method.
He recommended that by improving the angles of the screen,
the maximum mass of the rough particles is achievable to
cross through the screen. Using the different values of poros-
ities (0.4, 0.52, and 0.6) and attached the screens at 450 and
1500 performed the lab experiment and applying the same
model in the ANSYS CFX-II software package, the fluid flow
phenomenon is developed and checked by Teital [5]. He dis-
covered that mass flow rate is maximum across the screen
when the screens are attached either at 45° or at 135°. Hauke
and Hughes [6] presented the new formulation known as
Galerkin’s least square scheme (GLS) to get Navier Stokes
equation solved numerically for compressible flows and can
be applied for any set of variables. It was found that if the
entropy or primitive variables are chosen like pressure, veloc-
ity field, and temperature, then the formulation will be work-
ing well for incompressible flows also. Therefore, one
formulation can be used to solve both compressible and
incompressible flows. A numerical and statistical analysis
[7] was done to enhance the understanding of the relation-
ship between maximum velocity as well as pressure. For the
purpose, an air flow through the three screens with different
inlet velocities was tested with different resistance coeffi-
cients. It was found that with the increase in inlet velocity,
the relationship between the maximum velocity at the outlet
and resistance coefficient weakens whereas optimum pres-
sure always shows the strong compatibility with the resis-
tance coefficient. A laminar and Newtonian fluid flow was
observed [8] for measuring reattachment length as well as
velocity patterns in the backward step channel with the boost
of FEM technique and carrying the process on COMSOL
MULTIPHYSICS 5.0 for the simulation. It was proved with
the simulation that the length of reattachment showed a good
agreement with the data available in the literature, and the
simulation contributed full understanding of the velocity pat-
tern in the domain. A Couette flow was observed by solving
the equations of the second grade fluid with the extension
of the shift of variables with the slip and no-slip boundary
conditions on the walls [9]. It was seen that due to the appli-
cation of slip conditions, very less fluctuations were appear-
ing in the case of velocity field along the wall and that
observation was quite different in the case of no-slip condi-
tion. To generate the time dependent pressure gradient with
the trapezoidal rule, a little effort of Fourier series along with

the implementation of oscillation of Burger’s equation was
taken to investigate a circular tube with the porous medium
[10]. It was sought that for all sources of Burger’s equation,
the forces at the wall surface are declining because of increas-
ing the porosity level in the tube. A most effective Thomas
algorithm of finite difference method was applied over the
nondimensional Navier Stokes equation to investigate the
funnel flow along with the micropolar fluidic medium [11].
The investigation determined the velocity distribution along
with the pressure distribution for the both behaviours of
microfluidic as well as funnel flows. By adding some physical
terms in the differential equations of higher order, the study
through the investigation was conducted for the two types
of oscillatory flows (Kamenev-type and Philos-type) and
the asymptotic characteristics in the two articles [12, 13].
The characteristics explained in the articles were proven with
the benchmark examples. Moreover, with the implication of
least square Galerkin’s scheme via the COMSOL MultiPhy-
sics 5.4, the shear thinning as well as shear thickening fluid
through the three screens was discussed with the effect of
high Reynolds number [14]. Excellent achievements were
done as the empirical linear and quadratic equations in
account of Reynolds number for the optimum velocity and
as well as for the pressure were deducted for the future pre-
dictions for such flows. With the use of hybrid nanofluid (a
well-known coolant), a heat transfer procedure in a heat
exchanger of industrial length containing the double tube
with presence of magnetic field on it, a numerical study
[15] was carried out. The heat transfer performance was
checked with the volume fraction from 0.1% to 0.5% and
the Reynolds numbers 800-2400 for the two hybrid nano-
fluids CNT-Al2O3 and CNT-Fe3O4. It was found that the
heat transfer performance of the hybrid nanofluid CNT-
Fe3O4 on the basis that the Nusselt number is enhancing in
the presence of magnetic field. With the procedure of similar-
ity method [16], the governing nonlinear partial differential
equations were converted in to ODEs to check the influence
of the radiation for the CCHF model along with the entropy
generation in terms of the prominent constants. The results
were discussed for several parameters like temperature,
entropy, and concentration, and it was specially discussed
that the entropy is increasing with the Biot number, Hartman
number, and suction as well as injection, constants, etc.

