Hindawi

Journal of Function Spaces

Volume 2021, Article ID 6899603, 28 pages
https://doi.org/10.1155/2021/6899603

Research Article

Hindawi

Higher-Order Riesz Transforms in the Inverse Gaussian Setting

and UMD Banach Spaces

Jorge J. Betancor

and Lourdes Rodriguez-Mesa

Departamento de Andlisis Matemdtico, Universidad de La Laguna, Campus de Anchieta, Avda. Astrofisico Sdnchez, s/n,

38721 La Laguna Sta. Cruz de Tenerife, Spain

Correspondence should be addressed to Lourdes Rodriguez-Mesa; Irguez@ull.edu.es

Received 11 June 2021; Accepted 14 September 2021; Published 10 November 2021

Academic Editor: Dumitru Motreanu

Copyright © 2021 Jorge J. Betancor and Lourdes Rodriguez-Mesa. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

2
In this paper, we study higher-order Riesz transforms associated with the inverse Gaussian measure given by 7"?¢/* dx on R". We

establish L?(RR", e"“zdx)—boundedness properties and obtain representations as principal values singular integrals for the higher-
order Riesz transforms. New characterizations of the Banach spaces having the UMD property by means of the Riesz transforms

and imaginary powers of the operator involved in the inverse Gaussian setting are given.

1. Introduction

Our setting is R” endowed with the measure y_, whose den-

sity with respect to the Lebesgue measure is a2ell’ | x e R,
The measure y_, is called the inverse Gaussian measure.
The study of harmonic analysis operators in (R",y_,) was
began by Salogni [1]. The principal motivation for Salogni’s
studies was the connection with the Gaussian setting.
However, as Bruno and Sjogren [2] pointed out, (R",y_,)
can be seen as a model of a variety of settings where a theory
of singular integrals has not been developed. Also, the natural
Laplacian on (R",y_,), that we will denote by <, can be
interpreted as a restriction of the Laplace-Beltrami operator
associated with a warped-product manifold whose Ricci
tensor is unbounded from below. A complete exposition of
the theory of this kind of manifolds can be found in [3].

The aim of this paper is to study L?(R", y_, )-bounded-
ness properties of higher-order Riesz transforms in the
inverse Gaussian setting. Also, we characterize the UMD
Banach spaces by using these Riesz transforms.

We consider the second-order differential operator
defined by

Aof ()= -3 A () ~x- V() xR, (1)

where f € C2°(R"), the space of the smooth functions with
compact support in R". Here, A and V denote the usual
Euclidean Laplacian and gradient, respectively.

o, is essentially selfadjoint in L*(R",y_,). &/ denotes
the closure of o/, in L*(R",y_,).

For every k= (k,, ---, k,) € N" by H;, we represent the k
-th Hermite polynomial given by Hy(x)=]. H; (x;),
x=(x;,,x,) € R", where for every m € N,

2 dm 2
H =(-1)"" —e%,z€eR. 2
W(8)= (1) e e )
We have that, for every k= (k, -+, k,) € N",
= (k| + m) o 3)

where |k| =k, + k, + - + k, and H(x) = e""‘2Hk(x), xeR".
The spectrum of & in L*(R"y_|) is the discrete set

{I’l + m}me]N'

The operator —g/ generates a diffusion semigroup (in the
Stein sense [4]) {T¥},., in (R",y_,) where for every ¢ >0,
we have that
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for every f € I?(R",y_,), 1 < p < 00, and being

oA _
T (xy)= (1 - e

()

The maximal operator T defined by

, (6)

TYf =sup|T{'f
t>0

was studied by Salogni ([1]). She proved that T‘f is bounded
from L'(R",y_,) into L"°(R",y_,). From the general
results in [4], it can be deduced that Tf is bounded from
LP(R",y_,) into itself, for every 1<p<oo. Recently,
Betancor et al. [5] have characterized the Koethe function
spaces with the Hardy-Littlewood property by using the
maximal operators

0k T f|, k e N. (7)

Tffkf =sup
>0

In [1], L’(R",y_,)-boundedness properties with 1<p
<oo for some spectral multipliers associated with the
operator o/ were proved. The imaginary power &, o€
R\ {0}, of o is a special case of the multipliers studied
in [1]. Bruno ([6]) established endpoints results for o,
o € R\ {0}, proving that &/ is bounded from L'(R",y_,)
into LV (R", y_,)- Also, he showed that, for A > 1, the shifted
first-order Riesz transform V(o + AI)""* is bounded from
L'(R",y_,) into L"°(R", y_,). These operators are studied
on new Hardy type H'-spaces.

Higher-order Riesz transforms associated with the oper-
ator & were studied by Bruno and Sjogren [2]. For every «
= (ay, -+, a,) € N"\ {0}, the a-th Riesz transform is defined
by R, =012, where 8 = 8*/0xy --- 0xy" and || = «,
+ - +a,. In ([2], Theorem 1.1), it was established that R,
is bounded from L'(R", y_,) into L"°(R",y_,) if and only
if o < 2.

In ([6], Remark 2.6), Bruno proved that, for every « € N"
with |a| =1, R, is bounded from LF(R",y_,) into itself, for
every 1 <p<oo. In [2], Bruno and Sjogren say that they
do not know whether R, is bounded from Lf(R",y_,) into
itself for every 1<p<oco and a € N”, |a| > 1, though they
expect so. In our first result, we prove that, as they expected,
R, is bounded from LP(RR",y_,) into itself when 1 <p < oo
and a € N"\ {0}. We also obtain a representation of R, as
a principal value singular integral. In order to prove our
result, we need to use some properties of the negative power
AP, B >0, of o. In Section 2, we analyze AP, B>0. We
obtain that, for every f8> 0, the operator &/ is bounded
from L'(R",y_,) into L**°(R",y_,). This result contrasts
with the one in ([7], Proposition 6.2) where it is proved that

et x—ety]
i exp <—% ,6y€R" >0,
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Z7F, B> 0, is not bounded from L!(R”, y) into L>®(R", ),
where & represents the Ornstein-Uhlenbeck operator and y

denotes the Gaussian measure (dy(x) = "¢’ dx) on R".

Theorem 1. Let a=(a;, -+, a,) € N"\{0}. For every f €

C®(R"), the derivative "o/ 1"/?(f)(x) exists for almost all
x € R" and there exists c, € R such that

e 12 (f) (x) = Slgr}),J‘XWSRa(X»y)f ()dy +ef (x),  foralmostall xeR",
(8)

where ¢, =0 if «; is odd for some i=1,---, n.
Furthermore, when n =1 and « is even, the last integral

is actually absolutely convergent for every x € R, and in this
case, no principal value is needed. Here,

1 00
Ry(%y)= ——— | 0T (x, y)t? 1dt, x, y e R", x £ y.
a(xy) F(|“|/2>Jo X t(xy) XyE x;&y

Let @ € IN". Since, for every £ € N,

Hy(2) = ~Hy(2), 2 € R, (10)

& =~

we have that, for every k € N”,

()"

o2 ()= —
e : (Hk>( ) (|k|+n)‘“|/2

Hypo(x),x€R™. (11)

Let f € L*(R",y_,). We can write f = Y, e (f)H, in
L*(R",y_,), where for every k € N",

n,n/2

=2
HHkHLZ(JR",y,I)

()= | rofmera. a2

We define

& (f) %

= (=1)ll
Rocf ( 1) k;ﬂ ( k| N n)w/z Hk+zx' (13)
For every k= (k;, -, k,) € N",

||Hk+aHiZ<w,y,l) = Jw (Hyoo(y)2e P dy = m2lo+1H H I(ki+a;+1).

i=1

(14)
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Then
U Pl e
|Raf 22 ., _ a( V1)
IRaf ey %,, (|k| +n)!
. 2 ||~k+a||§z
- c f H . VL)
k;ﬂ(k( )H k”LZ(R ,y,,)) (k| +n) o

=cy (PNl ey ) =M ey -
(15)

where the constant C depends on n and a. Hence, R, is
bounded from L*(R",y_,) into itself.

If f € C°(R"), then R, (f)(x) = 0%/ (f)(x), x € R".

Theorem 2. Let a=(a;, -, a,) e N"\ {0} and 1<p<oo.
The Riesz transform R, can be extended from L*(R",y_,) N
LP(RY,y_,) to LP(R",y_,) as a bounded operator from LP
(R",y_,) into itself. By denoting again R, to this extension,
we have that, there exists c, € R such that, for every f €
LP(R",y_;),

R,(f)(x)= lim J.| | R, ) f(n)dy + c.f (x),  foralmostall xeR",
x—y|>e

e—0"
(16)
where ¢, =0 if «; is odd for some i=1,--,n

When n=1 and & € N is even the integral defining R, is
absolutely convergent.

As it was mentioned, Bruno and Sjogren ([2], Theorem
1.1]) proved that R, is bounded from L'(R",y_,) into L>*®
(R",y_;) if and only if 1 < |a | <2. This property also holds
in the Gaussian setting (see [8, 9]). Aimar et al. ([10]) intro-
duced Riesz type operators R,, o € N" \ {0}, related to the
Ornstein-Uhlenbeck operator. R, is bounded from L!(R",
y) into L"°(R",y) for every a € N"\ {0}. Motivated by
the results in [10], we define Riesz transform in the inverse
Gaussian setting whose behavior in L'(R",y_,) is different
from the one for R,.

We can write 'Qfo =21210;0, , where for every i=1, -, n,

8, =-27"e™ o ¢*. We consider the operator &/, = Y9, 8,
We have that o/, = —n+ &,. Let & the closure of & in L*
(R",y_,). For every k € N", o/H, = |k|H,, and the spectrum
of & in L*(R"y_,) is the set of nonnegative integers. For
every £, m € N, we have that 8" H,(u) = (-1)"(I'(¢+ 1)/T'(¢

—~m+1))H,_, (1), u € R. Here, we understand H, = 0 when
£<0. Then, for every a=(ay, -+, a,) € N”, by denoting 6

=TI, 87", we get
N I'(k;+1) -
8*Hy = (-1)l Jk
k- HF i—a;+1) Hia (17)
=(k;, - k,) eNLk 2a,r=1,-

If a=(a, - a,) e N\ {0} and k= (k;, -, k,) e N"\
{0}, with k, >«,, r=1,---, 1,
_ _ —1)lel k+1) -
a g2 gy (1) I'ki+1) 7 )
0%l T (Hy) |k|/® 1L T(k; — o + 1) o (18)

In other cases, °%/ (H,) = 0 (see Section 4 for details).
Let a= (0, a,) €eIN"\{0}. We define the Riesz
transform R, on L*(R",y_,) as follows

_ i Tk +1) .
RN=0D) ‘k=(k Zk )eN” k[l ‘ZHF (_‘: +1) W i
k,zéér,r;f,---,n

(19)

Thus, R, is bounded from L*(R",y_,) into itself. If f €
CX(RR") and ¢y(f) =0 then Rouf _ Sa'&—\a\/zf.

