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In this paper, we study a diffusion equation of the Kirchhoff type with a conformable fractional derivative. The global existence and
uniqueness of mild solutions are established. Some regularity results for the mild solution are also derived. The main tools for
analysis in this paper are the Banach fixed point theory and Sobolev embeddings. In addition, to investigate the regularity, we
also further study the nonwell-posed and give the regularized methods to get the correct approximate solution. With reasonable
and appropriate input conditions, we can prove that the error between the regularized solution and the search solution is
towards zero when § tends to zero.

1. Introduction (see, e.g., [3]), and quantum mechanics (see, e.g., [4]). From

. . o . the paper, see, e.g., [5], we must confirm that the study of
The aim of this study is to investigate the final value for the  the ODE problem with the conformable derivative is very dif-

space fractional diffusion equation ferent from the study of the PDE problem with a conform-

able derivative. Results and research methods of the well-

5" 8 posedness for the ODE and PDE model are not the same

P v(x% ) + ([VV]2)(=8) (x5 t) = F(x.t), x€0,t€(0,T), and are completely different. The following two remarks con-
V(% 1) =0, X0, te(0,T), firm what we have just pointed out.

v(x T) =f(x), x € Remark 1. Let us first discuss conformable ODEs. Let v be the

(1) functions whose domain of its value is R. If a =1, ©3"/0t
becomes the classical derivative. If 0 < « < 1, by the paper of

where the symbol #0"v(t)/0t* is called the conformable  [6], we know that the relation between the conformable

derivative which is defined clearly in Section 2. Here, Q derivative and the classical derivative by the following

RY(d>1) is a bounded domain with the smooth boundary lemma.

0Q, and T >0 is a given positive number. The function F o
represents the external forces or the advection term of a dif- ~ LemmaZ2. Ifv: [0, T] — 'IR’ then a C‘?”f ormc‘tble der‘zvatzve of
fusion phenomenon, etc., and the function f is the final order o at s > 0 of v exzs?s zfand only if it is differentiable at s,
datum which will be specified later. and the following equality is true:

The applications of the conformable derivative are inter-
ested in various models such as the harmonic oscillator, the G
damped oscillator, and the forced oscillator (see, e.g., [1]), 9 v(s) _ -, 0v(s) ' 2)

electrical circuits (see, e.g., [2]), chaotic systems in dynamics Os* Os
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Remark 3. In the following, we mention the PDEs with
conformable derivative where D is a Sobolev space, such
as L2(Q), W»?(Q), and D(AY). When we study the PDE
model, we often do with a multivariable function v : (0, T')
— D, where D is a Sobolev space. This means that, for each
t, v(t) can take on values in many classes of spaces with
D,—=D<=D, ---. Some illustrated examples given in [5] say
that (2) may be not true on Sobolev spaces.

Let us mention some recent works on diffusion equations
with a conformable derivative, for example, [2, 5, 7-16].
Some interesting papers on fractional diffusion equations
can be found in [17-24] and the references therein.

When « = 1, the main equation of Problem (1) appears in
many population dynamics. By the work of Chipot and Lovat
[25], we know that the diffusion coefficient B is dependent on
the entire population in the domain instead of local density;
that is, the moves are guided by considering the global state
of the vehicle. The function u is a descriptive population den-
sity (e.g., bacteria) spread. According to article [26], we find
that model (1) is a type of Kirchhoff equation, arising in
vibration theory; see, for example, [27].

(i) This paper is the first study on the final value prob-
lem for a diffusion equation with a Kirchhoff-type
equation and conformable derivative. Since our
models are nonlinear, in order to establish the exis-
tence and uniqueness of solutions, we have to use
the Banach contracting mapping theorem combined
with some techniques to evaluate inequality and
some Sobolev embeddings. One of the most difficult
points is finding the appropriate functional spaces
for the solution

(ii) The second result is to investigating the regularized
solution for our problem. We show the ill-posedness
of the problem and give Fourier regularization. The
most difficult thing that we have to overcome is find-
ing the appropriate space, to prove that the regularized
solution converges with the exact solution

It can be said that our article is one of the first results, giv-
ing a general and comprehensive picture, considering both
the frequency and the inaccuracy of Kirchhoff’s diffusion
equation with fractional time and space derivative. Using
complex and interoperable assessment techniques, we find
the right keys and tools to achieve both of our goals.