The objective of my study is to analyze the fluid flow
through the single screen fitted in the rectangular channel.
The fluid is assumed Newtonian, laminar, and steady state.
And the whole numerical results are attained by applying
the Galerkin’s least square scheme of finite element method,
and the whole process is carrying on COMSOL MultiPhysics
5.4. The pattern of fluid is to be examined by using the Reyn-
olds number from 1000 to 10,000 and obtained the empirical
equations for optimized speed and pressure in the domain
for the angles 100 to 450. The outcomes are presented
through surface plots for the velocity field and pressure.
Additionally, the calculations of the drag force applied by
the screen and the velocity as well as the pressure on the
average line at the middle of the channel have expressed
in terms of the ratio from local to global Reynolds num-
bers are presented with graphs. Trustworthy results are
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achieved as we compare and contrast the result with avail-
able literature.

2. Methodology

2.1. Geometrical Structure and Meshing Process. The two-
dimensional rectangular channel with the dimension 4 × 1
in length to width is taken, see Figure 1. A solid screen is
placed at the center of the channel which is portable from
10° to 45° in clockwise direction. The left wall of the channel
is taken up entrance of the fluid with an average velocity of
uin. The right wall of the channel is facing the outlet bound-
ary condition and zero pressure. The upper and lower
boundaries of the channel are fixed, and slip boundary condi-
tions are applied. The problem is being combated by using
the software COMSOL MultiPhysics 5.4 which implemented
the numerical method of Galerkin’s scheme of least square.
Every numerical method basic requirement is to decompose
the whole domain into smaller domains called elements.
Here, the channel is decomposed in 2382 irregular triangular
elements. The whole mesh statistics is described by Table 1
and the meshing of the geometry by Figure 2.

2.2. Governing Equations. It has been decades that the Navier
Stokes equations assist to apprehend the physical problems
of fluid dynamics. Owing to the nonlinearity of the set of par-
tial differential equations, it is almost incredible to acquire
the preferred function (implicit or explicit) without consider-
ing the some assumptions which is not but an agreement or
dealing with the solution. In the problem, we searched to
understand the flow phenomenon through the single screen
using the new technique of Galerkin’s least square finite ele-
ment method [6] carrying in the emerging software COM-
SOL MultiPhysics 5.4. The problem is two-dimensional,
steady state, laminar, incompressible, and Newtonian. We
will acquire the numerical solution by solving the two-
dimensional incompressible Navier Stokes equation, i.e.,
momentum equation along with the continuity equation

with the screen boundary condition, where the screen is
attached at the middle of the geometry with an angle mea-
sured clockwise from the center of the screen. The 2nd order
partial momentum equation and continuity equation are
described below.

∂V
!

∂t
+ V

!
:∇

� �
V
!
= −

1
ρ
∇p + μ∇2V

!
+ F, ð1Þ

∇:V
!
= 0, ð2Þ

∂V
!

∂t
= 0, ð3Þ

where μ and ρ are the viscosity and density of the air.
Equations (1) and (2) are called Navier Stokes equations

and are in vector form, where V
!
, p, and F are the velocity

field, pressure, and forcing function. Because the chosen
problem is steady state that is why we will have equation
(3). In the selected geometry, the upper and lower boundaries
are considering the wall and slip boundary conditions that
are applied on it. Why is the slip boundary condition? The
viscous effect near the wall is assumed zero here. If n! is the
vector normal to the velocity field then:

V
!
:n! = 0,

K
!
− K

!
− n!

� �
n!= 0,

ð4Þ

where

K
!
= v ∇:V

!
+ ∇:V!
� �T

� �
n:! ð5Þ

The working fluid comes into the entrance of the channel
passing across the screen and goes out from the outlet of the
channel. The screens are actually a solid too to increase the
speed of the fluid which suppresses the tangential component
of the vector velocity to boost the speed in the channel of the
fluid. We define the screen boundary condition by the equa-
tions (6)–(8):

ρV
!
− n!

h i+
−
= 0, ð6Þ

4 m

Screen

𝜃

Walls1 m

Figure 1: Geometrical construction of the channel.

Table 1: Mesh statistics.

