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In this paper, we establish a Fischer type log-majorization of singular values on partitioned positive semidefinite matrices, which
generalizes the classical Fischer's inequality. Meanwhile, some related and new inequalities are also obtained.

1. Introduction

We denote by Mn,m the vector space of all complex n ×m
matrices. In particular, when n =m, Mn represents the set
of square matrices of order n. Let A and B be Hermitian
matrices. We use the notation A ≤ B or B ≥ A to mean that
B − A is positive semidefinite. Particularly, B ≥ 0 (B > 0)
means that B is positive semidefinite (B is positive definite).
The singular values of A ∈Mn are the nonnegetive square
roots of the eigenvalues of A∗A. We denote that sjðAÞ is the
jth largest singular value of A ∈Mn and we denote sðAÞ =
ðs1ðAÞ, s2ðAÞ,⋯, snðAÞÞ. Denote by ∥·∥∞ the spectral norm.
For A ∈Mn, it is evident that ∥A∥∞ = s1ðAÞ.

We rearrange the components of x = ðx1, x2,⋯, xnÞ ∈ℝn

in decreasing order as x½1� ≥ x½2� ≥⋯≥ x½n�. Let x = ðx1,⋯,
xnÞ, y = ðy1,⋯, ynÞ ∈ℝn. If

〠
k

i=1
x i½ � ≤ 〠

k

i=1
y i½ �, k = 1, 2,⋯, n, ð1Þ

then we say that x is weakly majorized by y and denotes
x≺ωy. If x≺ωy and ∑n

i=1xi =∑n
i=1yi, then we say that x is

majorized by y and denotes x ≺ y. Let nonnegative vectors
x, y ∈ℝn

+. If

Yk
i=1

x i½ � ≤
Yk
i=1

y i½ �, k = 1, 2,⋯, n, ð2Þ

then we say that x is weakly log-majorized by y and denotes
x≺ω logy. If x≺ω logy and

Qn
i=1xi =

Qn
i=1yi, then we say that x

is log-majorized by y and denotes x≺logy.
A norm on Mn is called unitarily invariant if ∥UAV∥ =

∥A∥ for any A ∈Mn and any unitary U , V ∈Mn. For A ∈
Mn and 1 ≤ k ≤ n, the kth compound matrix of A is denoted
by CkðAÞ. We list one of the useful properties on compound
matrices: for A, B ∈Mn, CkðABÞ = CkðAÞCkðBÞ. A series of
properties of compound matrices can be seen in [1–3]. A
complex matrix C is called contraction if C∗C ≤ I or equiva-
lently s1ðCÞ ≤ 1. We denote the block matrix

A 0
0 C

 !
, ð3Þ

by A ⊕ C.
The well-known Fischer’s inequality for determinant on

the partitioned positive semidefinite matrix is the following.
Let

H =
A B

B∗ C

 !
≥ 0, withA ∈Mp andC ∈Mq: ð4Þ
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Then

det Hð Þ ≤ det Að Þ det Cð Þ = det A ⊕ Cð Þ: ð5Þ

Let the eigenvalues of A ∈Mn be λ1, λ2,⋯, λn with ∣λ1 ∣
≥ ∣ λ2 ∣ ≥⋯≥∣λn∣. Weyl [4] proved that f∣λi ∣ gni=1≺logsðAÞ.
Since for positive semidefinite matrices, singular values and
eigenvalues are the same. Fischer’s inequality can be rewritten
as the following.

det Hð Þ =
Yp+q
i=1

si Hð Þ ≤
Yp
i=1

si Að Þ
Yq
i=1

si Cð Þ

=
Yp+q
i=1

si A ⊕ Cð Þ = det A ⊕ Cð Þ:
ð6Þ

The motivation of this paper is to give the log-
majorization relationship between the singular values of parti-
tioned positive semidefinite matrix and its main diagonal
matrix, which generalizes classical Fischer’s inequality. In
addition, we will also establish some singular value inequalities
between partitioned positive semidefinite matrix and its main
diagonal matrix.