This paper is organized as follows. In Section 3, we pres-
ent the existence of the backward Problem (1) with the sim-
ple case F = 0. In the appropriate terms of the terminal data f,
we show that the mild solution of (1) in the case < 1 con-
verges with the mild solution of the same problem in the case
B=1 when f— 1". Finally, in Section 4, we consider a
backward problem with an inhomogeneous source term.
The first part of this section discusses the existence of a mild
solution under the appropriate conditions of the source func-
tion F. Furthermore, we also give an example, which shows
that the problem is not stable, and then look for the approx-
imate solution. Using the Fourier truncation method, we
involve the regularized solution. Convergence error between
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the regularized solution and the correct solution has also
been established, with some suitable conditions of input
value data.

2. Preliminaries

2.1. Conformable Derivative Model. Let the function v : [0,
00) —> D, where D is a Banach space.
If for each ¢ > 0, the limitation

%B“v(t) — lim v(t+et' ™) —v(t)

55 Jim - inD, (3)

finitely exists, then it is called the conformable derivative
of order a€(0,1] of v. We can refer the reader to [6, 8,
14, 28, 29].

We introduce fractional powers of &/ as follows:

Mg

D(d") = {9 €L*(Q): ) (9 wj>{2)t§”<oo}. (4)

J

I
—_

The space D(&/") is a Banach space in the following with
the corresponding norm:

0 1/2
HQHD(M) = (Z |<9’ wj>|2A]2'V> ,geD”). (5
i1

The information for negative fractional power &/~ can
be provided by [30]. For any 6 > 0, we introduce the follow-
ing Holder continuous space of exponent 0

C’([0, T]: B)
={VGC([O,T];%): sup M«m},

0<s<t<T |t - s|9

(6)
corresponding to the following norm:

HV("t)_V("S)”% ) (7)

IVl oo,y 8y = SUP I~ s|°

0<s<t<T

For any 0 < 0 < 1, let us introduce the following space:
&°((0,T); B)
2 &) (8)
=3 veC((0, T} L*(Q)): supt’||v(.t)|| <00 ¢,

0<t<T

corresponding to the norm [|v|gs (o 17, = OsupTl‘6||v(.,l‘) Il -
<t<
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Let us define the space as follows:

242
Xpa(Q2) = {9 € L*(2), Z;Af ’
=

2TM, N
- exp <“1]> <g, wj>2<oo}.

3. Backward Problem for Homogeneous Case

©)

In this section, we consider the final value problem for the
homogeneous equation with a space fractional derivative as
follows:

4 o
= V(1) +B(||VV] 2) (=A)Pv(x,t) =0, x€Q,te(0,T),

v(x,t) =0,

v(x, T) = f(x), x €0,

(10)
where 0 < M, < B(§) < M, and & € [0, T]. The following theo-
rem states the existence and uniqueness of the solution of

Problem (10).

Theorem 4. Let f€X;,(Q). Then, Problem (10) has a

unique mild solution v € C([0, T| ; H'(Q)) which satisfies that

T/«
Z exp (Aﬁj . (||Vv(.,5)||L2)ds> f> wj>wj(x).
j=1 “
(11)
Furthermore, this solution is not stable in the L? norm.

Proof. We express a mild solution of (10) by Fourier series as
follows:

v(x, t) = Z<v(.,t),wj>wj(x). (12)
=1

It follows from Problem (10) and the equality ((-A)P

V(o) w)) = M (v(,t), w;) that
7% 5
= <v(.,t), w)+AB([[VY o) (v(t), wj) =0, t€(0,T),
(u(0), wy) = (ug> wy).
(13)

Note that this formula

fa“ 1-a 0

ﬁ@( t),w;) =t a—t<u(.,t),wj>, (14)

x€d0,te(0,T),

is correct; we get that

% (v(ot)sw;) + A2 B(| V]| ) (v(o), w;) = 0. (15)

Multiply both sides of equation (15) by the quantity
exp ( jmla}{ﬁ B(||[Vv(.8)|2)ds), we reach the following
assertion:

