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In this paper, we introduce and investigate several inclusion relationships of new k -uniformly classes of analytic functions defined
by the Mittag-Leffler function. Also, integral-preserving properties of these classes associated with the certain integral operator are
also obtained.

1. Introduction

Let A be the class of analytic functions in the open unit disc
U = fz : jzj < 1g which in the form

f zð Þ = z + 〠
∞

n=2
anz

n: ð1Þ

For f ðzÞ and gðzÞ ∈A , we say that the function f ðzÞ is
subordinate to gðzÞ, written symbolically as follows:

f ≺ g or f zð Þ ≺ g zð Þ, ð2Þ

if there exists a Schwarz function wðzÞ, which (by defini-
tion) is analytic in U with wð0Þ = 0 and jwðzÞj < 1, ðz ∈UÞ,
such that f ðzÞ = gðwðzÞÞ for all z ∈U. In particular, if the
function gðzÞ is univalent in U, then we have the following
equivalence relation (cf., e.g., [1, 2]; see also [3]):

f zð Þ ≺ g zð Þ⇔ f 0ð Þ ≺ g 0ð Þ and f Uð Þ ⊂ g Uð Þ: ð3Þ

Let f be as in (1) and hðzÞ = z +∑∞
n=2bnz

n, then Hada-
mard product (or convolution) of f ðzÞ and hðzÞ is given by

f ∗ hð Þ zð Þ = z + 〠
∞

k=2
akbkz

k z ∈Uð Þ: ð4Þ

For ζ, η ∈ ½0, 1Þ, we denote by S∗ðζÞ, CðζÞ, Kðζ, ηÞ, and
K∗ðζ, ηÞ the subclasses of A consisting of all analytic func-
tions which are, respectively, starlike of order ζ, convex of
order ζ, close-to-convex of order ζ and type η, and quasicon-
vex of order ζ and type η in U.

Also, let the subclasses USðμ, ζÞ, UCðμ, ζÞ, USKðμ, ζ, ηÞ,
andUCKðμ, ζ, ηÞ ofA ðη ∈ 0, 1Þ < 1 ; μ ≥ 0Þ be defined as fol-
lows:

US μ, ζð Þ = f ∈A : R
zf ′ zð Þ
f zð Þ − ζ

 !
> μ

zf ′ zð Þ
f zð Þ − 1

�����
�����

( )
,

UC μ, ζð Þ = f ∈A : R 1 + zf ″ zð Þ
f ′ zð Þ

− ζ

 !
> μ

zf ″ zð Þ
f ′ zð Þ

�����
�����

( )
,
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USK μ, ζ, ηð Þ =
(
f ∈A : ∃h ∈US μ, ζð Þ

s:t:R
zf ′ zð Þ
h zð Þ − ζ

 !
> μ

zf ′ zð Þ
h zð Þ − 1
�����

�����
)

UCK μ, ζ, ηð Þ = f ∈A : ∃h ∈UC μ, ζð Þ
8<
:
s:t:R

zf ′ zð Þ
� �

′

h′ zð Þ
− ζ

0
@

1
A > μ

zf ′ zð Þ
� �

′

h′ zð Þ
− 1

������
������
9=
;:

ð5Þ

We note that

US 0, ζð Þ = S∗ ζð Þ, UC 0, ζð Þ = C ζð Þ,
USK 0, ζ, ηð Þ = K ζ, ηð Þ andUCK 0, ζ, ηð Þ

= K∗ ζ, ηð Þ 0 ≤ ζ ; η < 1ð Þ:
ð6Þ

Moreover, let qμ,ζðzÞ be an analytic function which maps

U onto the conic domain Φμ,ζ = fu + iv : u > kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu − 1Þ2 + v2

q
+ ζg such that 1 ∈Φμ,ζ defined as follows:

where uðzÞ = ðz − ffiffiffi
μ

p Þ/ð1 − ffiffiffi
μ

p
zÞ and ςðμÞ is such that μ =

cosh ðπς′ðzÞ/4ςðzÞÞ: By virtue of properties of the conic
domain Φμ,ζ (cf., e.g., [4, 5]), we have