Property name Value

Minimum quality element 0.7629

Maximum quality element 0.9793

Number of triangular elements 2382

Edge elements 215

Vertex elements 10
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In equations, “+” and “−” show the presents of the
parameter up and downstream, respectively. To test the fluid
flow phenomenon, it is the traditional to use of nondimen-
sional Reynolds number (Re). On applying the inlet bound-
ary condition, the fluid is allowed to enter with the average
velocity μin. Let L be the characteristic length of the channel,
then we can define the Reynolds number:

Re =
ρμinL
μ

: ð9Þ

2.3. Validation and Comparison. The similar geometry is
contemplated by Elder [1] and discovered the asymptomatic
solution given by equation (10):

μ/ μin − 1ð Þ 1 + η + k cos2θ
� �

1 − ηð Þ tan θ k cos2θ = 2
π

log cot πy
2

� �� �
, ð10Þ

where μ is the fluid velocity magnitude computed numer-
ically. Left hand side of the equation presents the stream-wise
velocity computed numerically, and right hand side is inde-
pendent of the numerical calculations but having the same
meaning as left hand side. In this spot, we calculate the
stream-wise velocity at the outlet of the channel
atRe = 10,000with angles of 10°, 20°, 30°, 40°, and 45°.
Figure 3 shows that the approach contributes good alliance
to recognize the fluid flow through solid screens employing
the finite element approach with Galerkin’s least square
procedure.

2.4. Result Discussion. We have gained the numerical out-
comes using the least square Galerkin’s approach of finite ele-
ment techniques using the commercial software COMSOL
MultiPhysics 5.4 by fixing resistance coefficient k at 2.2 and
refraction coefficient η at 0.78.

The results are attained and passed through the valida-
tion and resemblance process with that asymptomatic solu-
tion provided by equation (10). The surface plot for the
velocity field and distribution of the pressure is demonstrated

Figure 2: The meshing of the geometry with irregular triangular elements.
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Figure 4: The surface plot of the velocity field at angles 10°-45° from
(a–e).
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through Figures 4 and 5 at Reynolds number 10000. From
Figure 4, it is evident that whatever the screen is arranged
at the angles from 10° to 45°, the speed of fluid is increasing.
Significantly, it is to be perceived that distribution of the
speed of fluid particles is not consistent after the screen as
we can see the portion near down the outlet, where the fluid

has maximum speed. This is because of the angle of the
screen which is settled at 10° to 45° which push or forcing
the fluid in downward direction.

Figure 5 shows the distribution of the pressure in the
domain. It can be spotted that screens are culpable to ease
pressure in the domain. Furthermore, the results demon-
strate that ahead of the screen, the pressure distribution is
consistent, and while after the screen, the pressure

(a)

(b)

(c)

(d)

(e)

–200 –100 0 100 200 300 400

Figure 5: The surface plot of the pressure distribution at angles 10°-
45° from (a–e).
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Table 2: Linear regression equations.

Angles
Equations

Domain: 1000 < Re < 10, 0000
10° Vmax = 3:916E − 6ð ÞRe − 3E−5

20° Vmax = 4:043E − 6ð ÞRe − 5E−5

30° Vmax = 4:121E − 6ð ÞRe + 3E−5

40° Vmax = 4:182E − 6ð ÞRe + 18E−5

45° Vmax = 4:253E − 6ð ÞRe + 2E−4
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0.2

–60
–55
–50
–45
–40
–35
–30
–25
–20
–15
–10

–5

D
ra

g 
fo

rc
e (

N
)

0.4 0.6 0.8
Reynolds number

𝜃 = 10
𝜃 = 30
𝜃 = 45

Figure 8: The drag force (N) is calculated at the screen for all
Reynolds number with the angles 10°, 30°, and 45°.

5Journal of Function Spaces



distribution is not uniform as minimum pressure can be
spotted on the upper corner of the screen. When the
screen is rushed from 10° to 45°, the optimum velocity
of the fluid evidences the greatest response in terms of
increment in speed of the fluid for all Reynolds number,
see Figure 6.

The optimum speed of the fluid is increasing in linear
fashion with the increase in Reynolds number for all angles.
Figure 6 describes the influence of the optimum speed of
the fluid taking place in the domain in terms of Reynolds
number. In this way, using the data points and putting in
the linear regression procedure, a linear relationship between
the optimum speeds with that of nondimensional number
can be determined for each angle known as empirical equa-
tions, see Table 2.

We have also worked out of the results for optimum pres-
sure existed at each Reynolds number for each angle.

Figure 7 indicates that optimum pressure does not pos-
sess a linear but a quadratic relationship. Of course, optimum
pressure is increasing with the increase in Reynolds number,
and also due to changing the screen from 10° to 45°, the opti-

mum pressure is dropping for all Reynolds number. Engi-
neers are often attracted for the design analysis, and to
design any equipment, they are most charming towards con-
trolling the drag force applied on the domain. The drag force
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Figure 10: The view of the line at the middle of the channel.
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can be controlled by equation (11):

Fd =
1
2 ρv

2CdA, ð11Þ

where Fd is the drag force on the screen, Cd is the nondi-
mensional area of the channel, A is the cross-sectional area of
the channel, and v is the velocity of the fluid.

