Research Article

Ordered Convex Metric Spaces

Ismat Beg
Department of Mathematics and Statistical Sciences, Lahore School of Economics, Lahore 53200, Pakistan
Correspondence should be addressed to Ismat Beg; ibeg@lahoreschool.edu.pk

Received 30 August 2021; Revised 14 October 2021; Accepted 15 October 2021; Published 25 October 2021
Academic Editor: Alberto Fiorenza
Copyright © 2021 Ismat Beg. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The aim of this article is to introduce a new notion of ordered convex metric spaces and study some basic properties of these spaces. Several characterizations of these spaces are proven that allow making geometric interpretations of the new concepts.

1. Introduction

Menger [1] initiated the study of convexity in metric spaces which was further developed by many authors [2-4]. The terms "metrically convex" and "convex metric space" are due to [2]. Subsequently, Takahashi [5] introduced the notion of convex metric spaces and studied their geometric properties. Takahashi also proved that all normed spaces and their convex subsets are convex metric spaces and gave an example of a convex metric space which is not embedded in any normed/Banach space. Kirk [6] showed that a metric space of hyperbolic type is a convex metric space. Afterward, Shimizu and Takahashi [7] gave the concept of uniformly convex metric space, studied its properties, and constructed examples of a uniformly convex metric space. Beg [8] established some inequalities in uniformly convex complete metric spaces analogous to the parallelogram law in Hilbert spaces and their applications. Beg [9] proved that a closed convex subset of uniformly convex complete metric spaces is a Chebyshev set. Recently, Abdelhakim [10] studied convex functions on these spaces. The aim of this note is to further continue the research in this direction by introducing the concept of ordered convex metric spaces and study their structure.

We conclude with the plan of the paper. In Section 2, we recall some basic notations and definitions from the existing literature on convex metric spaces, order structure, and general topology. In Section 3, we introduce the new concept of ordered convex metric spaces and study some basic properties. Several characterizations of these spaces are also proven that allow making geometric interpretations of the new concepts Finally, Section 4 concludes with a summary statement.

2. Preliminaries

In this section, basic results about convex metric spaces and order structure are given.

Definition 1 (see [5]). Let (X, d) be a metric space and $I=$ $[0,1]$. A mapping $\omega: X \times X \times I \longrightarrow X$ is said to be a convex structure on X if for each $(a, b, \lambda) \in X \times X \times I$ and $u \in X$,

$$
\begin{equation*}
d(u, \omega(a, b ; \lambda)) \leq \lambda d(u, a)+(1-\lambda) d(u, b) \tag{1}
\end{equation*}
$$

Metric space (X, d) together with the convex structure ω is called a convex metric space. A nonempty subset $K \subset X$ is said to be convex if $\omega(a, b ; \lambda) \in K$ whenever $(a, b, \lambda) \in K \times$ $K \times I$.

Remark 2 (see $[5,10]$). The convex metric space (X, d) has the following properties:
(i) $w(a, b ; 1)=a, \omega(a, b ; 0)=b, \omega(a, a ; \lambda)=a$
(ii) Open spheres $B(a, r)=\{b \in X: d(a, b)<r\}$ and closed spheres $B[a, r]=\{b \in X: d(\mathrm{a}, b) \leq r\}$ are convex
(iii) If $\left\{K_{\alpha}: \alpha \in A\right\}$ is a family of convex subsets of X, then $\cap K_{\alpha}$ is convex

$$
\alpha \in A^{n}
$$

Any normed space and a convex subset of a normed space is a convex metric space. There are several examples
in the existing literature $[5,7,8,10]$ of convex metric spaces which are not embedded in any normed space.

Definition 3 (see [11]). A binary relation $a \leqslant b$ defined for some pairs a, b of elements of a set X is called an order relation in X if \preccurlyeq is reflexive, transitive, and antisymmetric. A reflexive and transitive relation \leqslant is called a preorder.