Theorem 3. Let a = (ay, -+, «,) € N\ {0}. The Riesz trans-
form R, can be extended from L*(R",y_,)NLF(R",y_,) to
LP(R",y_,) as a bounded operator from

(i) LP(R", y_,) into itself, for every 1< p <00

(i) L'(R",y_,) into L"°(R", y_,), provided that n = 1 or
la | >n, when n> 1

By denoting again R, to the extension we have that, for
every f e [P(R",y_,), I <p <00,

e—0"

R,(f)(x) = lim j‘ ‘ R,(x,y)f(»)dy + c,f (x), foralmostall xeR",
x—y|>e
(20)

where ¢, = 0 when w; is odd for some i=1,---,n. Here

1

R (x.y)= W

J 84T (x, y)tV2 1dt, x, y e R", x # y.
(21)

Let X be a Banach space. Suppose that {M,} is a X
-valued martingale. The sequence {d,=M,-M, }",,
where M, is understood as 0, is called the martingale differ-
ence associated with {M,} . We say that {d,} . is a L?
-martingale difference sequence when it is the difference
sequence associated with a L”-martingale. If 1 <p < oo, X
is said to be a UMD, -space when there exists > 0 such that
for all X-valued LP-martingale difference sequence {d,}",
and for all (e,)" € {-1,1}",

P
(22)

UMD is an abbreviation of unconditional martingale dif-
ference. If X is UMD, for some 1 < p < co, then X is UMD,



for every 1 < p < oo. This fact justifies to call UMD to the
property without any reference to p. Burkholder [11] and
Bourgain [12] proved that the UMD property of X is neces-
sary and sufficient for the boundedness of the Hilbert trans-
form in L?(RR, X), 1 < p < 0co. The UMD property is a central
notion in the development of the harmonic analysis when
the functions are taking values in infinite-dimensional
spaces. UMD Banach spaces have been characterized by
using other singular integrals that can be seen as Riesz trans-
forms associated to orthogonal systems (see [13-16], for
instance). In the following result, we characterize the Banach
spaces with the UMD property by using Riesz transforms in
the inverse Gaussian setting. For every i =1, -+, n, we define
¢'= (e}, ¢,) where ¢;=0,i#j,and ¢/ = 1.

Theorem 4. Let X be a Banach space. The following asser-
tions are equivalent.

(i) X is UMD

(ii) For every i=1,---,n, R, can be extended from L?
(R",y_;)®X to LPF(R",y_,,X) as a bounded opera-
tor from LF(R",y_,, X) into itself, for every 1 < p < co

(iii) For every i=1,---,n, R, can be extended from L?
(R y_;)®X to LP(R",y_,, X) as a bounded opera-
tor from LP(R",y_,, X) into itself, for some 1 < p < 0o

(iv) For every i=1,---,n, R, can be extended from L'
(R, y_,)®X to L'(R",y_,,X) as a bounded oper-
ator from L'(R",y_,,X) into L"*(R",y_,, X)

Also, the equivalences hold when in the properties (ii),
(iii), and (iv), we replace R, by the maximal operator R;

defined by

Ri(f)(x) = sup ,xeR" and i=1,---,n

>0

j‘ RS0y
X*y>€

(23)

Theorem 5. Let X be a Banach space. The following asser-
tions are equivalent.

(i) X is UMD

(ii) For every 1 < p < co there exists, for each i=1, -+, n,
the limit

lirrtl) J Ri(x9)f(y)dy, foralmostall xeR", (24)
e0  xy e
for every f e LP(R", y_,, X).

(iii) For some 1 <p < 0o, there exists, foreveryi=1, -+, n,
the limit

Journal of Function Spaces

e—0"

lim J Ri(x)f(y)dy, foralmostall xeR", (25)
[x=y|>e

for each f e P(R",y_;, X).

(iv) Forevery 1<p<oo, f e [P(R",y_,X)andi=1,---,
n, R%(f)(x) < 0o, for almost all x € R"

ol

(v) For some 1< p < oo and for every f € LP(R",y_;, X)
andi=1,---,n, R;(f) (x) < 0o, for almost all x € R"

The properties stated in Theorems 4 and 5 can also be
established when we replace R-Riesz transforms by R-Riesz
transforms.

Next aim is to state characterizations of the Banach
spaces with the UMD property by using imaginary powers
A, 0 € R\ {0}, of . Salogni ([1], Theorem 3.4.3) proved
that, for every 1 <p < oo and 0 € R\ {0},

HdwHLP(R”,y,Q—»L"(R”%l) ~ etlol (26)

as 0 — 00, when ¢, =arcsin [2/p — 1|. Actually, A is a
Laplace transform type multiplier associated with &/ defined
by the function ¢, (t) =t77/I'(1 - ic), t >0, for every o € R
\ {0}. Then, since {T{'},., is a Stein diffusion semigroup,
the L?(R",y_,)-boundedness of &/'’, o € R\ {0}, follows
from the general results established in ([4], Chapter III).
Recently, Bruno ([6], Theorem 4.1) proved that g, 0eR
\ {0}, is bounded from L'(R",y_,) into L"®°(R",y_,).
Let 0 € R\ {0}. We have that

Af= Y (|kl+m) e (NHef PR y,).  (27)

keN"

It is immediate to see that &/ is bounded from L2 (R",
y_,) into itself. For every feL*(R",y_,)®X, we define
A" in the obvious way when X is a Banach space. In order
to the operator &/ is bounded from L*(R",y ;) ®X into
itself as subspace of L*(R",y_,, X), we need to impose some
additional property to the Banach space X. For instance, if X is
isomorphic to a Hilbert space, then &/ can be extended from
L*(R",y_,)® X to L*(R",y_;, X) as a bounded operator from
L*(R"y_,,X) into itself. We are going to characterize the
UMD Banach spaces as those Banach spaces for which &/*
can be extended from (L*(R",y_,)NnL’(R%y_))®X to
LP(R",y_,,X) as a bounded operator from LF(R",y_,X)
into itself, when 1<p<oco, and from L'(R",y_,,X) into
L"°(R",y_,,X). Our result is motivated by the one in
([17], p. 402) where UMD Banach spaces are characterized
by the LP(R, dx)-boundedness properties of the imaginary
power (-d*/dx*)”, oeR\{0}, of —d*/dx®. Guerre-
Delabriére’s result was extended to higher dimensions by
considering imaginary powers of the Laplacian in ([18],
Proposition 1). In [19], this kind of characterization for
UMD Banach spaces is obtained in Hermite and Laguerre
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settings. As far as we know, this property has not been
proved for the Ornstein-Uhlenbeck operator in the Gauss-
ian framework.

Theorem 6. Let 0 € R\ {0}. For every f € L*(R",y_,), we
have that

A7 (f)(x) = lim (J‘ ‘ Kf(x,y)f()/)dy+oc(s)f(x)>, foralmost all  x e R",
x—y|>¢

e—0"
(28)
where
00

Kf(x,y):—J gba(t)atTf”(x,y)dt,x,yEIR”,xqéy, (29)
0

and

o0)= oy [ 005 )t e (0,000, 20

0
being ¢ (t) =t"°/I'(1-ic), t € (0, 00).

Let X be a Banach space. The following assertions are
equivalent.

(i) X is UMD

(ii) For every 1< p< o0, 4 can be extended from (L?
(R y_,)NLP(R",y_,))®X to LF(R",y_,X) as a
bounded operator from LF(R",y_,, X) into itself

(iii) For some 1< p < oo, 4 can be extended from (L?
(R y_,)NLP(R",y_,))®X to LF(R",y_;,X) as a
bounded operator from LF(R",y_,, X) into itself

(iv) 9 can be extended from (L*(R",y_,)nL!(R",
y.))®X to L'(R",y_,,X) as a bounded operator
from L'(R",y_,, X) into L"°(R",y_,, X)

We define the maximal operator of'° by

A7(f)(x) =sup

>0

Sfe PRy, X).

p21
(31)

j K0
x—y|>e

The following assertions are equivalent to (i).
(v) For every 1< p<oco, 4 is bounded from LF(R",
y_;» X) into itself

(vi) For some 1< p<oco, &' is bounded from LF(R",
y_;» X) into itself

(vii) o' is bounded from L'(R",y_,, X) into L"®(R",
Y- X)

(viii) For every 1<p<oco and every f e LF(R",y_;,X)
there exists the limit

lim (J K2 (%, 9)f (y)dy + a(s)f(x)) ,  foralmostall xeR".
ey

e—0"

(32)

(ix) For some 1<p<oco and every feLP(R",y_,,X),
there exists the limit

e—0"

lim (J K< (x,)f (y)dy + oc(s)f(x)) , foralmostall xeR"
eyl

(33)

(x) For every 1<p<oo and every feIP(R",y_;,X),
A(f)(x) < 0o, for almost all x € R"

(xi) For some 1<p<oco and every feLP(R",y_,,X),
A (f)(x) < 0o, for almost all x € R"

This paper is organized as follows. In Section 2 we study
the negative power &/F, >0, of of. Higher order Riesz
transforms in the inverse Gauss setting are considered in Sec-
tion 3 where we prove Theorems 1 and 2. Theorem 3 is estab-
lished in Section 4 and Theorems 4 and 5 in Section 5.
Finally, Section 6 is devoted to show the proof of Theorem 6.

Throughout this paper, C and ¢ denote positive con-
stants that can change in each occurrence.

2. Negative Powers of &

In this section, we prove Lf(R",y_,)-boundedness proper-
ties of the negative powers &/, B> 0, of /. These proper-
ties are different than the ones of the negative powers of
the Ornstein-Uhlenbeck operator & = -A/2 + xV. We prove
that, for every B >0, o/ defines a bounded operator from
L'(R",y_,) into L"*°(R",y_,). However, in ([7], Proposi-
tion 6.2), it was proved that if §>0, Z* is not bounded
from L'(R",y) into L*®°(R", y).
Let 8> 0. We define

%Hk,fewmy_o- (34)
keN" n

a ()=

o7 is bounded from L*(R",y_,) into itself. Moreover,
when f3>1, the series also converges pointwisely in R".
Indeed, let f € L*(R", y_,). We have that

_ -1
|Ck(f)| < ﬂn/ZHfHLZ(]R"»}Ll) HHkHLZ(]R”,y_])’ ke IN". (35)



Also, for every k € N", (see (14)),

n 1/2
HHMmmhf”MﬁWOIF@+U> R

J=1

and according to ([20], p. 324),
|H;(z)| <2y/T(j+1)2%2,z€ R and jeN. (37)
Then,
[] n _—|x|? n n
[ecF) ()| <2 PP fll g, X € RN, (38)

and if B> 1 it follows that

Z |Ck( ﬁ|H

—|x|*/2
2 e = O W e

,xeR". (39)

The series in (34) converges pointwise absolutely for
each > 0 when f € C°(R"). Indeed, let f € C°(R"). Partial
integration allows us to see that, for every r € N, there exists
C=C(f,r) >0 such that

C
(|k| +”)r||Hk

e()] < keN. (40)

ez ey

Then,

Z | (f) |H |<Ce—\x\2/2 Z 1

— <00
v (k| +n)f ke (k| + )P
(41)

We also consider the operator defined, for every f €
L*(R",y_,), by

i | T (42)

W= 1

where the integral is understood in the L*(R%y_,)-
Bochner sense.
For each t > 0, we can write

Z e \kh—n

keN"

NHfeLX(RYy,).  (43)
We obtain

1T ey = 2 & e DP ey
keN"

—on -2
<e Z |Ck(f)|2||Hk||L2(R",y,l)
keN"
=\ f gy f € LR, y_y)st > 0.

(44)
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Then,
L[, -
IS5 = i |, IO ey e
< Il Jooe—nttﬁ—ldt (45)
re) Jo
||f||
L fe PRy ).