%<<v(.,t),wj> exp <J;m)tf3(||v(.,s)||Lz)ds>> ~0, (16)

where we have used the fact that

% (exp (J;m)thQVV(.,5)|L2)d5>)

(17)

Integrating the two sides of the latter equation 0 to f,
we obtain the following confirmation:

talo
(v(st), w;) exp <Jo /\fB(HVv(.,s)HLz)ds) = (v(-,0), ;).
(18)

It yields that

to/o
(v(st), w;) = exp <—J0 /\fB(HVv(.,s) ||Lz)d5) (v(-0), w;).
(19)

Therefore, we find that

)= e (X[ BT ) (.0 o)

] 1 I
(20)

For veL®(0,T;H'(Q)), we consider the following
function:

T
Q(v)(x Zexp ()VBJ (|Vv(.,s)||L2)ds> (fs wy)w;(x)
j=1
(21)

We shall prove by induction if w;,w,€L®(0,T;H"
(Q)), then



(1R, K3 = i)

12(Q) k!

IN

| @ (wn) - @ wy)

lwy - w2||L°°(O,T;L2(Q)) Vg<l.

(22)

For m=1, using the inequality |e® - e’| < |a - b| max
(%, %) for any a, b € R, we have

[[@(w;) ~ @(wZ)H?-I](Q)

0 T«
= ZA?*Zﬁ [exp <A]‘BJ B(||Vw1(~>5)|L2)ds>

=1 t*/a

/o

e (3] (1w | 4y

J th(||Vw1(.,s)||Lz)ds

/o

T 2
- | B
2T% - 2t*
()
/o

<K ], 19009
t*/a

T% — ¢

2 2
5Kb||f||xm(n)7

2
|w; —w, ”LOO(O,T;HI(Q))'

Assume that (22) holds for m =k. We show that (22)
holds for m = k + 1. Indeed, we have

H@kﬂ(wl) - @k+1(w2>

H'Y(0)

- ixﬁ {exp (/\ija/aB(HV@k(wl)(.,s)HLz)ds>

t* o

e (3] B[ vt ) )] 05

@k(wl)(.,s)—@k(wz)(.,s)HZ ds

H'(Q)

5 5 T
< 1Ry %
t*/a

e (U o KT - )
< 1Ry 0% S ds

(171, KT = 7))
(k+1)!

<

(24)

By the theory of the induction principle, (22) holds for all
w,, w, € L°(0, T; H'(Q)). Since the fact that

2
lw; —w, ||L00(0,T;H1 @)

Journal of Function Spaces

1/2

2 2 ot « k
(0 0 KT~ 1) P

k—+00 k!

there exists a positive integer number k, such that @% is a
contraction. It follows that the equation @%v=1v has a
unique solution v € L®(0, T ; H'(Q)). It is easy to see that v
is also a fixed point of @. O

Theorem 5. Assume that f € XB,,, ,(Q) for any y > . Let us
choose v, such that

T(x(l—5) |C6 |2V526

T (1-5) <1 (26)

201 £112
2KfI2, o
Let any 0 < e <y — . Then, there exists C, > 0 such that

2
[V = e ||L3°0(0,T;H1 @)

Cs(l - ﬁ)£||f||xl3+y,a(9)

1= 2K o (T 041 -3))

(27)

<

>

where

Lﬁ:(o, T;H'(Q)) = {v eL®(0, T; H'(Q)), ||V||L33(0,T;H1(Q))

= st o0 <00
0<t<T

(28)

Proof. Let v, g be the solution of Problem (11). Let w, be the
solution to Problem (11) with = 1. Then, we get

(AfJT“mB(||vvmﬁ(.,s)||L2)ds>

%o

[ee)
va)l;(x, t)= Z exp

i1
(frwpw;(x),
© T o

w,(x, t) = Z ex J B(||Vwa(.,s)||Lz)ds>

p (
j=1 1%/

(fs wj)w;(x).

i(
A
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We have
va)ﬁ(x, t) —w,(x, t)

_ 00 /\ﬁ T"‘/aB v
Zexp . (H Va(9)

mwwwm@mwmm

1)) (F )

mwmwm@m%mm

mmwwm@mwmw

(30)

mwwwm@mwww

B(||[Vw,(-$) |L2)ds) (fs wj>wj(x).
(31)