Remark 4 (see [11]). Let \leqslant be a binary relation on a set X. By $a<b$ we mean $a \preccurlyeq b$ and $a \neq b$. Relation \sim is defined as $a \sim b$ if $a \leqslant b$ and $b \preccurlyeq a$. The inverse of \leqslant is defined as $a \succcurlyeq b$ if $b \preccurlyeq a$. Incomparable elements a and b (i.e., $a \nsubseteq b$ and $a \nsupseteq b$) are denoted by $a \triangleright \triangleleft b$. Transitivity of order relation \preccurlyeq implies a $\nless b \nless c \Longrightarrow a \nless c$ for all $a, b, c \in X$.

Definition 5 (see [11]). An ordered set is called totally ordered if it has no incomparable elements.

Proposition 6 (see Proposition 4.1 of [12]). A topological space is disconnected if and only if it has a nonempty subset that is both open and closed.

Proposition 7 (see [13]). Let X be a connected topological space. If B is a connected subset of X such that $X \backslash B$ is the union of $n(n>1)$ nonempty, pairwise disjoint open (in $X \backslash$ B) sets D_{i}, then $B \cup D_{i}$ is connected for all i.

3. Ordered Convex Metric Spaces

In this section, first, we introduce the property (\mathscr{L}) on a convex metric space. Next, we present some notations and definitions related to an order relation \leqslant on a convex metric space. Finally, we define ordered convex metric space and prove several interesting results related to ordered convex metric spaces.

Definition 8. A convex metric space X is said to have property (\mathscr{L}) if for all a, b in X and λ, μ, v in I, we have

$$
\begin{gather*}
w(a, b ; \lambda)=\omega(b, a ; 1-\lambda) \\
\omega(\omega(a, b ; \lambda), \omega(a, b ; \mu) ; v)=\omega(a, b ; \lambda v+\mu(1-v)) \tag{2}
\end{gather*}
$$

Each normed space has property (\mathscr{L}), if we define ω $(a, b ; t)=t a+(1-t) b$. In Definition 8, taking $\mu=0$ and using Remark 2, we obtain

$$
\begin{equation*}
\omega(\omega(a, b ; \lambda), b ; v)=\omega(a, b ; \lambda v) \tag{3}
\end{equation*}
$$

Let X be a convex metric space and \preccurlyeq be an ordered relation on X. First, we define some notation for subsequent use. For any a, b, c in X and $\lambda \in I$,

$$
\begin{array}{ll}
A_{\preccurlyeq}(a, b, c)=\{\lambda: \omega(a, b ; \lambda) \preccurlyeq c\}, & A_{\succcurlyeq}(a, b, c)=\{\lambda: \omega(a, b ; \lambda \succcurlyeq c\} \\
A_{\prec}(a, b, c)=\{\lambda: \omega(a, b ; \lambda) \prec c\}, & A_{\succ}(a, b, c)=\{\lambda: \omega(a, b ; \lambda) \succ c\} \\
A_{\sim}(a, b, c)=\{\lambda: \omega(a, b ; \lambda) \sim c\}, & A_{\triangleright \triangleleft}(a, b, c)=\{\lambda: \omega(a, b ; \lambda) \triangleright \triangleleft c\} \tag{4}
\end{array}
$$

Definition 9. (i) A relation \preccurlyeq on a convex metric space X is said to be continuous if for all a, b, c in X, the sets A_{\leqslant} (a, b, c) and $A_{\succcurlyeq}(a, b, c)$ are closed.
(ii) A relation \preccurlyeq on a convex metric space X is said to be Archimedean if for all $a, b, c, \mathrm{~d}$ in X with $d \triangleright \triangleleft a<b \triangleright \triangleleft c$, there exists $\lambda, \mu \in(0,1)$ such that $\omega(a, c ; \lambda)<b$ and $a<\omega(b, d ; \mu)$. When relation \preccurlyeq is total, the space is called Archimedean.
(iii) A relation \preccurlyeq on a convex metric space X is said to have betweenness property if for all a, b in X, all $c \in\{a, b\}$ and all $\lambda \in(0,1), a \leqslant b$ if and only if $\omega(a, c ; \lambda) \leqslant \omega(b, c ; \lambda)$.