Suppose now that f € C®°(R"). By using (40), we obtain
that there exists C = C(f) > 0 such that

T (f)(x)| < Ce 2™, x e R, 10, (46)

We can write

Sp(F)(x) = ﬁkzﬂ( f)I:Ik(x)J:oe(lkJrn)ttﬁl i
af) =z, - .
—kemek(x) = P(f)(x),x e R".
(47)
Since C®°(R") is dense in L*(R", y_,), 4 F(f) =S84(f),

fe(RMy.,).
According to ([6], Theorem 2.5), we have that, for every
feCPRT)

SAE) = | Moy,
R*
for all x outside the support of f, where

1 [ ; :
My(x,y) = mj T (x,y)tF'dt, x, y e R", x #£y.  (49)
0

Proposition 7. Let 8> 0. The operator o/ ™F can be extended
from LP(R", y_,) N L*(R",y_,) to L(R",y_,) as a bounded
operator from LP(R",y_,) into itself, when 1<p < oo, and
from L'(R",y_,) into L (R",y_)).

Proof. We use the method consisting in decomposing the
operator o/ in two parts called local and global parts. This
procedure of decomposition was employed by Muckenhoupt
([21, 22]) in the Gaussian setting.

From now on, we consider the function m given by
m(x) =min {1,1/|x]}, x € R"\ {0}, and m(0) =1 and the
region N defined by

N:{(x,y)elR”x]R”:|x—y|£n\/m(x)}. (50)
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We decompose o/F as follows
dF=al +d;£b, (51)

where o/, (f)(x) = P (fxy(x,))(x), x € R".

loc

According to ([1], Lemma 3.3.1), we get

m(x) efc\xfy\z/t —nt

Mg(x,y) sC(J e
0

#1dt +J

p-1
i (L= )7 dt) (e

(52)

By choosing 0 < & < min {2, n}, we obtain
m(x) e—c\x—y|2/t

o dt
B-el2-1
M B(x, y) < C(L T P 4 Jm(x) _t(n—s)/2+1>

1
< C(;HJ\ tﬁ—8/2—ldt + m(x)(ns)/2>
|x =y 0
C
S e (By) EN.
|x =y
(53)

In the last inequality, we have taken into account that
m(x) ~1/(1+]x]), x€R", and that (1+|x|)|x—-y|<C,
provided that (x,y) € N.

We have that

dy
supJ Mpg(x,y X,y dySCsupJ —
xeR" J R7 ﬁ( )XN( ) <eR"J |xylnr /ma) |X _y‘n €

14/ m(x)
<C supj r*dr

xeR"J0
< C supm(x)”* < c0.
xeR"
(54)
Also, since /m(x)~1/(1+ |x]) ~1/(1+|y]) ~ /m(y),
(x.y) €N,
supJ Mpg(x, ) xn (%, y)dx < co. (55)
yeR"JR"

Hence, the operator Mg, defined by

My F))= | Myl y)a ) ey x R (50

is bounded from L*(R", dx) into itself, for every 1 < p < co.
Since Mg, is a local operator, by using ([1], Proposition
3.2.5), we deduce that Mg, is bounded from L*(R",y_))
into itself, for every 1 <p < oo.

Suppose that f, g € C°(R"). As above, we take 0 <& <
min {23, n} and we get

[ el [T s el sy
R" R"JO (57)

<c[ 1| laon 22D dpas oo

e =

Then,

J f(X)»Qf[f(g)(x)dx=J S (%)Sg10c(9) (x)dx
R" R" (58)

= | 1M (o) e

We deduce that ;" (9)(x) = Mpg),c(g) (x), for almost all

loc

x € R". Since &[1:5 and Mg, are bounded from L*(R",y_,)
into itself, .Qi_ﬁ(f) = Mg, (f), f € *(R", y_,). Tt follows that,

loc
for every 1 < p < 0o, d{olj can be extended from L*(R",y_))
NLP(R"y_,) to LP(R",y_,) as a bounded operator from L?
(R",y_,) into itself.

We now study the operator My, defined by

Mg F)(5)= | Myt ) (e ) 0)dyx € RO (59)

By making the change of variables s=1— ¢, t € (0,00),
and taking into account that |x —ry|* =]y —rx|* + (1-7?)
(|«]> = [y*), x,y € R", r € R, we obtain

B n,fn/Z 0O efnt 7\)(764}/‘2/(17[2‘) 1
Mﬁ(x,y)—@JO me tPdt
2 1 g ly=xvifs

x| ni2- -1 n
= P e Jo 7 (1-5)"*"(~log (1 75))’5 ds, x,y e R".

(60)

We now use some notations that were introduced in
[23] and proceed as in the proof of ([23], Proposition
2.2). For every x,y € R", we define

a= | +yP,b=2(xy), 5, =2

) ‘y—x\/l——s’z

,s€(0,1).
. (0.1)

(61)

Assume that (x, y) ¢ N. Suppose first that b<0. In this
case, u(s)>als—|x|>, s€(0,1). Furthermore, s< C(-log
(1-5))<C(1—-5)""*) 5¢(0,1). Then,

e—als

1
l?
My(x,y) < Ce JO gt ©)



By making the change of variable r=1/s—1, s€ (0, 1),
and taking into account that a > 1/2, we obtain

00 efr/Z(l + r)n/2—1/4

i dr<Ce P, (63)

Mp(x,y) < Ce Jo

Suppose now b > 0. We write u, = u(sy) = (|y|* - |x[*)/2
+ |x + y||x — y|/2. By using that (see [24], p. 850)

(64)
we have that

e (! ni2-1 p-1
o Jo(l—s) (-log (1 —-5))""ds

Mp(x,y) < Cebl = sup
s€(0,1)
<P e
S
(65)

Since s, ~ Va2 — b*/a we conclude that, when (x, y) ¢ N,

e if (x,y) <0,
Mg(x,y)<C ni2 22 _
P YN o (W2 oAy ey 0.
[x =yl 2 2
(66)

Let 1 < g < co. Since |[y|* — |x[| < |x + y||x = y|, x, y € R",
and |x — y||x + y| = n, when (x,y) e N°and b > 0, as in ([25],
p. 501), we obtain

JRf‘x‘ MM (x, ) e (3 )y

< C(J e—\x|2(171/q)e’\y|2/qdy+J ‘x+y|nef\x+y\\xfy|(1/27\1/q71/2|)dy)
R R

<C,xeR".

(67)
Also, we have that
supj e"“zlq_W/qMﬁ (%, ¥) X< (% ) dx < 0. (68)
yeR"JR"

We deduce that Mgy, is bounded from L*(R", y_, ) into

itself, for every 1 < p < co.
Next, we are going to see that Mg, is bounded from

L'(R"y_,) into L"°(R", y_, ). We decompose My(x, y), x,
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y € R", as follows

I

e brxvls 2-1 1
e (1= 5)" (~log (1 -5))"'ds
§

=L(xy) +L(xy).
(69)

For every x,y € R"\ {0}, we denote by 0(x, y) € [0, 7]
the angle between x and y (we understand 6(x,y) =0,
when n=1). By using ([1], Lemma 3.3.3), we get that,
for every (x,y) e N, x,y#0,

I (%) < Cel -kt sup ds

s€(0,1)

e ISl (1— 5)"2 (12 (—og (1 - 5))F!
sni2 0 I-s

e—|(1+r)y—(l—r)x\2/r(1 _ 7’)"

< CP " sup
re(0,1)

< CHTHE min {(1+[x])", (|| sin 8(x, )"}

rn/Z

(70)

On the other hand, by proceeding as in ([2], Proposi-
tion 5.1), we estimate I,(x,y), (x,y) €N We first
observe that

1
L(x,y) < Ce‘y‘z’P"zJ ¢ bt (1-s)"*!
172 (71)

- (-log (1 —s))ﬁflds,xandy eR".

If |y| =2|x| then [y —xv/1—-3s|>3|y|/4, s€(1/2,1), and
it follows that

1

(1-5)"27(-log (1 -s))fds
12
e

—> %y #0.

2 2 .2
L,(x,y) < Ce~bT bl J
el)"z_‘x‘z

|

<C
n-1 |x|n
(72)
If x,y € R"\ {0} we define r, = |y||x|" cos 8(x,y) and
we write y=y, +y,, where y,  is parallel to x and y, is
orthogonal to y.

By making the change of variables r = /1 —s and since
ly —rx|* = |r = ro[|x[* + [y, |, it follows that, if |y| < 2|x|,

172
I(x,y) < Ce’”‘yme‘y‘z"x‘zj (|r- rol" ™ + |ro\"’1) (-log r)/;’le’c"”“z‘x‘zdr
0

Y A ANE
<ol (L, <M> J (~log r/F1dr
|x] || 0

n—1
< Gl b - L + |x] il , (%, y) eN“.
" ol

(73)
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In the last inequality, we have used that |x| > C when
(x,y) € N® and 2|x| = |y|.
By combining the above estimates, we obtain

Mp(x,y) < Ce? M (min{(1 +[x[)", (x| sin 6(x.7)) "}

1 ~ ) y n-1
+ T +e Vil x| (H) X{\y\g2\x|}(x)J’)>’(x’)’) €N*.

(74)

According to ([1], Lemma 3.3.4) and ([2], Lemmas 4.2
and 4.3), we can see that the operator Mg, is bounded

from L'(R",y_,) into L"°(R%,y_,).
The estimation (74) allows us to prove that, for every g

€ CO(R"), oy, (1) (%) = Mg op(f) (), for almost all x €
R”. Then, since Q@ljb and Mg, are bounded from L*(R",
y_,) into itself, *Q@ﬁoh(f) = Mg o (f), f € L2(R", y_,). Hence,
.Qf;l’ﬁb can be extended from L*(R",y_ ) nL*(R",y_,) to L?
(R",y_,) as a bounded operator from L?(R", y_,) into itself,

when 1< p < 0o, and from L'(R", y_,) into L>®°(R", y_,).
Thus, the proof is finished. O

3. Higher-Order Riesz Transforms
Associated with the Operator &/

In this section, we prove Theorems 1 and 2 concerning to
the higher-order Riesz transforms in the inverse Gaussian
setting.

Proof of Theorem 1. Let f € C°(R"). If £ € N", we have that

© ot __\¢
0, T¢ (%) = (-1) n"/z(l—e*”)("”e‘)/z ¢

_nte—‘xfe’tyr/(lfe’z’) <X—€_ty

n
m),x,ye]R ,t>0,

(75)
and then

e_me—c|x—e"y|2/ (l—e’z’)

,%5,yeR" t>0.

¢ et
0, Ty (x,y)‘ <C (1= e 2)TED2

(76)

Suppose that k € N and ¢ € N” such that €| < k. Then,

[ o]

LT (x, y) ‘tklz’ldtdy <oox€eR".  (77)

O

Indeed, by considering the function m defined in Propo-
sition 7 and using (76) and ([1], Lemma 3.3.1), we obtain,
for e € (0,1),

e~clxl ’/t

oLTY (x y)‘t"’“dKC " dr+ [ L K271 gy
A (% s o fR ey (1= e26) D2

1
<C 1 Akt gy 0 dt
T\ m(x) 72

1 1

< ¢ (x,y)eN
S o (%Y .
[x =yl

J,

(78)

On the other hand, by reading the proof of ([1], Lemma
3.3.3), we deduce that
Joo efc|yfe"x‘2/(lfe’2‘) .
0

o
R J efnttk/Zfldt
! 0

LT (x, y ‘tm’ldts Cel =R sup
A7) te(0.00) (1 —e72)

< CMTE (14 x)™ Y, (x, ) € N©.
(79)
Note that this estimation also holds when || = k.