2. Main Results

First, we list some lemmas that are used in our proofs.

Lemma 1 (Zhan [1], p. 71). Let C be a complex matrix (not
necessary square). Then, C is a contraction if and only if

I C

C∗ I

 !
≥ 0: ð7Þ

Lemma 2 (Zhan ([1], Theorem 3.34).

A B

B∗ C

 !
≥ 0, ð8Þ

if and only if A ≥ 0, C ≥ 0, and there exists a contraction W
such that B = A1/2WC1/2:

Lemma 3 (Zhan [1], p. 80). If the singular values of A ∈Mn
are s1,⋯, sn, then the eigenvalues of

φ Að Þ≔
0 A

A∗ 0

 !
, ð9Þ

are s1,⋯, sn, −sn,⋯, − s1.

More general, by Jordan-Wielandt theorem ([5], Theo-
rem 4.2), for A ∈Mp,q ðp ≥ qÞ, the matrix

0 A

A∗ 0

 !
, ð10Þ

has eigenvalues ±si, 0,⋯, 0
⏞ p−q times

, i = 1,⋯, q:
Applying Lemma 3, we obtain the following.

Lemma 4. Let W ∈Mp,qðp ≥ qÞ be the contractive matrix.
Then,

s
I W

W∗ I

 !
= s I + φ Wð Þð Þ

= 1 + s1,⋯, 1 + sq, 1,⋯, 1
⏞

p−q times

, 1 − sq,⋯, 1 − s1

0
@

1
A,

ð11Þ

where si is the ith largest singular value of W.

Proof. W is a contractive matrix if and only if

I W

W∗ I

 !
≥ 0: ð12Þ

For positive semidefinite matrices, singular values and
eigenvalues are the same. Note that

I W

W∗ I

 !
=

I 0
0 I

 !
+

0 W

W∗ 0

 !
, ð13Þ

by Lemma 3 and spectral mapping theorem, this completes
the proof.?

Next, we will establish the log-majorization relationship
between the singular values of partitioned positive semidefi-
nite matrix and its main diagonal matrix.

Theorem 5. Let

A B

B∗ C

 !
∈Mp+q, ð14Þ

be positive semidefinite matrix with A ∈Mp, C ∈Mqðp ≥ qÞ.
Then, there exists a contractive matrix W ∈Mp,q such that

s
A B

B∗ C

 !
≺log si I + φ Wð Þð Þsi A ⊕ Cð Þf gp+qi=1 : ð15Þ

Proof. Applying Lemma 2, there exists a contractive matrix
W such that B = A1/2WC1/2. Then,
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A B

B∗ C

 !
=

A1/2 0
0 C1/2

 !∗ Ip W

W∗ Iq

 !
A1/2 0
0 C1/2

 !
:

ð16Þ

Denote

H =
A B

B∗ C

 !
,Q =

Ip W

W∗ Iq

0
@

1
A,

P =
A1/2 0

0 C1/2

 !
, T = A ⊕ C:

ð17Þ

The equality (16) can be rewritten as H = P∗QP: Using
compound matrices and the fact that for any square matrix
A, ∥A∥2∞ = ∥A∗A∥∞, for 1 ≤ k ≤ p + q, we have

Yk
j=1

sj Hð Þ =
Yk
j=1

sj P
∗QPð Þ = s1 Ck P∗QPð Þ½ �

= s1 Ck P∗ð ÞCk Qð ÞCk Pð Þ½ �
= Ck P∗ð ÞCk Qð ÞCk Pð Þk k∞
≤ Ck P∗ð Þk k∞ Ck Qð Þk k∞ Ck Pð Þk k∞
= Ck P∗ð Þk k2∞ Ck Qð Þk k∞
= Ck P∗ð ÞCk Pð Þk k∞ Ck Qð Þk k∞
= Ck P∗Pð Þk k∞ Ck Qð Þk k∞
= Ck Tð Þk k∞ Ck Qð Þk k∞
=
Yk
j=1

sj Tð Þsj Qð Þ:

ð18Þ

In addition, for k = p + q, we have

det Hð Þ =
Yp+q
j=1

sj Hð Þ = det P∗QPð Þ = det QTð Þ

=
Yp+q
j=1

sj I + φ Wð Þð Þ
Yp+q
i=1

si A ⊕ Cð Þ

=
Yq
j=1

1 − sj Wð Þ2� �Yp+q
i=1

si A ⊕ Cð Þ,

ð19Þ

where the last equality is due to Lemma 4, this completes the
proof.?