Definition 10. A relation \leqslant on a convex metric space X, is
(i) (o)-convex if $a \preccurlyeq c$ and $b \preccurlyeq c$ implies $\omega(a, b ; \lambda) \preccurlyeq c$
(ii) (o)-concave if $a \leqslant c$ and $b \preccurlyeq c$ implies $\omega(a, b ; \lambda) \succcurlyeq c$
(iii) (o)-linear if $a \sim b$ implies $a \sim \omega(a, b ; \lambda)$

Definition 11. A convex metric space X with order relation \preccurlyeq is called ordered convex metric space if \leqslant is continuous.

Proposition 12. Let X be an ordered convex metric space with property (\mathscr{L}). Then, \preccurlyeq is Archimedean $\Longleftrightarrow A_{<}(a, b, c)$ and $A_{\succ}(a, b, c)$ are open for any a, b, c in X.

Proof. Let \leqslant be an Archimedean relation on X and $A_{<}(a, b, c)$ be closed. Without loss of generality, we can assume that $A_{<}(a, b, c)$ is nonempty. Choose λ in $A_{<}(a, b, c)$. Now, continuity of \leqslant and $\lambda \notin A_{\geqslant}(a, b, c)$ imply that there exists $t>0$ such that $N_{t}(\lambda)=\{\alpha:|\alpha-\lambda|<t\}$ is contained in the complement of $A_{\geqslant}(a, b, c)$.

Assume there exists $\beta \in N_{t}(\lambda) \cap A_{\triangleright \triangleleft}(a, b, c)$. Continuity of \preccurlyeq implies that $A_{\triangleright \triangleleft}(a, b, c)$ is an open set in I. Thus, $A_{\triangleright \triangleleft}$ (a, b, c) is union of at most countably many mutually disjoint open intervals. Axiom of choice further implies that there exists among these intervals an open interval F such that $\beta \in F$. If $\beta<\lambda$, then set $\delta=\sup F$; otherwise, $\delta=\inf F$. Then, $\delta \in A_{\prec}(a, b, c)$. By Definition 8 (ii), we have
$\omega(\omega(a, b ; \delta), \omega(a, b ; \beta) ; \gamma)=\omega(a, b ; \gamma \delta+(1-\gamma) \beta)$ for all γ.

Obviously, $(\beta, \delta) \subset F$; thus, $\gamma \beta+(1-\gamma) \delta \in A_{\triangleright \triangleleft}(a, b, c)$, $\forall \gamma \in(0,1)$. It contradicts that \preccurlyeq is Archimedean. Hence, $A_{\prec}(a, b, c)$ is open.

Similarly, we can prove that $A_{\succ}(a, b, c)$ is open.
\Longleftarrow : Assume that $A_{\prec}(a, b, c)$ and $A_{\succ}(a, b, c)$ are open. Choose a, b, c in X such that $a<b$. Remark 2 (i) implies that $1 \in A_{\succ}(a, b, c)$. Since $A_{\succ}(a, b, c)$ is open, thus there exists $\lambda<1$ such that $(\lambda, 1] \subset A_{\succ}(a, b, c)$. Also, $1 \in A_{\prec}(a, b, c)$ and $A_{\prec}(a, b, c)$ is open; therefore, there exists $\delta<1$ such that $(\delta, 1] \subset A_{<}(a, b, c)$. Now obviously, $\omega(a, c ; \lambda)<b$ and $a \prec$ $\omega(b, c ; \delta)$.

Next, we give Example 13 to show that we cannot drop any condition from Proposition 12.