Since f € C2°(R"), (77) holds. Hence, according to ([15],
Lemma 4.2), we have that, when k€ N, £ € N” and [¢| <k,

LA™ (f)(x) =

= mj f(y)-[ 0 T (x, y)t?dtdy, foralmostall xeR”".
R’ 0

(80)
We assume a=(q;, -, a,) € N"\{0}, so we can
suppose without loss of generality that «; > 1. Let us take £

=(a; - 1,a,, -, a,). According to (80), we can write

1

aa‘d—\a\/z :a <
1)) =0, (g |_S0)
. Imain{(x,y)t‘“‘/z_ldtdy>, foralmostall xeR".
JO
(81)
Assume first n > 1 and write
| s ety = )+ G x e,
R" 0
(82)
where
R =] 0] LT ) - Wile- )] dedy, xR
R" 0
(83)

and
G(x) = J f(y)roaf; W, (x - y)t?dtdy, x e R".  (84)

Here, W, t >0, denotes the classical heat kernel W,(z)
= e 120 (27£)"2, z € R,
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Next, we show that

0,509 =| s Imey)
- Wt(x—y)]th_ldtdy, xeR".

(85)

for almost all

By taking into account (76), we get

J Iai‘ [Tf{(x,y) -W,(x _y)} |t|a|/2—1dt

m(x)
—nttIaI/Z 1 e—c\x—y|2/t
+ dt
tn/2+1 (86)

00 e -
= ij(x) (1 - e_Zt)(n+|oc|)/2

CJ tnita-l = ¢ n/2
m(x) m(x)

IN

<C(l+lx])" x,y e R".

[T (%, y) -

Journal of Function Spaces
Also by using (79), we obtain

m(x)
J |03 [T‘f"(x,y) - Wi(x-y)] |t|“|/2_1dt

0
) m(x) o=clx=y|"/t
< C[ el F (1 4 |x|)m+iel +J R
h2+1
0 (87)

1
<C ely\z—\x\z(l T i I S———
|x_y|n+|tx\

< Cel (1 + [x])™1, (x, y) € N©.

Now we are going to estimate

m x)
I(x,y) = J |03 [T (x,y) = W, (x = y)] |71 dt, (x,y) €N.
(88)

We can write

_
W[(X—y)]— 2 <(1 e2) (n+|af)/2

(7
S K

1 1 -
\/1—62t> + ((1 _efzr)("Jr\vfl)/Z B (Zt)(n+|a)/2> H, (89)

—e'y 1 -
(\/ 1- ezf) " (2t (H“

3

Li(tx,y) ’t“"'/z’ldt = le(x,y), x,y€R".
=t

(90)

By proceeding as in the proof of ([1], Lemma 3.3.1), we
can see that

e—c‘x—e('r)y| % ( 1-e(-2) )

(l _ e_Zt)n/Z - t?l/z

e—c\x—y|2/t

,(%,y) €N, te(0,1). (91)

Then, by taking into account that

1 1
(1- 6_2,)(n+|a\>/2 B (Zt)(n+|a\)/2

‘e‘”t - 1’ <Ct and

C

< W,te (0,1),

(92)

it follows by using (91) that

_ 3
xX-ey (XY n
- H =Y I(t,x,y),x,y e R".
\/l—e”) a<v2f>)} ]; f57) %y

m(x) e—c\x—y\zlt C L d
Li(xy)+1,(x,y)<C < 1
1( )’) 2( )’) L ni2 |x_y|n—1/2 Jo 174
C
S|X yln 17272 ( y)GN
(93)

Let us analyze the term I5(x, ), (x, y) € N. For every z
=(zy, " 2,), w= (W, -+, w,) € R", we write

Let (x,y)€N, t€(0,1), and consider z=(x—e"y)/
V1-e2 and w= (x - y)/v/2t. By taking into account that
(1+ x|+ |y])|x—y| <C, it follows that el < Cev and
then, for each k=1, ---, n,
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k-1 n ’x, -y,
~ J J
< — E L
H ‘ H ‘H ’ Cexp ¢ R t i
j=1 j=k+1 j=Lj#k
(95)

and, by considering also (1) and using the mean value theo-
rem, we get

|, () - H, (wy)] < Ce |z —w |

< CePnl'r ((T/%m X = ¥ |—orn

< Ce’c‘xk’yk‘z/t\/f(lyd + %= yil)

< Ce NIt + | = ) < Ce VR (1+ ).
(96)

==l

Then,
() () )
< CeFIVE(1 + |x)), (x,y) €N, £ € (0, 1),

and thus,

x) ,—clx—y|*/t

m(.
Ii(x,y)<C(1+ |x|)J R dt<C

L+[x| ("0
|x y|n 1/2 J t dt

1+ |x 1/4 1+ x
( ||)n(1/2) <C ~ n|7112’(x’)’)€N'
x =yl x =yl
(98)
We deduce that
A1+ |x
I(x,y)SC—n‘_lJz,(x,y)eN. (99)

|x -y

J 2t emr=tim | 3, ()20

I
5

I
3

1]

m'_.‘

LE
N N

|)7|>s

j -3, D)dy+1,(x)

11

This estimation, jointly with (86) and (87), leads to

[ ] o) = Wi ) ety

| 1o (am )i + |V_ly|"> &

< C(1+|x)"* < cox € R",

IN

(100)

where we have used that f has compact support. Accord-
ing to ([15], Lemma 4.2), (85) is then established.
We are going to evaluate 9, G(x). We write G(x) = [},

f(x=y)®(y)dy, x € R", where

®(2) = J (W, () ldr z e R, (101)
0
Since n > 1, we have that
00 e—c|z|2/t C ;
|Cl>(z)|SCJ0 R t< W,ZE]R \ {0}. (102)

According to ([15], Lemma 4.2), we can derivate under
the integral sign obtaining

2,60 = 0, (=) @0)dy
= —[ 0, (f(x=y))®(y)dy, foralmostall xeR",

(103)

where the last integral is absolutely convergent.
For every z=(z, -, 2,) € R", we define z = (z,, -+, 2,,).
Partial integration leads to

Jim, (Ly,fﬁ 8 P JWJR) 0, (/v )20y

—ijﬂx 00+ |

‘y| <&

x— ylioo 82_mzd’ x— e dy
Flx- )oY y+Jy|<€f( e Wy>

>,x€]R”,

(104)
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where
A(x)-[H f(x1+ e x—y)@(—\/eZ—W,y)dy
o y<€
- ( - Je- |y|2,fc—y)®(\/sz - \?IZJ) dy, x € R”
|y‘<£

(105)

Let us estimate lim,__,,.J,(x), x € R". We recall that ®
can be written as follows

e e
_W OHQ ﬁ t(rH—l)IZ’ZEIR' (106)

Suppose now that &, is odd. Then,

@(—\/82 - WJ) =q><\/s2 - W,y),ye R, 7] <e.

(107)

We have that, for every x e R” and £ >0,

On the other hand, by performing the change of variable
s=€2/(2t), we get

_1)le=1 oo M- 1z7\ 2
Q)(S\/ 1- |5‘2>82> = W‘[ H, (%) H,
z; dt
;6? {(n+1)12
(e o O\
- z\a\/Zn—n/Z 0 H“1*1 S(I - ‘Z' ) 1 Hei

i=2

(zV5)s"ds, 6> 0,z e R" 2] < 1.
(109)

i=2

Journal of Function Spaces

It follows that

1)|0‘\ 1
X
€ Z\a\lzﬂn/z

f(x +8\/1—|2‘2,fc—82)
[2]<1
00
_f<x1—s l—|§|2,5c—82) XJ H,
0

(V1)) T e eva)e

i=2

55(1=3)20sd7 x € R", & > 0.
(110)

Then, by using the dominated convergence theorem,
we obtain

lirr(1)+]£(x)=0,x€IR”. (111)
&E—!

Suppose now that «; is even. Then,

qb( ey/1- % *) —cb(sm—|y|2,y>,e>o,ye1R”*1,|y|<e,

(112)

and proceeding as above, we get

) = g‘i‘ Jm« (r(x+ey/i-les-)
oA (o))
[ () i

)2 dsdz, x € R™, > 0.
(113)

It follows that

()"

lim J, (x) = 04/217.[,1/2f(x)J|z|<1J0 Ho

e—0"

(114)
We note that if «; is odd for some i=2,---,n, then
¢, =0. Thus, we conclude that

f()0,, Px = y)dy +cof (%)

ey

%G@:hmj

e—0*

= dim [ 0| Wy ey
0

0 xype

+ ¢ f (%),

foralmostall xeR”,

(115)

where ¢, =0 when «; is odd for some i=1,:--,n
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By putting together (85) and (115), we obtain

_
(ja]2)

1 RN al/2-1
= i (0 B ) - i)y

e (f) (x) = 05, (F(x) + G(x))

+ lim J f(y)Jmajw[(x— Yt dedy + CJ(X))
eyl

e—0" 0

1 00
=— lim J fly J °T (x, y)) 12 drdy
ram) i ), 0], 5w
+¢.f(x), foralmostall xeRR".

(116)

We now deal with the case n=1. We have a € N, a > 1.
According to (80), we can write

d‘ia d(f)(x) = T (01( ) d% JW f (y)J:Oaj“ T (x, y)t** dtdy
- ﬁ% (F(x) + G(x)), x € R,
(117)
where
_ (o 9] dtx—l
Fe)=| )] [af;“Tf" (57) - ((dx Wt> (x-7)

da—l
- (dxtxl

Wt> (0)X (1,00) (t))] 27 dtdy, x € R,

(118)

G(x) = JRf(y)J:O ((% Wt> (x—y)
- (%‘:1 W’) <0)X(1,00)(t)> 2" dtdy, x € R.

(119)

Note that if « is even, then (d*'/dx*"")(W,)(0) = 0.
By proceeding as in the case of n>1 and taking into
account that

<j— wt> (=) - (jx— wt> )

C
SW

~ x=y ~

H, (=2Z)-H,,(0
al(m) 1( )‘
<ol

plat1)2’

xyeR,t>1,

(120)

we can see that the integral defining F(x) is absolutely
convergent for every x € R and

13

5 F0=] 0| 2T o) - Wi ey,

(121)

being also this integral absolutely convergent for almost
x€eR.
On the other hand, by considering

op)- [ ( (j— w[> 0)- (j— wt> (1o (t)) 1t

- [ (e () - e O ) oy 1 ),
(122)

we can write

G(x) =j fx-y) @)y xeR",  (123)

R
and according to ([15], Lemma 4.2), we get

506 =| 3,700y

=- lim J‘ ‘ 0,(f(x~y))®@(y)dy, foralmostall xeR.
y|>e

(124)

By partial integration, we obtain

J,, Bt meui=—|  s-no
yi>e y|>e
+f(x+e)D(-¢) - f(x—€)D(e), e>0,x e R".

(125)

Then

% G(x) = _lirr(lr (J flx=y)@' (y)dy + ]e(x)> , foralmostall x€R,

ly|>e

(126)

J.(x) =f(x—€)D(¢e) — f(x + )D(~¢),e>0,x e R.  (127)

By taking into account (10) and that H,(z) < Ce™™, z
€ R, it follows that

7 DY (g (2 )\
&' (y)= J H 32 dt
0= iz, (J5)

0 d‘x
J <W Wt) (y)t**'dt,y e R\ {0}.