R qμ,ζ zð Þ
n o

> μ + ζ

μ + 1 : ð8Þ

Making use of the principal of subordination and the def-
inition of qμ,ζðzÞ, we may rewrite the subclasses USðμ, ζÞ, U
Cðμ, ζÞ, USKðμ, ζ, ηÞ, and UCKðμ, ζ, ηÞ as follows:

US μ, ζð Þ = f ∈A :
zf ′ zð Þ
f zð Þ ≺ qμ,ζ zð Þ

( )
,

UC μ, ζð Þ = f ∈A : 1 + zf ′′ zð Þ
f ′ zð Þ

≺ qμ,ζ zð Þ
( )

,

USK μ, ζ, ηð Þ = f ∈A : ∃h ∈US μ, ηð Þ s:t: zf ′ zð Þ
h zð Þ ≺ qμ,ζ zð Þ

( )

ð9Þ

and

UCK μ, ζ, ηð Þ = f ∈A : ∃h ∈UC μ, ζð Þ
8<
:
s:t:

zf ′ zð Þ
� �

′

h′ zð Þ
≺ qμ,ζ zð Þ

9=
;:

ð10Þ

Attiya [6] introduced the operator Hγ,k
α,βð f Þ, where

Hγ,k
α,βð f Þ: A ⟶A is defined by

Hγ,k
α,β fð Þ = μ

γ,k
α,β ∗ f zð Þ z ∈Uð Þ, ð11Þ

with β, γ ∈ℂ, Re ðαÞ >max f0, Re ðkÞ − 1g and Re ðkÞ > 0.
Also, Re ðαÞ = 0 when Re ðkÞ = 1; β ≠ 0: Here, μγ,kα,β is the

generalized Mittag–Leffler function defined by [7], see also
[6], and the symbol (∗) denotes the Hadamard product.

Due to the importance of the Mittag–Leffler function, it is
involved in many problems in natural and applied science. A
detailed investigation of the Mittag–Leffler function has been
studied by many authors (see, e.g., [7–12]).

qμ,ζ zð Þ =

1 + 1 − 2ζð Þz
1 − z

μ = 0ð Þ,

1 − ζ

1 − μ2
cos 2

π
cos−1μ
� �

i log 1 + ffiffiffi
z

p
1 − ffiffiffi

z
p

� 	
−
μ2 − ζ

1 − μ2
0 < μ < 1ð Þ,

1 + 2 1 − ζð Þ
π2 log 1 + ffiffiffi

z
p

1 − ffiffiffi
z

p

 �2

μ = 1ð Þ,

1 − ζ

μ2 − 1 sin π

2ς μð Þ
ðu zð Þffiffi

μ
p

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2t2

pq
8><
>:

9>=
>; + μ2 − ζ

μ2 − 1 μ > 1ð Þ,

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð7Þ
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Attiya [6] noted that

Hγ,k
α,β fð Þ zð Þ = z + 〠

∞

n=2

Γ γ + nkð ÞΓ α + βð Þ
Γ γ + kð ÞΓ β + αnð Þn! anz

n: ð12Þ

Also, Attiya [6] showed that

z Hγ,k
α,β

�
f zð Þð Þ′ = γ + k

k


 �
Hγ+1,k

α,β f zð Þ
� �

−
γ

k
Hγ,k

α,β f zð Þ
� �

,

ð13Þ

and

z Hγ,k
α,β+1

�
f zð Þð Þ′ = α + β

α


 �
Hγ,k

α,β f zð Þ
� �

−
β

α
Hγ,k

α,β+1 f zð Þ
� �

:

ð14Þ

Next, by using the operatorHγ,k
α,βð f Þ, we introduce the fol-

lowing subclasses of analytic functions in U

USγβ μ, ζð Þ = f ∈A : Hγ,k
α,β f zð Þ ∈US μ, ζð Þ

n o
,

UCγ
β μ, ζð Þ = f ∈A : Hγ,k

α,β f zð Þ ∈UC μ, ζð Þ
n o

,

USKγ
β μ, ζ, ηð Þ = f ∈A : Hγ,k

α,β f zð Þ ∈USK μ, ζ, ηð Þ
n o

,

UCKγ
β μ, ζ, ηð Þ = f ∈A : Hγ,k

α,β f zð Þ ∈UCK μ, ζ, ηð Þ
n o

,

ð15Þ

where β, γ ∈ℂ, RðαÞ >max f0, RðkÞ − 1g and RðkÞ > 0.
Also, RðαÞ = 0 when RðkÞ = 1; β ≠ 0:

Also, we note that

f zð Þ ∈UCγ
β μ, ζð Þ⇔ zf ′ zð Þ ∈USγβ μ, ζð Þ, ð16Þ

f zð Þ ∈UCKγ
β μ, ζ, ηð Þ⇔ zf ′ zð Þ ∈USKγ

β μ, ζ, ηð Þ: ð17Þ

In this paper, we introduce several inclusion properties of
the classes USγβðμ, ζÞ, UCγ

βðμ, ζÞ, USKγ
βðμ, ζ, ηÞ, and UCKγ

β

ðμ, ζ, ηÞ: Also, integral-preserving properties of these classes
associated with generalized Libera integral operator are also
obtained.

2. Inclusion Properties Associated with Hγ,k
α,βfðzÞ

Lemma 1 (see [13]). If hðzÞ is convex univalent in U with
hð0Þ = 1 and RfξhðzÞ + ζg > 0ðζ ∈ℂÞ. Let pðzÞ be analytic
in U with pð0Þ = 1 which satisfy the following subordination
relation

p zð Þ + zp′ zð Þ
ξp zð Þ + ζ

≺ h zð Þ, ð18Þ

then

p zð Þ ≺ h zð Þ: ð19Þ

Lemma 2 (see [2]). If hðzÞ is convex univalent in U and let
w be analytic in U with RfwðzÞg ≥ 0: Let pðzÞ be analytic
in U and pð0Þ = hð0Þ which satisfy the following subordina-
tion relation

p zð Þ +w zð Þzp′ zð Þ ≺ h zð Þ, ð20Þ

then

p zð Þ ≺ h zð Þ: ð21Þ

Theorem 3. If Rðγ/kÞ > −ðμ + ζÞ/ðμ + 1Þ, then USγ+1β ðμ, ζÞ
⊂USγβðμ, ζÞ:

Proof. Let f ðzÞ ∈USγ+1β ðμ, ζÞ, put

p zð Þ =
z Hγ,k

α,β f zð Þ
� �

′

Hγ,k
α,β f zð Þ

z ∈Uð Þ, ð22Þ

we note that pðzÞ is analytic inU and pð0Þ = 1. From (13) and
(22), we have

Hγ+1,k
α,β f zð Þ
Hγ,k

α,β f zð Þ
= k
γ + k

p zð Þ + γ

k

� �
: ð23Þ

Differentiating (23) with respect to z, we obtain

z Hγ+1,k
α,β f zð Þ

� �
′

Hγ+1,k
α,β f zð Þ

= p zð Þ + zp′ zð Þ
p zð Þ + γ/kð Þ : ð24Þ

From the above relation and using (7), we may write

p zð Þ + zp′ zð Þ
p zð Þ + γ/kð Þ ≺ qμ,ζ zð Þ z ∈Uð Þ: ð25Þ

Since Rfqμ,ζðzÞg > ðμ + ζÞ/ðμ + 1Þ, we see that

R qμ,ζ zð Þ + γ

k

� �
> 0 z ∈Uð Þ: ð26Þ

Applying Lemma 1, it follows that pðzÞ ≺ qμ,ζðzÞ, that is,

f ðzÞ ∈USγβðμ, ζÞ.
Using the same technique in Theorem 3 with relation

(14), we have the following theorem.

Theorem 4. If Rðα/βÞ > −ðμ + ζÞ/ðμ + 1Þ, then USγβðμ, ζÞ ⊂
USγβ+1ðμ, ζÞ:
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Theorem 5. If Rðγ/kÞ > −ðμ + ζÞ/ðμ + 1Þ, then UCγ+1
β ðμ, ζÞ

⊂UCγ
βðμ, ζÞ.