The term 9, is bounded by

oo 2TM, AP
2p+2 1
a) < E A " exp <4]>

. (J?// B(|[7rap ()] ) ds
[ Bl e)

TDC
<K o] 19 Cas =269 o e

(32)

A

The term 9, is estimated as follows:
2 2T°M, Aﬁ 2
242
1Dy < YA exp (T) (A=)

JBqum))U>

(M) ()

Consider the following subset:
A={jeN,A <1}, Ay={jeNA;>1}. (34)

If j € A, then using the inequality 1 — e7* < C,z°, we get

B _\B 1=\ _41B ey-e _ ey B¢
M =d= 2 (1-47F) = AfC,(1- BA = CL- BN,
(35)
which allows us to obtain
27°M, AP 2
2B 1 B 2
2 A exp (T) (W -x) ()
JjeA,
2 2T°M, AP
<|CL (=B YA e m(cj’yﬂ%f
JEA,
(36)

If j € A,, then using the inequality 1 — e7* < C,z°, we find

‘/\ﬁ )L‘ (1—)&’3 1):)chs(l—ﬁ)‘:/\jzce(l—ﬁ)@\f“.

(37)

Hence, we obtain

Y AP exp (%) (Aﬁ A )2<f, w;)?

JjeA,
(04 )\f;
exp (ﬁi) (frw;)”.

(38)

|C ‘ zg Z A4‘8+2+2£

JEA,

Combining (36) and (38), we find that

2TM, AP 2
/\;ﬁ exp <%> (/\f—/\]) f> wj>2
27°M, AP
e

(39)

< C|C | zg Z /‘4ﬁ+25+2

jeA

Let us choose 0 <& <y — 8. Then, we follow from (33)
and the latter equality that



D,|1> < CM? r-e C
12" < CM { — ||

2TM, AF
. exp (4) <f, w]>2

25 Z A4ﬁ+28+2

jEA,

o
L (T —t* 2 23 2B+2y2
< CM? IC.P(1 DA (40)
o JjeA,
27°M, AP
- exp (%) <f’ w]>2
2 T —1t° g 2 2e 2
- o LB, o

This above inequality together with (32) and (3) yields
that

a0 =w0al) [

<279, ||12ql(9) +2¢7070)| 2, ||§—II(Q)

T«
= 2K§||f||§<ﬁ‘a(9)ezv(t4)Jt / [V (-8) e ’S)HHl(Q)dS
o

- T® _ 4o 2
e20uie 0 (L) e P BT, oy
(41)
It is easy to get that
(=T T )
e >JW Vi ()09
e 2v(t-s) ,2v(s-T) 2
- V(s . S ds (42
[ D ), () gt (42
T 2 (
< V(t=s d
(th 5) [V = e L"O(O TH'(Q))"
It follows from the inequality
e?<Cyz? 0<0<1, (43)
we get
T o T
J =) ds < \C5|2v_2‘3J (s—t)°ds. (44)
%o o

o

=7 106 1) + B(|| V]| 2) (=) Pu
u(x,t) =0,
u(x, T) =0,

(5.1)=
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The inequality (a + b)® < a® + b* leads to

T« TOt —t 1-6 —(1* —t 1-6
J (S_t)—5d5= ( lat ) : ( la )
/o -
(45)
o (Ta— o)™ 70
- 1-0 T al9(1-6)’
which allows us to get immediately that
T/ (1-8)| 0 |2-20
J e (=9 ds < ¢ (46)
t/a al” 6(1 - 8)

It follows from (41) and (42) that for any ¢ € [0, T]

)||va,ﬁ(.,t)—w o Hiﬂ
700 |C<s|2 =
«(1-9)

T 2 X
r2ut (1) 6P B, o

<2K3f 1%, 0 Ve = el (o780 )

(47)

Since the right-hand side of (47) is independent of ¢, we
deduce that
o2
[ waHL‘;O(o,T-HI(Q))
Totl -95) |C6|2 -26

al— 5(1

2o (Z) je (l—ﬁ)2£||f|\2
Xpiya(2)”

52K124||f||§<ﬁa( [V = ‘XHLSO(O,T;H‘(Q))

(48)
Then, we find that
2
[V = e HL"E (0.T3H' ()
2CM3(T*/a)*|C (1= BY*IfII,, . o (49)
< +yot .
1= 26If Iy, o) (T Col* Ve 12 (1~ 3))
0

4. Backward Problem for Inhomogeneous Case

In this section, we consider the final value problem for homo-
geneous equation as follows:

F(x,t), xe€Q,te(0,T),

x€0Q,te(0,T), (50)

x€e,
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where F is defined later.