0

(128)
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On the other hand, we have that

o0 23 )T o))

_1\e-1 00 d 22 ~ d
- % <J (VRS JU (Hoor (V5) - Hot(0)) ;)y >0,

r
)

(129)

T 212 N 0
(130)
Let x € R. Since f € C2°(R"), we get
If(x+e&)—f(x—¢)|<Cee>0. (131)

If « is odd, then @ is even and, for every € € (0, 1),
Je(x)| = [(f(x + &) = f(x = €))D(e)|
00 s e2/2 _ B
SC&(J ’I_Iot—l(\/g)r,i +J0 ‘Ha—l (\/E) _Ha1(0)|i>

£2/2 S

0o 1 £2/2
SCS(J e’sds+J é+J \/§§> < Ce(1+|log g +¢).
s

1 en S 0
(132)
Hence, if a is odd, lim, . J,(x) =0.
If a is even, then @ is odd, H,_;(0) =0, and
- 1 o ds
D(¢) :_MJO Ha_l(\/E)?,s>0. (133)
We obtain
.= flx) [®4 ds
Elg(l)Js(x):—mjo HH(\/E)?, (134)

provided that « is even.
We conclude that, for certain ¢, € R

dii G(x)= lim J f (y)ro <;—; Wt> (x =)t dtdy

0" v y|se 0

+c,f(x), foralmostall xeR.
(135)
Then, we get
L=t vm [ fo)[ o ety
dx® I(a/2) e—0" ) (o yps 0 PV
+¢,f(x), foralmostall xeR,
(136)

where ¢, =0 when « is odd.
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Finally, we observe that when « is even

© da 1 © 2 |Z|
2w 4271 gy — ~2tpy (1532 g
Jo (dza f) (z) 2(“+1)/2\/EJ0 € o \/ﬂ

1 1 (* .
=—— | eH (s)ds=0.
)y O

(137)

By taking into account the arguments developed in this
proof, we can see that

I

f(y)J Ty (x>y)t“/2"dt’dy
0

I,

f(y)J:OaZ(Tf’ (57) - W,(x —y))t“”*dt\dy <co,

(138)
for every x € R. Then,
L)) = g | F00[ 0T ey
dx~ I(a2) ) 0
+c,f(x), foralmostall xeRR.
(139)

The proof of Theorem 1 is completed.

Proof of Theorem 2. For every f € C°(R"), we have that
) 4

P Hy(x),x € R",

—_— 140
keN" (|k| +n) ( )

a2 (x) =

and according to (36), (37), and (40), the last series is point-
wise absolutely convergent, it defines a smooth function on
R" and

ol R (f)(x)= Y kfi(gm 0Ly (x)

keN" (

alf) - n
) f o (x),xeR™
K|+ m)lei )

:(_1)\04 Z

keN" (

(141)

Then, according to Theorem 1, for each f € C°(R"),

e—0*

R,(f)(x)= lim L ‘ R, (%, y)f(y)dy + c,f(x), foralmostall xeR".
x—y|>¢

(142)

Here, ¢, =0 when «; is odd for some i=1, -, n.
To establish our result, it is sufficient to show that for
every f € LP(R",y_,) the limit

(143)

e—0*"

lim j R (5 9)f (),
Iyl

exists for almost all x € R" and the operator L, defined by
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L,(f)(x) = lim j RGNSyl (14
x—y|>¢e

e—0*"

is bounded from L?(R",y_,) into itself. Thus, L, is the
unique extension of R, from L*(R"y_)nL’(R",y_,) to
LP(R",y_,) as a bounded operator from LP(R",y_,) into
itself.

For every 5> 0 we define the set

Ng= {(x,y) €R"xR" : |x - y| < fn min {1, |71|}}
(145)

Observe that N, =N and that if >0, a€(0,1) and
(x.y) € Nj, then

1 1
|ax — ay| = affn min {1, |7|} > a*Bn min {1, W},

that is, (ax,ay) € Ni.p. In particular, we have that if a €
(0,1) then (ax,ay) € N© provided that (x,y) € N{,..

Let 5>0. We consider the operators R,;,. and R
defined on C®(R") by

a,loc a.glob

Resoel ) () = R (Fxtx, () ) (9 Regos () ()

(147)
=Ry (St (%)) (x), x € R
O
We recall that
(_1)\04 o et B
Ra(x’y) = n+la H@
2T (|a)/2) J, (1 _e—Zt)( +af)12 (148)

x—ely _
e )t Xy e R, x # .
V1- eZt)

Then,

00—t —11|x—e"y|2/(1—e’2t)
¢ 27 dE x, y e R", x # 9,

Ryl sc|

o (1 _e—Zt)(”+\“|)/2

(149)

for every 7 € (0, 1). From now on we consider 1/p < <1
and B=1/y. Since |x—ry|* = |y —rx[* + (1 = 2)(|x* = y["),
x,y € R", r € R, by making the change of variables s=1 —
¢! in the last integral, we get

1 —rl\y—x\/ﬁf/s
n(P=if) | € g gyt
|Ry(x,y)| < Ce o st (1-5) (150)

- (-log (1- s))‘“‘/z’lds, xyeR" , x+y.
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Assume first that (x,y) € Nj. Then, (/fx, /ny) € N“.
By proceeding as in the proof of (66), it follows that, when
(x,y) <0,

00 ,—1/2 (n+|a])/2—-1/4
e 1+7r 2
( ) dr < Ce™H,

Ra(wy)] = G |

3/4
0 r

(151)

Suppose now that (x,y) >0. Again, as in the estima-
tion in (66), since (,/7x, \/77y) € N, we obtain

(1 _S)n/271 (—log (1 _ S))|¢x\/2—lds

U nly-xvislls
S(n+|oc\)/2

172

X+ n/2
sc([T2) e (L0F - ls -l slx-D).

(152)

On the other hand, proceeding as in ([23], p. 862) and
considering the notation in (61) and ([23], Lemma 2.3),
we have

V2 glly-x s ni2-1 lal/2-1
Jo W(l—s) (-log (1-5)) ds

< C sup

s€(0,1)

&~1u(s) 1=1/n .1 o Mu(s)in (—log (1 _ S))|a|/2—1
— ds
JO \/E Slocl/Z

Sn/2
c e Mt 1—1/nJ1/2 e—u(s)/n p
< — ——ds
561/2 0 S3/2
) ll/nJrl e—u(s)/n p
— ——ds
sul 0832y/1 -5
C e o 1=1/n e_’//uo/” Ce_rluo
= n/2 S = n/2
So VAN So
n/2
[x+y n, 2 2
(52 e (GOR - = eylles)

(153)

<C

From the above estimates, we conclude that, when
(x,y) € Nj

el (x,y) <0,

R,(x,y)|<C ni2 22 _
o ),
(154)

On the other hand, we consider the kernel

1 00
_ o _ |ee|/2—1 n
R, (x,y) T{al2) JO O W, (x—y)t dt,x,ye R", x#y.

(155)
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Let us show that
1+|x
[Ry(%,7) = Ry J)ISC%’( y)ENgxty
(156)
For every x € R", we have that
R R (T Nes(re
5 - > = + 5
n) =R =y ([ Jrren)

- W, (x—y)) e dt
=I(x,y)+J(%y), %y e R, x #y.
(157)

The same proof of (99) allows us to obtain that

<C 1+ x|

o ylsCrpmm (oy) eNpxty. (158)
Also, we get
0 e ~ -y /21
[J(x,p)| < C(Jm< 0 (1 _efzt) (nt]ad)/2 H <\/1——€’2[) ' .
00
+ Jm(x) H tn/2+l
. 0o eimwtm/z P ~ Mdt
T U (1 exmedz mey P
o4t C n
SCJ o £ h m(x)"? =k
1+ x|
- C% (%.7) €Ng, x %y,
(159)

and thus, (156) is established.
From (154), we obtain that R, ,, can be extended to

LP(R",y_,) as a bounded operator from LP(R",y_,) into
itself, and the extension is given by (147). Indeed, when (x,

y) €Ng, we have that |x-y||x+y|>C. By taking into

account also that ||y|* - |x|*| < |x + y||x — y|, we get

J |Ra(x,y)|e(lx\2*b'|2)/PXN;; (x,y)dy<C (J e*(ﬂfl/P)\x\Z*\y\z/de
R R

n n 1) 2 N ) )
+ |x+y"ex ~ - —|x[") = s |x—y|jx+y| |d
[ et ese (32 ) (o =1a) = Zls—slie+ 1 ) dy

< C(E—(wpnxf J i gy
e

n no |t ’1')) ) "
+ X+ exp | —|x—y||x+ - —|-== dy ), xeR"
JWI b P( Sl yl(2 ‘p 51|

(160)
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Since # > 1/p it follows that

supJ IRy (6 ) BTNy )y <co, (161)

xeR"J R

and in a similar way

supJ IR, (%)X )Py (x,y)dx <o, (162)
yeR* JR” B

from which we deduce that R, is bounded on L*(R", y_, ).

On the other hand, by using (156) and that /m(x) ~ 1
/(1 + |x|), x € R", we have that

[, Rue) - RoCe iy, (e )y

<C\/1+|xJ G 1/2)(1\,ﬁ(9c,y)dy
\/_ (163)
Bry/m(x)
=C\/1+|x|J r2dr
0
=Cy/ (1 +|x])y/m(x) < C,x e R".
Also, since m(x) ~m(y), (x,y) € Ng, we get
sup | Ry () ~ Ryl 9) 1, (e 9)ds <00, (164
yE]R" IRYI

Hence, the operator S, defined by

)= || (Rulos ) = Ralos )y, (69 D)y xR
(165)

is a bounded operator from L#(RR", dx) into itself. Since S, is
a local operator, by ([1], Proposition 3.2.5) S, is bounded
from LP(R", y_,) into itself.

We now observe that the kernel R,
Calderén-Zygmund kernel. Indeed, we get

is a standard

00 x—y e—\x—y\Z/(Zt) 00 e—c\x—y\zlt
IRa(x. )| < CJO H, (ﬁ) BT SR J et 9
< ¢ R"
< |x—y|"’x’y€ S XFY.
(166)
Leti=1,---,nand denote & = (&}, -+, a; + 1, -+, ). We
have that
~ (1)l (0o x—y\ e e .
O, Ry (x,y) = mjo H, <ﬁ> Wdt,x,ye R%x#y.

(167)
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Then,

C n
oy eRL x#y. (168)

|x =y

The Euclidean a-order Riesz transform R, is bounded
from LI(R", dx) into itself, for every 1 < g < co. According
to ([1], Proposition 3.2.5), the operator R,,,. defined by

|0, Ry (%, y)] <

a,loc

Rasoel () = R (i, (6)) (), (169)
is bounded from L(RR",y_,) into itself, for every 1 < g < co.

We can write R 1, = S, (f) + Ry, (f) on CZ°(R"). Then,
R, can be extended from CP(R") to LP(R",y_,) as a
bounded operator from Lf(R",y_,) into itself.

Since R, =Ryjo. + Ry giop We conclude that R, can be
extended from C°(RR") to LP(RR",y_,) as a bounded opera-
tor from LF(R",y_,) into itself.

Let us consider the maximal operator

Ry, (f)(x) = sup fELP(RY,y ), 1<p<co.

>0

Jl Rbenfdy
x—y|>e

(170)

Let f e LP(R",y_;), 1 < p < co. For every & > 0, by using
the above estimates, we can write

L‘Mwmw
x—y|>e

sj“ 1R, (5) ~ Ry (6.3) xx, (5.2) F )
X*y >E
f] Rl 0
e-yl>e £
+L‘\&WMMWWMWMW<wxd“
x—y|>e
(171)

We also have that

1+ |x
L )l

R, (f)(x)<C (j

# | IR g (eI 01y

>,x€]R”.