Proof.Applying Theorem 3 and relation (16), we observe that

f zð Þ ∈UCγ+1
β μ, ζð Þ⇔ zf ′ zð Þ ∈USγ+1β μ, ζð Þ

⇒ zf ′ zð Þ ∈USγβ μ, ζð Þ⇔ f zð Þ ∈UCγ
β μ, ζð Þ,

ð27Þ

which evidently proves Theorem 5.

Similarly, we can prove the following theorem.

Theorem 6. If Rðα/βÞ > −ðμ + ζÞ/ðμ + 1Þ, then UCγ
βðμ, ζÞ ⊂

UCγ
β+1ðμ, ζÞ:

Theorem 7. If Rðγ/kÞ > −ðμ + ζÞ/ðμ + 1Þ, then USKγ+1
β ðμ, ζ

, ηÞ ⊂USKγ
βðμ, ζ, ηÞ:

Proof. Let f ðzÞ ∈USKγ+1
β ðμ, ζ, ηÞ. Then, there exists a func-

tion rðzÞ ∈USðμ, ζÞ such that

z Hγ+1,k
α,β f zð Þ

� �
′

r zð Þ ≺ qμ,ζ zð Þ: ð28Þ

We can choose the function hðzÞ such that Hγ+1,k
α,β hðzÞ =

rðzÞ. Then, hðzÞ ∈USγ+1β ðμ, ζÞ and

z Hγ+1,k
α,β f zð Þ

� �
′

Hγ+1,k
α,β h zð Þ

≺ qμ,ζ zð Þ: ð29Þ

Now, let

p zð Þ =
z Hγ,k

α,β f zð Þ
� �

′

Hγ,k
α,βh zð Þ

, ð30Þ

where pðzÞ is analytic in U with pð0Þ = 1. Since hðzÞ ∈USγ+1β

ðμ, ζÞ, by Theorem 3, we know that hðzÞ∈USγβðμ, ζÞ. Let

t zð Þ =
z Hγ,k

α,βh zð Þ
� �

′

Hγ,k
α,βh zð Þ

z ∈Uð Þ, ð31Þ

where tðzÞ is analytic in U with RftðzÞg > ðμ + ζÞ/ðμ + 1Þ:
Also, from(30), we note that

z Hγ,k
α,β f zð Þ

� �
′ =Hγ,k

α,βzf ′ zð Þ = Hγ,k
α,βh zð Þ

� �
p zð Þ: ð32Þ

Differentiating both sides of (32) with respect to z, we
obtain

z Hγ,k
α,βzf ′ zð Þ

� �
′

Hγ,k
α,βh zð Þ

=
z Hγ,k

α,βh zð Þ
� �

′

Hγ,k
α,βh zð Þ

p zð Þ + zp′ zð Þ

= t zð Þp zð Þ + zp′ zð Þ:
ð33Þ

Now, using (13) and (33), we obtain

Since Rðγ/kÞ > −ðμ + ζÞ/ðμ + 1Þ, we see that

R t zð Þ + γ

k

n o
> 0 z ∈Uð Þ: ð34Þ

Hence, applying Lemma 2, we can show that pðzÞ ≺ qμ,ζ

ðzÞ, so that f ðzÞ ∈USKγ
βðμ, ζ, ηÞ. This completes the proof

of Theorem 7.
Similarly, we can prove the following theorem.

Theorem 8. If Rðα/βÞ > −ðμ + ζÞ/ðμ + 1Þ, then USKγ
βðμ, ζ, η

Þ ⊂USKγ
β+1ðμ, ζ, ηÞ:

z Hγ,k
α,β f zð Þ

� �
′

Hγ,k
α,βh zð Þ

=
Hγ+1,k

α,β zf ′ zð Þ
Hγ+1,k

α,β h zð Þ
=
z Hγ,k

α,βzf ′ zð Þ
� �

′ + γ/kð ÞHγ,k
α,βzf ′ zð Þ

z Hγ,k
α,βh zð Þ

� �
′ + γ/kð ÞHγ,k

α,βh zð Þ

=
z Hγ,k

α,βzf ′ zð Þ
� �

′/Hγ,k
α,βh zð Þ

� �
+ γ/kð Þ z Hγ,k

α,β f zð Þ
� �

′/Hγ,k
α,βh zð Þ

� �
z Hγ,k

α,βh zð Þ
� �

′/Hγ,k
α,βh zð Þ

� �
+ γ/kð Þ

= t zð Þp zð Þ + zp′ zð Þ + γ/kð Þp zð Þ
t zð Þ + γ/kð Þ = p zð Þ + zp′ zð Þ

t zð Þ + γ/kð Þ :

ð34Þ
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We can also prove Theorem 9 by using Theorem 7 and
relation (17).