4.1. Existence and Uniqueness of the Mild Solution. In this
subsection, we state the existence and uniqueness of the mild
solution. In order to give the main results, we require the
condition F which belongs to the space L#(0, T ; X3, a(Q)).

Theorem 6. Let 0 < <1 and F be the source function that
belongs to L#(0, T ; X, a(Q)) for any 1<p<1/(1 - ). Let
B be the functions which satisfy M,<B(z)<M,, z€[0,T]
and

Z,|, zpz,€R. (51)

|B(2;) = B(22)| < K|z, -

Then, Problem (50) has a unique mild solution u € L%(O
, T H'(Q)), where p, is small enough. The function u satisfies

that
00 T s* /o B
=S ([l e ([ agpOmao o)
=1 t o
. <F(_)s),u)j>ds) w;

(52)

Furthermore, this solution is not stable in the L? norm.

Proof. By a simple calculation, we get the following equality:

(v(-t), w;) = exp <_J:,qu(lw<.,s> |L2)ds) (u(.,0),w,)
e (- Jw,«ﬁB(|Vv<.,r>||y>dr>

0 s¥/a
(F(-5), wj>ds.
(53)

By letting # = T and noting that v(x, T) = 0, we find that

exp (=[BT (.00
+ JTS‘H exp (—JTﬂ/aAfB(HVv(.,r)||L2)dr) (54)

0 s*la

. <F(.,s), wj>ds =0.

Therefore, we obtain

5%/

<u(.,0), wj> = —JTS"‘I exp (L /\fB(||Vv(.,r)|Lz)dr)

. <F(.,s), wj>ds.
(55)

Combining (53) and (55), we deduce that

o) = [ e (-] Bl

%o

T
<F >ds—J 1 exp
0

( mxﬁB (I9v(., )|L2)dr><F .8), w;)ds
j ! exp (j;:AﬁB(HVv( lie)ar)
- (F(

F(. >|ds
(56)

Let us denote by L?(0, T'; V) the functional subspace of
L*(0, T'; V) corresponding to the norm

191l 0 0,72 = max [lexp (u(=T)) g (1)l |y
(57)

Vg e LP(0,T;V),
where
> {# €R,geL*(Q), 2 exp (u(t=T))(g; wj>2<00} :
] (58)

Set the following function:

vty =3 ([ e e ([ MmO )ar)

. <F(.,s),wj>d$> w;
(59)

and we let

5%/

s jw=ep ([ Hp(vuCA)ar). (o)

So, using Parseval’s equality, we get that

| Pw,
) T .
= 3 4(] ¢t ets oy

(s ) (Pl )k (61)

—ngﬂiﬂ(o)

— M (5,1, jiw,))* (F(.9), wj>2ds) :



Using the inequality |e? — €| < |a — b| max (e, €’), we
continue to treat the term (s, t,j, w,) — M (s, t, j,w,) as
follows:

(st wy) =

~fewo ([ Wvun o )ar)

t* o

~p ([ Wa(wesolgar) (€2)

t*/a

TMAP\ e
<exp — KMJJ |lu(.r)-
o

Therefore, applying the Holder inequality, we get

M (s, 1, w,)|

v(sr)||gpdr.

| (s, t,§,v,) — (s, 1, j,v,)|?
2TM, A T2
2V ik, PA
<exp < " >|Kb| A P (63)

s* 5
]‘Hn@owxﬂmmmﬂx

1o
Inserting (61) and (63) yields the following inequality:
exp 2u(t-T))||%v,

5 T3o¢ s o it ) -
<K ([ )

a 2 M\ )
<Lx/ (Z/\ p (2 . ]) (F(9), w)) )ds)