Corollary 6. Let

H =
A B

B∗ C

 !
∈Mp+q, ð20Þ

be positive semidefinite matrix with A ∈Mp, C ∈Mqðp ≤ qÞ.
Then, there exists a contractive matrix W ∈Mp,q such that

det Hð Þ =
Yq
j=1

1 − sj Wð Þ2� �
det A ⊕ Cð Þ: ð21Þ

Remark 7. From the equality (21), we can see that det ðHÞ
≤ det ðA ⊕ CÞ. The equality holds if and only if sðWÞ = 0,
i.e., W = 0; it also implies that B = 0.

Corollary 8. Let

H =
A B

B∗ C

 !
∈Mp+q, ð22Þ

be positive semidefinite matrix with A ∈Mp, C ∈Mq. Then,
there exists a contractive matrix W ∈Mp,q such that

A B

B∗ C

 !�����
����� ≤ 1 + s1 Wð Þð Þ · A ⊕ Ck k: ð23Þ

for all unitarily invariant norms k·k.

Proof. Recall that weak log-majorization is stronger than
weak majorization, i.e., x≺ω logy implies x≺ωy. By Theorem
5, we have

s1 Hð Þ,⋯, sp+q Hð Þ� �
≺ω 1 + s1 Wð Þð Þs1 A ⊕ Cð Þ,⋯, 1 − s1 Wð Þð Þsp+q A ⊕ Cð Þ� �

:

ð24Þ

It is clear that

1 + s1 Wð Þð Þs1 A ⊕ Cð Þ,⋯, 1 − s1 Wð Þð Þsp+q A ⊕ Cð Þ� �
≤ 1 + s1 Wð Þð Þs1 A ⊕ Cð Þ,⋯, 1 + s1 Wð Þð Þsp+q A ⊕ Cð Þ� �

:

ð25Þ

Therefore, we have

s1 Hð Þ,⋯, sp+q Hð Þ� �
≺ω 1 + s1 Wð Þð Þs1 A ⊕ Cð Þ,⋯, 1 + s1 Wð Þð Þsp+q A ⊕ Cð Þ� �

:

ð26Þ

Using the Fan Dominance Principle (see [6]), this com-
pletes the proof.?

In the following section, we will establish some singular
value inequalities between partitioned positive semidefinite
matrix and its main diagonal matrix. The following well-
known result is due to Ky Fan [1].

Lemma 9. Let A, B ∈Mn, 1 < i, j ≤ n, i + j − 1 ≤ n: Then,

si+j−1 ABð Þ ≤ si Að Þsj Bð Þ: ð27Þ
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In particular,

sj ABð Þ ≤ s1 Að Þsj Bð Þ, sj ABð Þ ≤ s1 Bð Þsj Að Þ, j = 1,⋯, n: ð28Þ

Theorem 10. Let

A B

B∗ C

 !
∈Mp+q, ð29Þ

be positive semidefinite matrix with A ∈Mp, C ∈Mqðp ≥ qÞ.
Then, there exists a contractive matrix W ∈Mp,q such that

si
A B

B∗ C

 !
≤ 1 + s1 Wð Þð Þsi A ⊕ Cð Þ, i = 1,⋯, p + q:

ð30Þ

In addition, for 1 ≤ i ≤ q,

si
A B

B∗ C

 !
≤ 1 + si Wð Þð Þs1 A ⊕ Cð Þ, ð31Þ

for q + 1 ≤ i ≤ q + p,

si
A B

B∗ C

 !
≤ s1 A ⊕ Cð Þ: ð32Þ

Proof.