+sup J | R, (%) an, (6 0)f (0)dy
&> x—y|>e
(172)
Since the maximal operator
R () =swpl| R, 073
&> x—y|>¢e

is bounded from LP(R", dx) into itself, by using a vector-
valued version of ([1], Proposition 3.2.5) (see ([16], Proposi-
tion 2.3)), we deduce that the local maximal operator
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]Roc,loc,* (f) (x) = sup

>0

jl Ry, G 0)d
x—y|>e

(174)

is bounded from LP(R", y_,) into itself.

By using the same arguments as above, we conclude that
R, is bounded from LP(R", y_,) into itself.

From (142) and since C°(R") is dense in LP(R",y_,)
and R, is bounded in L (R", y_, ), by using a standard pro-
cedure, we can conclude that the limit

(175)

e—07"

hmJ Ry (% y)f (v)dy,
e-y|>e

exists for almost all x € R" and L, (defined in (144)) is a
bounded operator from LP(R", y_,) into itself.

Remark 10. The I#(RR",y_,)-boundedness of the local part
Ry of R, can be proved also by using Calderén-
Zygmund theory. We have preferred to do it by comparing
R, joc with the classical local Riesz transform R, because
in this way we can know how the singularity of R, is. Fur-
thermore, these comparative results will be useful in the
proof of Theorems 1.4 and 1.5.

4. Riesz Transform Associated with the
Operator &

Our objective in this section is to prove Theorem 3.
We define Lj(R",y_,) as the space that consists of all
those f € L*(R", y_,) such that ¢,(f) = [.f(x)dx =0. Let 3

>0. For every f € [2(R",y_,), & "f is defined by

_ I f -
atin=y g, (176)
o) K]
We have that
2 o) | FEi |
[Eadta: - bl LD
LZ(Rn>V—1) keN"\{0} |k|2ﬁ (177)

< HfHIZJZ(IR",y?l)’f eLg(R"y_,).

We introduce the operator Sy defined by

0= g ). (70 - eoe )t f ey ).

(178)
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Let f € L*(R", y_,). We have that
T (f) = <lf e“_ze‘k‘t _eHCo(f)
keN"
N 179
= Y Mg (HHLt>0. (179)
keN™\ {0}
Then,
[T =athel] <€ W ey o t>0
(180)

Hence, the integral defining 313( f) converges in the

L*(R", y_,)-Bochner sense.
Let f € C°(R"). According to (36), (37), and (40), we get

Ik ~ b —|x? 1
> Mgl sCete R Y
keN"\{0} keN"\{0} | |
<Cele M2 150, x e R".
(181)

It follows that the series that defines Tf" (f)(x) —co(f)

el converges pointwisely and absolutely and

%m@=ﬁjmwﬁmmwaWWm
= Ck(f) Hk(x) — ﬂ_ﬁ(fo)(x),x c ]Rn,
kenmjoy [k

(182)

where f(x) = f(x) - co(f)e“"‘z, xeR".
On the other hand, since supp f is compact, we have
that

Jm(x)J]R”

T (x,) - e || f ()| dytP ' dt

<c|’ (J T (1 )™ 115y
m(x) R"
+J e—c|x—€7ty|2/(l—872t) _ ef|xfe’fy|2’|f(y)|dy

]Rn
o[ e iy )

R”
sc[ e an e,

0

(183)

and, taking 0 < & <min {2, n},

Journal of Function Spaces
Y (xy) = L)yt

Jm(x) tﬁ—lJ
0
e eclxy e .
B- 1 < |x[ P e >|f( )|dydt)

( t
<cx ] o Ly +om(x) e*"“zj f(y)Idy>
<c(e

n

R"

x—y["*
Cx|+m e‘x‘>xE]R”.

(184)

Then, we obtain

Sﬂ(f)(x)zjmnf(ﬁ(x, f()dpxeRY,  (185)
where
_ 1 [/ .
Kg(x,y :7J T4 X,y — e tﬁ_ldt,x,ye]R”,
s = i ), (ThGn) =)
(186)
and
ot el ly—e'xf .
T (xy)=€"T7 (x, y):n"’z(l—e*ﬂ)”’z &P\~ , %y eR",t>0.

(187)

By denoting II, the projection from L*(R",y_,) to
L3(R",y_,), we have proved that, for every f € C°(R"),

Ko(x)f ()dp xR (188)

RrR”

A1) )= |

Let f € C°(R"). Next, we show that

1

a —lali2 1
6)(‘% HU(f)(x) _slir{(‘y F(‘(X‘/Z)

| s i et ey s copo),
|x=y|>e 0
(189)
for almost all x e R". Here, ¢, € R and, when «; is odd for
some i=1,--+,n, ¢, =0.
For every € € N",
el (*l)mf‘x‘z ©
STy (xy) = L 3 (e T ()

21¢
(_1)\¢\e\y\ | e 7 y—e'x

= ~""H
2\@\7-["/2(1 _ eth)(”‘rWD/z € ¢ <‘ /1 —e-2t

),x,yelR",t>0,
(190)
Then, for each £ € N",

s erltlrgmely—e sl (1)

(1 - e-2t)(mH1EDP2 6y €eR" £>0.

VT ()| < et

(191)
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Since 8Y(e)=0, xeR", when £eN"\{0}, by
proceeding as in the proof of (80), we get that for every ¢
€IN"\ {0} and k € N being [¢| <k,

8Ll I, (f ) (x) = f)

(k/Z)J
J 6chf‘(x, y)tklz’ldtdy, foralmostall xeR".
0

(192)

Without loss of generality we can assume that «; > 1 and
consider £=(a; — 1, @y, --+, ). When €€ N"\ {0}, we can
proceed as in the proof of Theorem 1. For n > 1, we write

oxa 11, (f) ()

= mé\xl <JRﬂf(y)J:05§ <T?(x,y) _ Pl W,(y - x)) t‘“‘/z_ldtdy

* wa (y)féi (& Wiy =) t‘“‘/z’ldtdy>

“ a0 G

(193)

We observe that, for every r € N,

W[(y—x))

el i
_ U7 7H €R",t>0.
= 2rlpni2 (Zt)(w\r\) ,—Zt » X% )

2 2 _1 ‘r‘ 2 2
o (e\y\ -l W,(y—x)> - (2‘_r)|eM B

(194)

By considering the decomposition

eIl

_ 1)\l
(- ) - 2

e laft 4 y—elx 1 o (rox
’ (l_e—zr)("+\ﬂ\)/2 ¢ Vi-e? (Zt)(n+\a\)/z “\ V2t

G i, (2=
2lalggni2 (1- e—zz)(”*\“l) V1—e2t
1 - (y—e x
+ H
<(1 ) (n+|a)i2 ”*\“l ) 1— efzt

+ (2t)(j+\a\)/2 <H (\);l_—e—ei’) (T)) },x,y cR".
(195)

We can argue as in the proof of (85) to obtain that

0., 1)= [ s o
. (Tf?(x,y) — el Wy - x)) 21 dtdy,  foralmostall xeR".

(196)

On the other hand, to deal with §, G(x), we consider g
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(x) =f(x)e‘x‘ and Y(x

and write

j;"a“ (=)t gt x e R,

eflxlz

6= S | ate-nroipxer 197)

We proceed as in the proof of (115) to get

d, G(x) = lim J f(y)-roéfj (e‘}"z’m2 W, (x - y)) 19271 drdy

e—0" x—y|>¢

+¢,f(x), foralmostall xeRR”,

(198)
where ¢, € R and ¢, =0 if «; is odd for some i=1,---,n
Thus, (189) is established when n > 1.

If n=1, we can also follow the proof of Theorem 1 by
using the decomposition

S5y (f) () =

T(ja|2) 8. (F(x) +G(x)), x e R",

(199)

where
i = s et ey

14 a2 "
*5i<e"‘ . [Wt(y*X)*?WWr(O)Xum)(f)Dt‘ ldtdy, x € R",

(200)

and

6= sl o

2 e 14t
. (ey || {W[(yx) ?WW'

When € =0, that is,
(193) and F in (199) by

(O)XU)OO)(t)} ) 21 dtdy, x e R".

(201)

a=(1,0,---,0), we can replace F in

F(x)= JRnf(y)-[m (Tf?(x, y) - eI Pl W, (y - x)) dtf\/di)’ x€R",

0

(202)

Fe= | (1 -e

2|y 1 dz dtd}/ n
- (ey H |:W[(y—x) - zzdxewl(o)x(l,oo)(t):l )) \/; »x €RY,

(203)
respectively, and proceed as above to obtain (189).
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According to (36), (37), and (40), we get

R f(x) = 8“2 T f (x), x € R, (204)
and then,
_ 1 0 i
R f(x)= lim 7J yJ 84T (x, y)t2 - dtdy
S =iy ] S0 8T

foralmostall xeR",

+ ¢ f (%),
(205)

with ¢, =0, when «; is odd for some i=1,---, n.
We are going to show the LP(R",y_;)-boundedness
properties of R,. We recall that

—1)lel —|a|t
Ryxy)= — D" b et g
2|a\ ﬂnlzl"(|a|/2) o (l _ e,Zt)(n+\a|)/2

Y= €%\ jan n
| Y=t dt,x,ye R", x #y.
V1- e—2t>

(206)

Consider first 1 <p < oo and choose 1—-1/p <5< 1. By
making the change of variables s=1-¢"%, t € (0,00), we
obtain

_ 1 gmtily=xvissfls
R s et <
0

S(1=9)27 ((og (1—s))1  ds, x, y e R", x # .
(207)

S(n+|ot\)/2

Let B=7"" and consider the local and global operators
defined on C®(R") by

Resoel £)() = Ry (fxtx, (6)) (), and Reg (1))

(
=R (ftuy (%)) (x)px € R
(208)

By proceeding as in the proof of (154) it follows that, for
each (x,y) € Nj,

(xy) <0,

P
R,(x,y)|<C e+ 3]\
« Y| M o2 o2y

(E2) exp (1= D) (o= o)~ Thessls ). o>

(209)
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We have that

J . e VIPHEIPIR (x, y)| X (%0 y)dy
SC(J e\yﬁlfﬂfl/mewr”"“zdﬁj [+ y|" exp
R" R
1
.<-|x+y||x—y|<g“I'E‘QD)”)’“N
(210)

Then, since > 1 - 1/p,

SupJ VPR R (x,y)| Yo, (67)dy <oo. (211)
]RVI

xeR”

Also, we get

supJ e"y‘Z/PH"‘Z/P‘Ra(x, V)| Xne (5 y)dx <00, (212)
yeR"J R" B

We conclude that R
into itself.
We are going to study the operator R

aglop 18 bounded from IP(R%y_,)

aloce We write

D _ 1 i " o _ \y\27|x\z _ |a]/2-1
Ra)= g (| 020 - Wy

e [Cazferr w0 t‘“‘/z’ldt)
0

=I(xy)+J(%y), %y e R, x#y.