KiT?’a (Js a
< exp (2u(t—s ds)
30\, sl

x (max exp u(s=T)) 1 (-5) %2 () )

0<s<T

t
a-1 2
. (JOS ||F("5)Hx,3,a(ﬂ)ds>'

Take any 6 € (0, 1). By a similar explanation as (46), we
find that

—9)"2%1(0)

(64)

s T(xl S |C |2‘M—26
ot —syds< T IGEET s
J,, o Cut-9ass i (@9

By applying the Holder inequality, we also obtain that

t
[ 1B, s

0

t I Up* s ot 2
. (JOS< ) ds> (J IECSI, oyds

< P71 iy
ap—1

)W (66)

||F||LZP(0TX/3 @ ))
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From some observations as above, we deduce that

exp 2u(t-T ng -P

K2T3oc T(xl -8) |C |2 —26 -1
3¢ al9(1-9) ocp—l

VZHHI

i) (67)

2 2
) ”FHLZP(O,T;XSYQ(Q))Hvl - VZHL;;o(o,T;Hl(Q))'

Since the right-hand side of the latter estimate is indepen-
dent of ¢, we find that

Hgvl - 9"2 HLZ"(O,T;H1 (Q))
S KiT?ux T(x(l—(?) |C5|2‘M—26 = 1

T(p=1)/(p=1) 68
3¢ al9(1-6) ap-1 (€8)

2 2
: ||F||L2P(0,T;Xﬁ,a(o))”"1 - VZHL;;O(O,T;HI(Q))'

Let us choose y, such that

2 KT TG, p-1

a1/ | B2,
0 30 alO(1-8) ap—1 | ””(

0.T5X3,(Q))

(69)

Then, we can conclude that & is a contraction mapping
in the space L%(O, T;H'(Q)). Next, we continue to show

that if v € L3(0, T; H' (), then Pv e LP(0, T H' (Q)). If
v, =0, then

Py, (t) = f(]js‘“(zr( s

i1

wj>ds) w;. (70)

Hence, from Parseval’s equality, we find that
(o] 2
120 B = 25 [ 0 0)0)
j=1

()5 nars)

Tth )
o F) 1 d
< | NG

oy Up* /ot » 1ip
< — sDP" gg J F(.,9)||% ds)
= ([rre)” ([
p 1

ap—l /(p-1) F?
< LT e,

(0T:H (@)
(71)

This says that v, belongs to the space L*(0, T'; H 1(Q)).
Using (68), we arrive at the confirmation that %v belongs
to L;;’(O,T;HI(Q)) if veL%(O,T;Hl(Q)). For any m e
N, let u,, be the function that satisfies the following integral
equation:
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o

(5.1) = f (J exp (jﬁalaAfB(nwmwLz)dr)

(F(.9), wj>ds) (%)

Let us assume that

F,(xt)= %iwj(x). (73)

m j=1

It is not difficult to verify that F,, € L(0, T; X,(0)),
so we get that F,, € L*(0, T';Xp,(€)).
Using Theorem 6, we conclude that equation (72) has

a unique solution u,, € L(0, T; H'(Q)). By the fact that
B(z) > M,Vz € R, we obtain the following estimate:

T %o 2
0o = 3 ([ esn ([ AmO19, )
e

1
2\,
(ffs""l exp (MO/\f((s‘x - t"‘)/oc))ds)2

>
- 2
/\m

(74)

The estimate is true for all t € [0, T], so it is easy to see
that

fgs“’l exp (MO/\f(s"‘/(x))ds
”umHL“(QT;LZ(Q)) 2 1
i (75)
exp (/\anO(T"‘/tx))

MOA,S:I

When m tends to +00, we can check that ||f,[/2
=1/A,, go to zero when m — +00 and

lim ||”m||c([o,T];L2(Q))

m—+00
. exp (/\ﬁMO(T“/oc)) (76)
= lim =+00.

m——+00

MOA«ﬁ+1

This shows that Problem (50) is ill-posed in the sense
of Hadamard in the L*-norm. O

4.2. Fourier Truncation Method. In this section, we will pro-
vide a regularized solution and solve the problem by the Fou-
rier truncation method as follows:

N0 (x, £) = i (JTs“ exp (Jsa/“AfB(HwNﬁ (1) HL) dr)

o

F‘s(.,s), wj>ds) wj(x).
(77)

Here, N := N(8) goes to infinity as § tends to zero which
is called a parameter regularization. The function F is dis-
turbed by the observed data F® € L®(0, T ; L*(2)) provided
by

HF‘S—FH <9. (78)
(0TI (02))

The main results of this subsection are given by the theo-
rem below.