Theorem 9. If Rðγ/kÞ > −ðμ + ζÞ/ðμ + 1Þ, then UCKγ+1
β ðμ,

ζ, ηÞ ⊂UCKγ
βðμ, ζ, ηÞ:

Also, we obtain the following theorem.

Theorem 10. If Rðα/βÞ > −ðμ + ζÞ/ðμ + 1Þ, then UCKγ
βðμ, ζ

, ηÞ ⊂UCKγ
β+1ðμ, ζ, ηÞ:

Now, we obtain squeeze theorems for inclusion by com-
bining the above theorems as follows:

Combining both theorems 3 and 4, we have the following
corollary.

Corollary 11. If ðμ + ζÞ/ðμ + 1Þ > −min fRðγ/kÞ,Rðα/βÞg,
then

USγ+1β μ, ζð Þ ⊂USγβ μ, ζð Þ ⊂USγβ+1 μ, ζð Þ: ð36Þ

Combining both theorems 5 and 6, we have the following
corollary.

Corollary 12. If ðμ + ζÞ/ðμ + 1Þ > −min fRðγ/kÞ,Rðα/βÞg,
then

UCγ+1
β μ, ζð Þ ⊂UCγ

β μ, ζð Þ ⊂UCγ
β+1 μ, ζð Þ: ð37Þ

Combining both theorems 7 and 8, we have the following
corollary.

Corollary 13. If ðμ + ζÞ/ðμ + 1Þ > −min fRðγ/kÞ,Rðα/βÞg,
then

USKγ+1
β μ, ζ, ηð Þ ⊂USKγ

β μ, ζ, ηð Þ ⊂USKγ
β+1 μ, ζ, ηð Þ: ð38Þ

Combining both theorems 9 and 10, we have the follow-
ing corollary.

Corollary 14. If ðμ + ζÞ/ðμ + 1Þ > −min fRðγ/kÞ,Rðα/βÞg,
then

UCKγ+1
β μ, ζ, ηð Þ ⊂UCKγ

β μ, ζ, ηð Þ ⊂UCKγ
β+1 μ, ζ, ηð Þ: ð39Þ

3. Integral Preserving Properties
Associated with Fδ

The generalized Libera integral operator Fδ (see [14–16],
also, see related topics [17–19]) is defined by

Fδ fð Þ zð Þ = δ + 1
zδ

ðz
0
tδ−1 f tð Þdt, ð40Þ

where f ðzÞ ∈A and δ > −1:

Theorem 15. Let δ > −ðμ + ζÞ/ðμ + 1Þ. If f ∈USγβðμ, ζÞ, then
Fδð f Þ ∈USγβðμ, ζÞ:

Proof. Let f ∈USγβðμ, ζÞ and set

p zð Þ =
z Hγ,k

α,βFδ fð Þ zð Þ
� �

′

Hγ,k
α,βFδ fð Þ zð Þ

z ∈Uð Þ, ð41Þ

where pðzÞ is analytic in U with pð0Þ = 1. From definition of

Hγ,k
α,βð f Þ and (40), we have

z Hγ,k
α,βFδ fð Þ zð Þ

� �
′ = δ + 1ð ÞHγ,k

α,β f zð Þ − δHγ,k
α,βFδ fð Þ zð Þ:

ð42Þ

Then, by using (41) and (42), we obtain

δ + 1ð Þ
Hγ,k

α,β f zð Þ
Hγ,k

α,βFδ fð Þ zð Þ
= p zð Þ + δ: ð43Þ

Taking the logarithmic differentiation on both sides of
(43) and simple calculations, we have

p zð Þ + zp′ zð Þ
p zð Þ + δ

=
z Hγ,k

α,β f zð Þ
� �

′

Hγ,k
α,β f zð Þ

≺ qμ,ζ zð Þ: ð44Þ

Since Rðqμ,ζ + δÞ > ððμ + ζÞ/ðμ + 1Þ + δÞ > 0, by virtue of
Lemma 1, we conclude that pðzÞ ≺ qμ,ζðzÞ inU, which implies

that Fδð f Þ ∈USγβðμ, ζÞ.