Example 13. Consider the convex metric space ($[0,1], d$) with d usual Euclidean distance and convex structure $\omega:[0.1] \times$ $0,1] \times I \longrightarrow 0,1] \quad$ defined by $\omega(a, b ; \lambda)=\lambda a+(1-\lambda) b$. Assume \leqslant is a reflexive relation on $[0,1]$ such that $0<a$ for all $a>0$ and no other element are comparable. Then, each of $A_{\preccurlyeq}(a, b, c)$ and $A_{\geqslant}(a, b, c)$ either contains at most two elements or is equal I. Therefore, $A_{\S}(a, b, c)$ and $A_{\succcurlyeq}(a, b, c)$ are closed. Also $A_{<}(0,1,1)=\{0\}$ is not open. Moreover, $0<1$, but for all $a \in(0,1)$ and all $\lambda \in(0,1), \omega(1, a ; \lambda) \nless 1$. Thus, \preccurlyeq is continuous, $A_{\S}(a, b, c)$ and $A_{\succcurlyeq}(a, b, c)$ are not open, and \preccurlyeq is not Archimedean.

Now, the following proposition is obvious.
Proposition 14. Any totally ordered convex metric space X with property (LL) is Archimedean.

Theorem 15. A nontrivial continuous Archimedean order \preccurlyeq on a convex metric space X with property (\mathscr{L}) is totally ordered.

Proof. Let \leqslant be not totally ordered on the convex metric space X. Then, there exists $u, v \in X$ such that $u \triangleright \triangleleft v$ and a, b $\in X$ with $a<b$. Let $a<u$. Then, using Remark $4 a<v$ or v $\prec u$. Since $u \triangleright \triangleleft v$, therefore $a \prec v$. Thus, $a \prec u$ and $a \prec v$. Now, we prove

$$
\begin{equation*}
A_{\preccurlyeq}(a, u, v) \cap A_{\preccurlyeq}(a, u, u)=A_{\prec}(a, u, v) \cap A_{\prec}(a, u, u) \tag{6}
\end{equation*}
$$

Obviously, $A_{\prec}(a, u, v) \cap A_{\prec}(a, u, u) \subset A_{\preccurlyeq}(a, u, v) \cap A_{\preccurlyeq}(a$, $u, u)$. To prove other inclusions, choose $\lambda \in A_{\preccurlyeq}(a, u, v) \cap A_{\leqslant}$ (a, u, u). If $v \sim \omega(a, u ; \lambda)$, then it follows from transitivity and $\omega(a, u ; \lambda) \preccurlyeq u$ that $u \geqslant v$, which is a contradiction to $u \triangleright$ $\triangleleft v$. Therefore, $v>\omega(a, u ; \lambda)$, i.e., $\lambda \in A_{<}(a, u, v)$. In a similar way, if $u \sim \omega(a, u ; \lambda)$, then $u \leqslant v$ which contradicts $u \triangleright \triangleleft v$. Thus, $\lambda \in A_{<}(a, u, u)$.

Now, $u \triangleright \triangleleft v$ and Remark 2 (i) imply that $0 \notin A_{\prec}(a, u, v)$ $\cap A_{<}(a, u, u)$ and $1 \in A_{<}(a, u, v) \cap A_{<}(a, u, u)$. Continuity of \leqslant further implies that $A_{\preccurlyeq}(a, u, u) \cap A_{\preccurlyeq}(a, u, v)$ is closed. Using Equality 3, we obtain that $A_{\prec}(a, u, v) \cap A_{<}(a, u, u)$ is a closed set. On the other hand, Proposition 12 implies that $A_{\prec}(a, u, u) \cap A_{<}(a, u, v)$ is an open set. Thus, we have a nonempty closed-open proper subset of I. Since I is connected, therefore it is a contradiction to Proposition 6 . Similarly, we can show a contradiction for the case $a>b$. Hence, \leqslant is a totally ordered relation.

Corollary 16. Let X be an ordered convex metric space with property (\mathscr{L}). If \preccurlyeq is an Archimedean relation, then the space X is also Archimedean.

Proposition 17. Let X be an ordered convex metric space with property (\mathscr{L}); then,\leqslant is (o)-linear $\Longleftrightarrow A_{\sim}(a, b, c)$ is convex.