Theorem 7. Let v > 0 such that F belongs to the space L°(0
2 T3 Xpg1y6(Q)). Let F° be as above. Let us assume that Prob-

lem (50) has a unique mild solution u e L®(0, T ; D(=f"*9))
for 0> 0. Let us choose N such that

o TMAG\ o
61in0/\N exp <T 6=0, alino)LN = +00. (79)

Here v > 1/2. Then, there exists a positive i large enough

such that Problem has a unique solution vN?° eLi—f(O, T;

D(f")). Moreover, we have the following estimate:

2

=
L (0,T;D(&”
‘u( ("))

6T 2TM, AP
< A3 exp <#> 8 (80)

o? o

-20 2
+6My ||”||Lm(o,T;D(,Q¢v+6))~

Remark 8. Since Ay ~ N??, we can choose a natural num-
ber N such that

_ g
AN=<a(1 ;1]1\3?(1/19)) . )

Proof. Part 1. prove that the nonlinear integral equation
(77) has a unique mild solution.

Let any v € C([0, T] ; H'(2)), we denote by the following
function

a

G(v)(x, 1) = _i ( JTsal exp (J;ZAfBQW(.,r)||Lz)dr>

(82)
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By applying Parseval’s equality, we follow from (82) that

1€,

~—

()= (1) () B
T
/\fV (J sa_l(ﬂ(s, t,j,v1)

t

™M=

I
—

J

= M (s, 1, j,vy) ) (F(-9), wj>ds>

T 2v t(x—l .
<7A Z(Js (AM(s,t,, w)

j=1 \JO

(83)

2
/AR t,j,wz))2<F8(.,s), wj> ds) .
If 1 <j< N, then we have in view of (63) that

lU(5, 1, vy) ~ ML(5, 1, v,)
OCM Aﬁ T s o
<exp () KPP Il o s
o

2TM /\,8 T2 (st
<exp (%)/\ZﬁKz 7 J [[vi(r)— Vz('J)H?Jl(Q)dS'

t/a

(84)
The above two observations (65) lead to

exp (2u(t=T))|F(v1) (-t)=F (¥2) (1) [ ey

T3 2TM, AP
(T ()

s* /o
' <J eZM(’S)eZM(ST)||V1(->5>_V2(~’5)|H1d5>

t* o

(e (S ren)a)

CK 2T3¢x ZTIXMIAIEI A2ﬁ+2" Ta(1—8)|C6|2[4—28
<Kyl (X3exp — Ay W

(21
+ (ma exp 2u(s=1) 1 (-9) 29 o)

0<s<T
Py
(.8) . s)

(-

T4 2T°M, AP

2
[[vi = V2||L°°(0,T;H1(Q))'

Ttx(l—(?) | C5 |2M—25
al=9(1-9)

H 6HL°°(0,T;LZ(Q))
(85)

Because the right-hand side of the latter estimate is inde-
pendent of ¢ and noting the Sobolev embedding D(&/")—
H'(Q), we arrive at

Journal of Function Spaces

[€(v1) - (v2) Hi‘f(o,T;D(&zfv))
T4tx 2T“M /\fj N a(1-0) C 2, .-26
< |Kb|2—4 exp ( ! N)Alzfﬂ | o' ¢
o o

al=9(1-9)

) 2
d oz 1" ™ Vel @)
(86)
Let us choose y, such that
|K | LM exp 2TaM1AI€, A2ﬁ+zv Ta(178)|C6|2
b o N a8 (1-§)
(87)
F‘SH <p®.
H L2 (0,T5L2(02)) #

It is easy to see that & is a contracting mapping on the
space L’(0, T;D(”)). Therefore, we can conclude that

there exists a uniqueness solution v % for Problem (77).
Next, we continue to give the upper bound of the term