si
A B

B∗ C

 !
= si

A1/2 0

0 C1/2

 !∗ Ip W

W∗ Iq

0
@

1
A A1/2 0

0 C1/2

 !2
4

3
5

≤ si
A1/2 0

0 C1/2

 !
s1

Ip W

W∗ Iq

0
@

1
A A1/2 0

0 C1/2

 !2
4

3
5

≤ si
A1/2 0

0 C1/2

 !
s1

Ip W

W∗ Iq

0
@

1
Asi

A1/2 0

0 C1/2

 !

= s1
Ip W

W∗ Iq

0
@

1
Asi

A 0

0 C

 !

= 1 + s1 Wð Þð Þsi
A 0

0 C

 !
:

ð33Þ

In (33), change the position of

A1/2 0
0 C1/2

 !
, ð34Þ

and

Ip W

W∗ Iq

 !
A1/2 0
0 C1/2

 !
, ð35Þ

By similar proof method, we can get the following
inequality.

si
A B

B∗ C

 !
≤ si

I W

W∗ I

 !
s1 A ⊕ Cð Þ, i = 1,⋯, p + q:

ð36Þ

Using Lemma 4, we can divide into the following cases:
Case 1. 1 ≤ i ≤ q. Then,

si
A B

B∗ C

 !
≤ 1 + si Wð Þð Þs1 A ⊕ Cð Þ: ð37Þ

Case 2. q + 1 ≤ i ≤ p + q. Then,

si
A B

B∗ C

 !
≤ s1 A ⊕ Cð Þ: ð38Þ

This completes the proof.?

The following theorem is proved by using the result
given by Hirzallah and Kittaneh [7].

Lemma 11. Let A, B ∈Mn and 0 < α < 1. Then,

sj αA + 1 − αð ÞBð Þ ≤ sj A ⊕ Bð Þ, j = 1,⋯, 2n: ð39Þ

In particular, letting α = 1/2, we have

sj
A + B
2

� �
≤ sj A ⊕ Bð Þ, j = 1,⋯, 2n: ð40Þ

Theorem 12. Let

A B

B∗ C

 !
∈Mp+q, ð41Þ

be positive semidefinite matrix with A ∈Mp, C ∈Mqðp ≥ qÞ.
Then, for j = 1,⋯, p + q,

sj
A 0

0 C

 !
≤ sj

A B

B∗ C

 !
⊕

A B

B∗ C

 ! !
: ð42Þ

Proof. Since

Ip 0
0 −Iq

 !
A B

B∗ C

 !
Ip 0
0 −Iq

 !
=

A −B

−B∗ C

 !
,

ð43Þ

we have

sj
A B

B∗ C

 !
= sj

A −B

−B∗ C

 !
: ð44Þ
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Meanwhile

A 0
0 C

 !
= 1
2

A B

B∗ C

 !
+ 1
2

A −B

−B∗ C

 !
: ð45Þ

Applying Lemma 11 to (45), we have

sj
A 0

0 C

 !
≤ sj

A B

B∗ C

 !
⊕

A −B

−B∗ C

 ! !

= sj
A B

B∗ C

 !
⊕

A B

B∗ C

 ! !
:

ð46Þ

This complete the proof.?

Remark 13. One may ask whether the inequality holds

sj
A 0
0 C

 !
≤ sj

A B

B∗ C

 !
, j = 1,⋯, p + q: ð47Þ

But it needs not be true. For example, setting

A B

B∗ C

 !
=

1 1
1 1

 !
≥ 0,

A 0
0 C

 !
=

1 0
0 1

 !
,

ð48Þ

Then,

s
1 1
1 1

 !
= 2, 0ð Þ, s

1 0
0 1

 !
= 1, 1ð Þ: ð49Þ

Obviously,

s2
1 1
1 1

 !
= 0 < 1 = s2

1 0
0 1

 !
: ð50Þ
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