Proof. Let \preccurlyeq be (o)-linear. Choose $\lambda, \delta \in A_{\sim}(a, b, c)$ and $\beta \in I$. Define $p=\omega(a, b ; \lambda)$ and $q=\omega(a, b ; \delta)$. Then, $p \sim c$ and q $\sim c$. Transitivity of \sim implies $p \sim q$. It follows from (o)-lin-
earity of \leqslant that $p \sim \omega(p, q ; \beta)$. By Definition 8 (ii), we obtain $\omega(p, q ; \beta)=\omega(\omega(a, b ; \lambda), \omega(a, b ; \delta) ; \beta)=\omega(a, b ; \beta \lambda$ $+(1-\beta) \delta)$. Transitivity of \sim further implies that $\omega(a, b$; $\beta \lambda+(1-\beta) \delta) \sim c$. Therefore, $\quad \beta \lambda+(1-\beta) \delta \in A_{\sim}(a, b, c)$. Hence, $A_{\sim}(a, b, c)$ is convex.
\Longleftarrow; Assume $A_{\sim}(a, b, c)$ is convex. Choose $a, b \in X$ such that $a \sim b$ and $\lambda \in I$. From reflexivity of $\preccurlyeq, a \sim a$. Remark 2 implies $0,1 \in A_{\sim}(a, b, c)$. Since by assumption $A_{\sim}(a, b, c)$ is convex. Therefore, $A_{\sim}(a, b, c)=I$. Thus, $\lambda, 1-\lambda \in A_{\sim}(a, b, c)$. Now transitivity of \preccurlyeq and $a \sim b$ imply that $\omega(a, b ; \lambda) \sim b$ and $\omega(a, b ; 1-\lambda) \sim a$. Property ($\mathscr{L})$ (see Definition 8 (i)) of X implies $\omega(a, b ; 1-\lambda)=\omega(b, a ; \lambda)$. Hence, \preccurlyeq is (o)-linear.

Proposition 18. Let X be an ordered convex metric space with property (\mathscr{L}), then \leqslant is (o)-convex if and only if $A_{\S}(a$, $b, c)$ is convex.

Proof. Suppose that \leqslant is (o)-convex. Choose $\lambda, \delta \in A_{\preccurlyeq}(a, b, c)$ and $\beta \in I$. Define $p=\omega(a, b ; \lambda)$ and $q=\omega(a, b ; \delta)$. Then, p $\leqslant c$ and $q \leqslant c$. (o)-convexity of \leqslant implies that $\omega(p, q ; \beta) \leqslant c$. Using Definition 8 , we have $\omega(p, q ; \beta)=\omega(p, q ; \beta \lambda+(1-$ $\beta) \delta)$. Thus, $\beta \lambda+(1-\beta) \delta \in A_{\S}(a, b, c)$. Hence, $A_{\preccurlyeq}(a, b, c)$ is convex.
\Longleftarrow; Assume that $A_{\preccurlyeq}(a, b, c)$ is convex. Choose $a, b, c \in X$ such that $a \leqslant c, b \leqslant c$ and $\lambda \in I$. Remark 2 implies $0,1 \in A_{\S}(a$, $b, c)$. As $A_{\S}(a, b, c)$ is convex, therefore $A_{\S}(a, b, c)=I$. Thus, $\omega(a, b ; \lambda) \preccurlyeq c$. Hence, \preccurlyeq is (o)-convex.

Proposition 19. Let X be an ordered convex metric space with property (\mathscr{L}); then, \preccurlyeq is (o)-concave if and only if $A_{ \pm}(a, b, c)$ is convex.

Proof. Similar to Proposition 18.

Theorem 20. Let X be an Archimedean-ordered convex metric space with property (\mathscr{L}). The relation \leqslant is (o)-linear if and only if \preccurlyeq is (o)-convex and (o)-concave.