I 1) = u

)“fp(w)- First, we have
(x, ) —u(x, t)

=3 ([l e (|7 (], o)

=1

. <F‘5(.,s)—F(.,s), wj>ds) wj(x)

N r } o
' le (Jtsw (‘%<S,t,],v 5)
— (s, 1, j,u)) (F(s)w;) ds> e

+ Ji (st“‘l exp (Ji:z/\fB(HVu(_’r)|Lz)dr>

(F(9)s wj>ds)w

-

(88)

The above equality and Parseval’s equality allow us to get
that

2
-]
D(")

<3y ( Jf“ ' exp (J’:'::AfB(HVVN,a(_,T)HLZ) dr) ( Fa(.’s)_F(qs))w»dS)z
A

+3Y A (J e (/%(5 tj, VW‘) - (s, t,j,u)) (F(.s), wj>ds>2

#3Y A G & exp (J:Z/\JEB(HVV.(AJ)H,‘z)dr><F(A,s),wj>ds>2A

5
T3
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Since the condition AB(z) <M ,VzeR and applying
Holder inequality, the quantity ], is bounded by

T N /T s
OS2

<F‘S( ,$)—F > ds
(=) = FH;(Q)dS)

3T 2 ex <2T M, AB>
T«

_ _sz <2T M, )UB> e 1ds) HFE FHL"" or2e)

2T°M, Aﬁ)

(90)

where we have used the fact that || F° — Fll1o(0,1522(00)) <0
The quantity ], is estimated as follows:

exp (2u(t = T))J,

<3exp 2u(t-T)) <JT5““ds>

t

: liJTS“_IAJZ'V(%(S’ L VN,(S) (91)

=1
. \? 2
— M (s, t,],u)) (F(.s),w;)"ds|.
We have in view of (63) that
‘/%(s, t, j, VN’5) =M (s, t, j, u)‘z

2T°M AP\ s k2T
j) 2850
%
Jz"‘/(x

This leads to the following estimate:

1/1\”6(.,1')—u(.,r)H2 dr.

D(")

exp(2u(t = T))J,
KT (sta ppp s
S M

o3

A ) = (e r)H2

D(al)

x 2T°M, AP
.drfgs"‘fl (z /\?Bﬁvexp (”) <F(, s), wj2> ds
~ a

3K2T4tx v Ta(178)|c6‘2‘u—25
1Fles0156,.000) ~g5(1 — 6y
[ |
L:"(O,T;D(.QYV))

(93)

11

The term J; is estimated as follows:
S 2
J;=3 Z Af”<u(.,t), w;)
j=N+1

N 4-2072v420 2 94
=3 z )Lj Aj * <u(.,t),wj> (94)

j=N+1

20,1 12
<3\ 1]l 0,20 (9

Combining (89), (90), (93), and (94), we find that

exp (2u(t = 1)) [ 1) = u(

<exp (2u(t=T)(J, +J,+73)

i

37% ZTOCMIAZ{;I 2, KT
< p” Ay exp( " &+ o
8 —
Lm(o,T;X,;W,a(m) al=3(1 —5)

. VN)S_“H +3A,729 u zm . -
H L2 (0,TsD(al)) N ” ”L (O,T;D(ﬂ 0))

(95)

We choose ¢ such that both the following inequalities are
satisfied:

3K2T TGP 1
F|%., S b1 B 7L
o | HL (0.T3X 100 (2)) a1‘5(1 -9) 2‘“

T4 2TM AP et
|Kb|2F €xp (#)Aﬁm -

F(SH <2
H L2(0,15L2(02)) “

Some observations above give us the following confirma-
tion:
2
A

L5 0.TD(a")

(3T**/a?) Ay exp <2T"‘M1/\f,/oc> &+ 3/\;,29||uHim(0)T;D(w+g))

- (3K2Tat) I e ) (T“(1'6)|C5\2;r25/a1*5(1 - 6)) '

0.5 0(2)
(97)
Since the fact that
2 e a(1-8) |~ |2,,-20
1- 3K“T ||F\|Lm(oTxﬁw( Q) % 2 % (98)
We easily obtain the desired result (80). O
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