(213)
By taking into account that
5 2.2
817 (0.y) - T W, (y - )|
—|a|t —c|x—y|2/t
Dl ¢ ¢ n
<Ce <(1 - e—Zt)(”+|0“)/2 + PERTE ),x,y eR" t>0,
(214)
we get (see (86))

s [ P =fx? 21

£ 17 Gy = W ([ e
m(x) (215)

< CV I (14 %)), x, y € R

Also, from (195) and proceeding as in the proof of (99),
we can see that

m(x) of 2 2
J (Sf: [T;Q[(x, y) - el =1l W,(y - x)} flali2=1 4,
0
(216)
2 1, 1+ |x
< Ceb" || EJ—IJZ’ (x,}/) c Nﬁ'

|x -y
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Since ||y|* - |x|*| < C when (x,y) € Ng, we obtain that

1
Iy)| s eV

|x_y|nf1/2’(x’y) €Npg,x#y. (217)

On the other hand, we observe that

= 00
0= g Wy )

29I (Ja2) Jo (218)
= zf\a\eIYIZ*IXIZ]Ra(),’ x), %y €R", x#y,

where R, (-, ) is the classical kernel considered in (155).
The result can be established by proceeding as in the proof
of Theorem 2 by taking into account that the Euclidean
Riesz transform R, is bounded from L?(R", dx) into itself.

To deal with the case p=1, we consider the local and
global operators R, and R, defined above with N
instead of Np. Since the classical Riesz transform R, is
bounded from L'(R",dx) into L"°(R", dx), we can use
(217) and argue as in the proof of Theorem 2 to obtain that
R, defines a bounded operator from L'(R",y_;) into
LY(R", y_,).

In order to prove that Roc,glob defines a bounded operator
from L'(R", y_,) into itself, we make the change of variables
r=e", t € (0,00), and write R,(x, ) =R, (x,y) + Ry (%, ¥),
where

r\tx|—l

= _ (-n P =lxf |
Rl = nramy o1y

—rx af/2— n
. (jﬁﬁ) (—logr)‘ 2 dr x,y e R", x # 9.

(219)

Suppose that n=1 or |a| >n+1 when n> 1. By using
([1], Lemma 3.3.3), it follows that

172 ) e—c\y—rx\z/(l—rz)

Ry, (%, sCeW*WJ Ao - 7
} a( J’)| . (l—rz)"/z

rn efc\yfrx\zl(lfrz)

(-log r)‘“l/zfldr

1
< P gy J _log )21 g,
76(0,11)) (1-r2)"? 0( g7)

< CP M min {(1+ |x])", (|x] sin 6(x, 7)) ™"}, (x,y) € N°.
(220)

On the other hand, by proceeding as in the estimation of
K9(x,y) in ([2], proof of Proposition 5.1), we obtain, for
every (x,y) € N¢,

1 efc\yfrx|2/(lfrl)
v (1- rz)(n+2)/2
< Ce\J’\z*\"‘z(\xr" +min {(1+x])", (|x| sin O(x, y))™"}).
(221)

IRy ()| < Gl J
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From ([1], Lemma 3.3.4) and ([2], Lemma 4.2), we
deduce that Ra,glob defines a bounded operator from
L'(R"y_,) into LY(R"y_)).

Thus, we conclude that R, can be extended to L'
(R"y_,) as a bounded operator from L'(R",y_,) into
LY (R%,y_)).

5. UMD Spaces and Riesz Transforms in the
Inverse Gaussian Setting

Proof of Theorem 4. For every i =1, ---, n, by R,;, we denote
the i-th Euclidean Riesz transform defined, for every f € L?
(R", dx), 1 <p <00, by

e—0"

R, (f)(x)= lim J R, (x=y)f(y)dy, foralmostall xeR",
le-y|>2
(222)

where

dt
0, Wi(2)—=,zeR", z+0. (223)

1 00
‘ ﬁj 0o Vi
Observe that

I((n+ 1)) z |
Relz)=- ()2 |Z|”+1’Z€1R”)Z¢0)l=1,'--,n.

(224)
O

Let X be a Banach space. For every i=1, -+, n, we define R,
on [?(R",dx) ® X, 1 < p < 00, in the obvious way.

The UMD-property for X can be characterized by using
R,, i=1, -+, n. The properties stated in Theorems 4 and 5
hold when R is replaced by R, i = 1, - -+, n. The estimations
established in the proofs of Theorems 1 and 2 allow us to
pass from R, to R, i=1,---, n.

Let i=1,---,n and 1 < p <o0o. We are going to see that
the following two assertions are equivalent:

(i) R, can be extended from (L*(R",y_ ;) LP(R",
y_,))®X to LP(R",y_,,X) as a bounded operator
from I?(R",y_,,X) into itself

(ii) R, can be extended from (L*(R", dx) () L*(R", dx)
®X to LP(R",dx,X) as a bounded operator from
LP(R", dx, X) into itself

We choose 1/p <# <1 and consider the global and local
operators as in the previous sections according to the region
Ng, with B=n"".

Suppose that (ii) holds. We can write R, = (Ryij, —
R,ijoc) + Reijoc + Reigiop- Since R, is a Calderén-Zygmund
operator, by using a vectorial version of ([1], Proposition
3.2.5) (see ([16], Proposition 2.3)), we deduce that R,
can be extended from (L*(R",y_,)NLP(R",y_,))®X to L*
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(R",y_;,X) as a bounded operator from L (R", y_, X) into
itself.
According to (154) and (156), we have that

[Rei(x:,y) =Ry (x = y)| <Li(x%,y), (x,y) €Ng, and  |Ry(x, )|
<M;(x.y), (x.y) € N,
(225)

and the integral operators

Li(f)(X)=J Li(ey)xn, (6 2)f()dy, - and  M;(f)(x) (226)
R 226

= LR"M,- (%)X (% )f () dy:

are bounded from L?(R",y_,) into itself. Then, L; and M;
define bounded operators from LP(R",y_;,X) into itself,
and the same property holds for the operators R
R,ijoc and Ry 505 We conclude that (i) holds.
Suppose now that (i) holds. By (149), we get

eiloc

el loc

00

—c|x—e’[y‘2/(1—e’2‘) dt
—nt €
IRez(x,y)ISCLe e G

m(x) e—c\x—y\z/t 00 At
<C J tn/2+1 dt + J tn/2+l

c 1 N 1
|x_y|” m(x)nlz

C
< W,(x,y) ENﬁ,X?éy.

IN

In a similar way, we get, for each k=1, -, n,

e—c|x—e"y|2/(1—e’2') dt

(6]
—nt

C
<
|x -y

(228)
(x,y) €ENg,x#y.

n+l’

Then, according to a vector-valued version of ([1], Prop-
ositions 3.2.5 and 3.2.7) (see ([16], Propositions 2.3 and 2.4),
we deduce that R, defines a bounded operator from
LP(R", dx,X) into itself. Also, R, — R, defines a
bounded operator from L?(R", dx, X) into itself. We con-
clude that R, defines a bounded operator from LP(R", d
x, X) into itself. Since R, is dilatation invariant, by proceed-
ing as in the proof of ([16], Theorem 1.10, (ii)==(1)), it
follows that R, can be extended from (L*(R",dx)(L*
(R"dx)®X to LP(R",dx,X) as a bounded operator
from LP(R",dx,X) into itself.

The same arguments allow us to prove that the following
assertions are equivalent.
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() R, can be extended from (L'(R"y_) ) L*(R",
y.,))®X to L'(R",y_,,X) as a bounded operator
from L'(R",y_,,X) into L"°(R",y_,,X)

(ii) R, can be extended from (L'(R", dx) () L*(R", dx))
® X to L'(R",dx,X) as a bounded operator from
L'(R", dx, X) into L"*°(R", dx, X)

Furthermore, in a similar way, we can see that (i) (ii)
and (iii)&=(iv) when R, and R, are replaced by R, , and
R, ,, respectively.

The proof of Theorem 4 is thus finished.

*

Proof of Theorem 5. Let 1<p<oo and i=1,---,n. We are
going to see that the following two assertions are equivalent.

(a) For every f € LF(R",y_, X), there exists

lim J R.i(x,y)f(y)dy, foralmostall xeR".
[x—y|>e

e—0"

(229)

(b) For every f € LP(R", dx, X), there exists

e—0"

lim J R, (x—y)f(y)dy, foralmostall xeR".
-
(230)
0

We consider again 1/p <7 <1 and f=#"". Suppose that
(a) is true. Let f € LP(R", dx, X). We can write

J R, (x=y)f (y)dy = J (Rei(x=y)
eyle eyl
~Ra(x=y)xn, (6 2)f )dy
+|‘ R, oS 0y
J|x=y >€
+ |‘ Rl (52 0y v R0,
Jx=y >€
(231)

Since (225) holds and the operator L; is bounded from
LP(R", dx, X) into itself, there exists the limit

e—0*

Jim J | (Rl ) =Rty (09 0}y
X*y >€

foralmostall xeR".

(232)

On the other hand, we get
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| IRt e )y
.

1
sc| w0y

’

i 1/p

y

<c(| ) 1w
<x—yl>ﬁn\/m<x) lx—y|" ) —

® dr b
< C(Jﬁn%W) HfHLP(IR",dx)X)
C

= ()P 1112 ey € R
(233)
Then, there exists the limit
iy [ Rex g (o) e R (234)
E— R"

Suppose that g € L’(R", y_;, X). It was seen in the proof
of Theorem 2 that

|| IR g e gy € PRy ). 239)
Then,

lim JWRE. (%)X (67)9()dy

e—0"

= J R, (x,y)XN; (%,y)g(y)dy, foralmostall xeRR".
R

(236)

Since (a) holds, there also exists the limit

e—0"

lim J R,(x,y) N, (x,y)g(y)dy, foralmostall xeR".
leyl>e
(237)

Let k € N. We have that |y| < Bn + k provided that |x| <k
and |x — y| < Bn min {1, |x| "' }. Then, for every & > 0,

J| Rl ) 0)dy
x—y|>e

- | R, (i o O )
x—y|>¢
(238)
Since f € LP(R", dx, X), Xp(opnsnf € /(R y_;,X) and

then there exists

e—0"

lim J R, (x,y)XNﬂ (%, 9)f(y)dy, foralmostall x e B(0,k).
fel>e

(239)

23

Hence, we get that there exists

lim J R,i(x,y) N, (%, y)f(y)dy, foralmostall xeR".
x-y|>e

e—0"

(240)

We conclude that there exists

lim J R, (x-y)f(y)dy, foralmostall xeR”".
|x=y|>e

e—0"

(241)

In a similar way, we can see that (a) holds provided that
(b) is true. Note that LP(R", y_, X) c L#(R", dx, X).
As it was proved in [2] the operator S; defined by

SU00)= | Reelig (nfO)dy xR, (202

is bounded from L'(R",y_,) into L"*°(R",y_,). Then, for
every f € L'(R",y_,), there exists

lim J Ry (% y) xe (6 9)f () dly
le—yl>e

e—0*

= J R, (x,y)XN; (%, 9)f(y)dy, foralmostall xeR".
R

(243)

The same arguments allow us to prove that (a) &(b)
when p=1.

By using a n-dimensional version of ([26], Theorem D),
we deduce that the properties (i), (ii), and (iii) in Theorem 5
are equivalent.

By proceeding as above, we can see that the properties in
(a) and (b) continue being equivalent when we replace the
principal values by the maximal operators R, , and R, , in
(a) and (b), respectively. Then, the property (b) is equivalent
to the property UMD for X (see the comments before the
proof of ([16], Theorem 1.10, p. 19).

Thus, the proof of Theorem 5 is finished.