Proof. Assume \leqslant is (o)-linear. Proposition 17 implies A_{\sim} (a, b, c) is convex, thus a connected subset of I. Obviously, $I \backslash A_{\sim}(a, b, c)=A_{\prec}(a, b, c) \cup A_{\succ}(a, b, c) \cup A_{\triangleright \triangleleft}(a, b, c)$. Clearly, $A_{\prec}(a, b, c), A_{\succ}(a, b, c)$, and $A_{\triangleright \triangleleft}(a, b, c)$ are mutually disjoint sets. Proposition 12 and continuity of \leqslant imply that these all three sets are open sets. Since $A_{\preccurlyeq}(a, b, c)=A_{\prec}(a, b$, c) $\cup A_{\sim}(a, b, c)$. Proposition 18 and Proposition 19 further imply that (o)-concavity of \preccurlyeq is equivalent to the convexity of $A_{\gtrless}(a, b, c)$ and (o)-convexity of \leqslant is equivalent to the convexity of $A_{\preccurlyeq}(a, b, c)$. Now, Proposition 7 implies that \leqslant is (o)-convex and (o)-concave.
\Longleftarrow; Assume that $A_{\preccurlyeq}(a, b, c)$ is convex and $A_{پ}(a, b, c)$ is concave for all a, b, c in X. As $A_{\sim}(a, b, c)=A_{\leqslant}(a, b, c) \cap$ $A_{ \pm}(a, b, c)$. Therefore, $A_{\sim}(a, b, c)$ is convex. Proposition 17 further implies that \leqslant is (o)-linear.

4. Concluding Remarks

Order, convexity, and metric are three fundamental concepts in mathematics. These ideas have beautiful geometric
properties with significant applications in approximation and optimization (see [14, 15]). In this work, we tried to combine these three indispensable notions of order, convexity, and metric. We introduced the new concept of ordered convex metric spaces and studied some of their properties. Several characterizations (Propositions 12, 17, 18, and 19 and Theorem 20) of these spaces are proven that allow to make geometric interpretations of the new concepts. This author's recommendation is to study other applications of ordered convex metric spaces to economics, preference modelling, control theory, functional analysis, etc.

Data Availability

No data were used to support this study.

Conflicts of Interest

Author declares that he has no conflict of interest.

References

[1] K. Menger, "Untersuchungen über allgemeine Metrik," Mathematische Annalen, vol. 100, no. 1, pp. 75-163, 1928.
[2] L. M. Blumenthal, Theory and Applications of Distance Geometry, Oxford University Press, London, 1953.
[3] R. Khalil, "Best approximation in metric spaces," Proceedings of the American Mathematical Society, vol. 103, no. 2, pp. 579-586, 1988.
[4] Y. Kijima, "A fixed point theorem for nonexpansive self-maps of a metric space with some convexity," Mathematica Japonica, vol. 37, pp. 707-709, 1992.
[5] W. Takahashi, "A convexity in metric spaces and nonexpansive mappings, I," Kodai Mathematical Seminar Reports, vol. 22, pp. 142-149, 1970.
[6] W. A. Kirk, "Krasnoselskii's iteration process in hyperbolic space," Numerical Functional Analysis and Optimization, vol. 4, pp. 371-381, 1982.
[7] T. Shimizu and W. Takahashi, "Fixed points of multivalued mappings in certain convex metric spaces," Topological Methods in Nonlinear Analysis, vol. 8, pp. 197-203, 1996.
[8] I. Beg, "Inequalities in metric spaces with applications," Nonlinear Analysis: Theory, Methods \& Applications, vol. 17, no. 1, pp. 183-190, 2001.
[9] I. Beg, "Nearest point projection in uniformly convex metric spaces," Nonlinear Functional Analysis and Applications, vol. 10, no. 2, pp. 251-256, 2005.
[10] A. A. Abdelhakim, "A convexity of functions on convex metric spaces of Takahashi and applications," Journal of the Egyptian Mathematical Society, vol. 24, no. 3, pp. 348-354, 2016.
[11] R. Cristescu, Ordered Vector Spaces and Linear Operators, Editura Academiei, Bucharest, 1976.
[12] G. L. Cain, Introduction to General Topology, Addison- Wesley Publishing Company, New York, 1994.
[13] R. L. Wilder, Topology of Manifolds, American Mathematical Society Colloquium Publications, 1949.
[14] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004.
[15] M. J. D. Powell, Approximation Theory and Methods, Cambridge University Press, Cambridge, 1981.