The drag force is indeed the measure of the resistance
force while the fluid facing in a precise direction. Yet, there
have been several approaches to determine to the drag force
in different ways. In COMSOL MultiPhysics 5.4, we deter-
mine the drag force on the single screen by integrating the

total stress in y-direction. The outcomes calculated are dis-
seminated through Figure 8, and it is clear that turning the
screen from 10° to 45°, the drag force is decreasing with the
boost in Reynolds number.

In the paper, we have added the special description for
the local Reynolds number that can be defined by the equa-
tion.

Rex =
ρuinx
μ

: ð12Þ

The local Reynolds number is calculated (shown in
Figures 9(a) and 9(b)) for the all Reynolds number along
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Figure 12: (a) Rex/Re vs. the x-axis at angle 45 at the Reynolds number; (b) Rex/Re for all the angles at the Reynolds number.
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the line at the middle of the channel as shown in Figure 10. In
Figure 9(a), at 45°, it can be seen that the value of the local
Reynolds number is linearly increasing even at the middle
of the channel where we have seen that the screen will show
full impact of it. In Figure 10(b), that impact shows the con-
stancy even for all the angles for corresponding Reynolds
numbers. The ratio from local Reynolds number to global
Reynolds number shows the stability and attempts the range
‐0:5 ≤ Rex/Re ≤ 0:5 for all the angles of the screen, see
Figure 11. So we find the best to describe the velocity and
the pressure on the average path of the channel described
by Figure 10, in terms of the ratio from global to local Reyn-
olds numbers. It is observing that the orientation of the fluid
passing through the screen is disturbed by the screen for the
velocity field as well as in the pressure, see Figures 12(a),
12(b), 13(a), and 13(b). For the velocity field, once the fluid
particles disturbed then recover the actual flow rate in the
domain after the screen. While observing the pressure of
the fluid in the domain once the pressure is reduced then
remains constant after the screen. Therefore, we can say that
the screens are pressure reducing tools. The problem
described the pattern for the movement of flow in the porous
media which is so complicated to organize for the single layer
of the porous path. On the whole, it can be deducted that the
greater the Reynolds number, the greater the velocity and the
greater the disturbance occur.

3. Conclusion

The two-dimensional flow past the rectangular channel with
screen has been estimated by engaging the least square Galer-
kin’s approach executed by the COMSOL MultiPhysics 5.4.
The flow was controlled Newtonian and laminar, and the
air is forcing fluid that is taken into account. The flow erec-
tion has been checked operating the nondimensional Reyn-
olds number with fixed density and viscosity of the air. The
resistance coefficient κ of the screen as well refraction coeffi-
cient η is fixed. The numerical outcomes are disseminated
through the surface plots and graphs for the optimized speed
and pressure exerted by the fluid particles. For a particular
Reynolds number, it is also perceived via the surface plot;
the velocity of the fluid particles after the screen is further
increasing in magnitude and behaves not far from the down
side of the outlet of the channel. The maximum speed of the
particles owns the linear relationship with the Reynolds
number and that with the growing in Reynolds number the
optimum speed is further optimized. Plus by transferring
the angle from 10 to 45 degrees, fluid flow is further acceler-
ated. In addition, the speed of particles and the pressure are
also enhancing with the increasing in Reynolds number and
retain a parabolic association with it. By transferring the
angle from 10° to 45°, the optimum pressure is further
reduced at an individual Reynolds number. The drag force
applied by the screen is lessening with enhancing the Reyn-
olds number and shifting the angle from 10° to 45°, the resis-
tance to flow is further reduced. We extend the problems
finding further and explaining the ratio from local to global
Reynolds number on the line passing through the middle of
the channel. We found that the local Reynolds number is

increasing with the increasing Reynolds number and differ-
ent for the angles. The ratio from local to global Reynolds
number found unique or stable for all the angles of the screen
varying in the range from -0.5 to 0.5. Therefore, we expressed
the velocity of the particles and the pressure on the line on
that nondimensional ratio and concluded that the fluid after
passing the screen losses its pressure which results the
increase in the velocity of the particles after the screen.
Finally, we made the conclusion that the screen can be used
as the pressure reducing tool, and it depends upon the angle
measuring from the center of the channel in clockwise
direction.
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