6. UMD Spaces and the Imaginary Powers of &/
In this section, we prove Theorem 6.
According to ([18], (11)), we have that, for every f €
CR"),
(-3) s = jim,
. (a(s)f(x) + [ Ka(x—y)f(y)dy>, foralmostall xeR",
Jlx-y|>e

(244)

where
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K@) = g0awi@anzer o) )

a(e) = I i ) J:O% <z—u) e "u" du, e € (0,00),  (246)
and

¢ (t) = F(%m) t € (0,00). (247)

Note that the limit lim,_ ;. ¢_(¢) does not exist.
Let f, g € C°(R"). By proceeding as in ([18], p. 213), we
can see that

T (%, 3)f () dyg(x)y_, (x)dxdt

J W, (x = y)f (y)dyg(x)y_, (x)dxdt

[Cow(-5)] | ey
X)y_, (x)dxdt.

|
N

=

|
=
=
S
N
53
X

(248)

We have that

22 x— ety \ T (x,
atT (x,y =<—n 2¢ Zyz e )’, 1|e_2t)’|> t (%))

1-e2t
- oy 28 x—etyl
=|-n-2e"((xy)-e |y|)+ﬁ

[4

T (xy)

liezt,x,yelR” t>0,

(249)

and writing 2¢7(x, y) = [x|* + e ¥ [y|* - |x — e"'y|*, we get

0, T (x,y)
) - 1+e2 _
o
w»wew)bﬂ
(250)
Also, we have that
2
_ W (x —

oW, (x-y)= (—I’l+ . ty| ) t(;t y),x,ye]R",t>0.

(251)
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We can write, for every x,y € R" and ¢ > 0,

3, T (x,7) = 0,W,(x—)
x—y\ TV (%) - Wi(x—y
- (e b2t 2 (x-)
+

2t

1 1 e s
(e )+ e (0P

_ 2 2
e x-ey x—ey  |x-yl o
o T—e2 ((1 —e2y (2t) ()

(252)

The derivative under the integral sign is justified and
we get

(AL, ) gy = —jj%(t)] HJ'R 0.W,(x~ )f )y (x)dds
T“(M)
y_; (x)dxdt.

(253)

To ensure the change on the order of integration, we
are going to see that

6= [ 18,(175) = Wit )iy < conee R,

0 (254)

and

J:OLR Jw |0,(T (%) - W,

(=) |IfW)lg(x)y_, (x)dydxdt < oo.

(255)

We observe that, since g e C°(R"), it is sufficient to
see that J(x) <h(x), x € R", for certain continuous func-
tion h.

We consider the decomposition

( § ) [0 o) = Wil ) [ ) e

=], (%) + J5(x), x e R".
(256)

Since f € C°(R") by (252), we have that

* c ) n
]Z(x)SC(1+|x|)2J J —dtdy < X €R™.
m(e) supps 17! m(x) "

(257)

We now estimate J;(x), x € R". We take into account
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that, if supp f ¢ B(0, ), with r; >0, then

o=y 2 x -y + (1) 2 - 2px -yl (1-€7)
>|x -y’ —d(x)(1-¢"),x € R", y € suppf, >0,
(258)

where d(x) =2r;(r; +|x]), x€R". By considering the

decomposition (89) for a =0, the estimations (92) and the
proof of (97), we can see that

1T (3,9) - W, (- y)] < Celt st
1 n
(e + 1) ) xRy suppf € 0,1,
(259)

Then, according to (252), we have that

[0,(T7 (x.7) = W,(x=)) | < Cetller e
(LR WD ol b+ -y
12 t ni2+1 2

(L+ )" 1+
+ [ ,x €R", y e suppf,t€(0,1).

(260)

2
< o) gclryPt 1+ |x] +
tn/Z t

Since m(x) ~ (1+|x|), x€R", we get when te€ (0,

m(x)),
10,(TF (%, y) = W, (x - )|

]2 1+ |x|
d(x) ,—c|lx—y|*/t
<Ce™e (t(m)/z

+ (1 +t|x|) ),xe R", y € suppf.
(261)

We deduce that

o [ L+ |x|
Ji(x) < Cel >J J ( 7314
0 supp f

< Ce'™ (1 + |x)m(x)"* + (1 + |x[)"m

<Ce™ /1+ x|, x € R™.

+ (1 + |x|)ntn/275/4) dy

|x _y|r171/2

(x)n/2—1/4)

(262)

x€R"

Then, [J(x)| < C((1 + |x])"™** + ™ /1 + |x]),
and (254) and (255) are established.

Note that the estimations that we have just proved are
depending on f.

By interchanging the order of integration, we get

A io
>=<(_2> f’g>
LZ(]Rn’V—l)

‘L&wa%w@ﬁmﬂ

=0, W, (x —y))dtdyg(x)y_, (x)dx.
(263)

<’dwf’ g>L2(]R
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It follows that

wm@:Q@?m{JWfMW@
-0, W,(x—y))dtdy

=C®?@—MJ 1)

[x=y|>e

T (x,y)

~jm¢aa>aaT?cny

0

) =0, W,(x~y))dtdy,

(264)

for almost all x € R".
We conclude that

d(f)(x) = lim (L ‘ Kf(x,y)f(y)dy+(x(s)f(x)), foralmostall xeR",
x—y|>e

e—0"

(265)

where

KZ(x,y) = ngg() 9 (x,y)dt,x,y e R", t>0. (266)

Salogni ([1], Theorem 3.4.3) proved that &/ is bounded
from LP(R",y_,) into itself, for every 1 < p < co, and Bruno
([6], Theorem 4.1, (i) established that &/ is bounded from
L'(R"y_,) into L**°(R",y_,). In order to extend &/ to
functions taking values in a Banach space, we need to prove
these results in a different way by making a comparation

between /" and (-A/2)".
Let 8> 0. We define the local and global part as follows

A () x) = Jim <a(8)f(x) +

e—0"

Kf;{(x’)’))fm/3 (xJ’)f(}’)d}’),x eR",

[x=yl>e

(267)
and
SN = Ky (5 0 e
x—y|>e
(268)

The operators (—-A/2)°

analogous way.
We are going to see that

and (-A/2)5, are defined in

loc glo

1+ |x|
n-1/2" » (x ’y)ENﬁ'

K (x,7) (269)
|x =yl

_Ko(x_y)‘ <C
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We can write

K (%, y) = Ky (x =)

m(x)
SC(J |at(T‘f7(x,y)—Wt(x—y))|dt

0
0 ©0 270
+J ‘atTf{(x,y)‘dt+J |8tWt(x—y)dt) (270)
m(x) m(x)
3
- YLy e
i=1
First, we observe that
00 e—c\x—y|2/t C
Ii(x,y) < CJ gni2+1 t< ni2
m(x) m(x) (271)

1
cc(1+x)<c YA

|x_y‘n71/2 > (.x,)/) eNﬁ

By using (250) and since ||y|” - |x|*| < |x - y||x +y| < C
when (x, ) € N, we have that

0o ,—n/2t 2
2 e (1 + \x| )
L(xy) < C(l + x| )Jm(x) PGES] dt < Cm(x)n/zn

1
<o+ x) cc VAT

|x_y‘n—l/2 ’

(272)
(x,y) € Nﬁ.

Finally, from (252), proceeding as above for the estima-
tion of J;, but now by taking into account that (x, y) € N,

we obtain that

™) L+ x| (L+]x])"
—clx—y|1t
Ii(xy) < CJO e (t(”+1)/2 i )dt
1/4 2-1/4
_ B m@) " + (L ) ™
- |x _ y‘n—l/Z ( )
V1+|x]
< Cm, (%,y) € Ng.
Thus, (269) is proved.
As it was established in Section 3.2,
1+ x| d d 1+ |x]| d
sup JW Ty AN (x,)dy < coan ;%I,?jw Tx 12 XN (% y)dx < co.
(274)

Then, the operator Ly defined by

K (63) = Ko (67) g, (6 0) )y x € R,

(275)

Li(H) = |

R

is bounded from LP(R", dx) into itself for every 1 <p < co.
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From ([1], Proposition 3.2.5), it follows that Ll3 is bounded
from LP(R",y_,) into itself, for every 1 <p < co.
Note that

‘ﬁm—(@ | scLf) @)

loc

We now study the global operator ﬂg{gb. We recall that

g{ab is the integral operator defined by

BN ==] [ 0027 (0 )dtry (55 )y e R

0

(277)

We have, by making r = e, t € (0,00), that

ﬂx—ry\zl(lfrz)
0, {r" 67} d

(1= )" r

J;X)‘¢g(t)atTf”(x,y)|dt < C[

1
Jo

—|x=ry)1(1-17
SCJI n(1-r’) +2r(1-r) ¥ yi(x = 1y) —2r2|x—ry|2|rn,1 e homPi(r)
. (1-12)? | (1-12)"
le-\x-ry\zl(l-ﬂ)

n—
r (l _ rz)n/Z

o e L eV R L
0 (1-r2)?

(278)

For every x,y € R", there exists a polynomial P, , with
degree 4 and a positive function Q,, such that

[ e—|x—ry|2/(l—r2)
o, "

W] =P, (r)Q,,(r),r€(0,1).  (279)

Then, for every x, y € R", the function

—\x—ry\zl(l—rz)
0, [r” S ]

(1- rz)nlz (280)

changes the sign at most four times in (0, 1). We deduce that

" ! ~|r-ry (11
JW%W@WWMw«1¢Vs;1_qd
’ 0

(1 _ rz)n/Z r
c e—|x—ry\2/(1—r2) R
<Csupr” , %y €R".
rE(O,Il)) (1 - rz)”/z 4
(281)
If (u,v) € N,, with A > 0, we have that
1 1 1+A
! (282)

< < .
(L+An)(L+|v]) = 1+|u| — 1+

Also, min {1, |x| ' }/2< (1 +|x|)"" <min {1, x| '}, x €
R". Then, if (y,x) € N, then (x, y) € Ny

1+n)*
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We take B=2(1+n). Since (y,x) ¢ N when (x,y) ¢ Ny,
according to ([24], Proposition 2.1), we get, for (x,y) ¢ N >

e—\x—ry\z/(l—rz)

sup —————
,qog) (1-r2)"?
e""‘z, (x,y) <0,
n/2 2 _ 2 _
) g (M Baliet) g
bl 2 2

(283)

By proceeding as in the proof of Theorem 2, we can see
that, for every 1 < p < 0o,
Py 00 .
supj (=1 >/pXN;; (x, y)J 16, ()] [0, T (x, y)|dtdy < oo,
R 0

x€R”

(284)

and

(00

sup [ elUTV P (ay) | 10, (010, (5, 9) oy < o
yer" ) g B 0

(285)

Hence, the operator Z defined by

Z30))= | FO) 0| 0011275 ey x

(286)

is bounded from I#(RR",y_,) into itself, for every 1 < p < oo.
On the other hand, according to ([1], Lemma 3.3.3)

supT? (x, y) < Ce™™ min {(1+ |x])", (x| sin 6(x, y)) ™"}, (x,y) € N, x,y #0.
t>0

(287)

We recall that O(x,y)€[0,7) represents the angle
between the nonzero vectors x and y when n>1 and 0
(x,y)=0, x,yeR", when n=1. By ([1], Lemma 3.3.4)
the operator Zj is bounded from L'(R"y_,) into L'
R y_y)- ‘

Note that [/, (f)] < Zp(|f]).

By taking into account that (-A/2)" is a Calderén-
Zygmund operator, the arguments developed in the proofs
of Theorems 2 and 3 allow us to finish the proof of this
theorem.
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