Theorem 16. Let δ > −ðμ + ζÞ/ðμ + 1Þ. If f ∈UCγ
βðμ, ζÞ, then

Fδð f Þ ∈UCγ
βðμ, ζÞ.

Proof. By applying Theorem 15, it follows that

f zð Þ ∈UCγ
β μ, ζð Þ⇔ zf ′ zð Þ ∈USγβ μ, ζð Þ

⇒ Fδ zf ′
� �

zð Þ ∈USγβ μ, ζð Þ
⇔ z Fδ fð Þ zð Þð Þ′ ∈USγβ μ, ζð Þ
⇔ Fδ fð Þ zð Þ ∈UCγ

β μ, ζð Þ,

ð45Þ

which proves Theorem 16.

Theorem 17. Let δ > −ðμ + ζÞ/ðμ + 1Þ. If f ∈USKγ
βðμ, ζ, ηÞ,

then Fδð f Þ ∈USKγ
βðμ, ζ, ηÞ.
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Proof. Let f ðzÞ ∈USKγ
βðμ, ζ, ηÞ. Then, there exists a function

hðzÞ ∈USγβðμ, ζÞ such that

z Hγ,k
α,β f zð Þ

� �
′

Hγ,k
α,βh zð Þ

≺ qμ,ζ zð Þ: ð46Þ

Thus, we set

p zð Þ =
z Hγ,k

α,βFδ fð Þ zð Þ
� �

′

Hγ,k
α,βFδ hð Þ zð Þ

z ∈Uð Þ, ð47Þ

where pðzÞ is analytic in U with pð0Þ = 1. Since hðzÞ ∈U
Sγβðμ, ζÞ, we see from Theorem 15 that FδðhÞ ∈USγβðμ, ζÞ. Let

t zð Þ =
z Hγ,k

α,βFδ hð Þ zð Þ
� �

′

Hγ,k
α,βFδ hð Þ zð Þ

, ð48Þ

where tðzÞ is analytic in U with RftðzÞg > ðμ + ζÞ/ðμ + 1Þ.
Using (47), we have

Hγ,k
α,βzFδ ′ fð Þ zð Þ = Hγ,k

α,βFδ hð Þ zð Þ
� �

p zð Þ: ð49Þ

Differentiating both sides of (49) with respect to z and
simple calculations, we obtain

z Hγ,k
α,βzFδ ′ fð Þ zð Þ

� �
′

Hγ,k
α,βFδ hð Þ zð Þ

=
z Hγ,k

α,βFδ hð Þ zð Þ
� �

′

Hγ,k
α,βFδ hð Þ zð Þ

p zð Þ + zp′ zð Þ

= t zð Þp zð Þ + zp′ zð Þ:
ð50Þ

Now, using the identity (42) and (50), we obtain

Since δ > −ðμ + ζÞ/ðμ + 1Þ andRftðzÞg > ðμ + ζÞ/ðμ + 1Þ,
we see that

R t zð Þ + δf g > 0 z ∈Uð Þ: ð52Þ

Applying Lemma 2 into relation (51), it follows that pðzÞ
≺ qμ,ζðzÞ, which is Fδð f Þ ∈USKγ

βðμ, ζ, ηÞ.

We can deduce the integral-preserving property asserted
by 18 by using Theorem 17 and relation (17).

Theorem 18. Let δ > ð−μ + ζÞ/ðμ + 1Þ. If f ∈UCKγ
βðμ, ζ, ηÞ,

then Fδð f Þ ∈UCKγ
βðμ, ζ, ηÞ.
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