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In this paper, we study the existence of positive solutions for the following nonlinear second-order third-point semi-positive BVP.
We derive an explicit interval of positive parameters, which for any l, μ in this interval, the existence of positive solutions to the
boundary value problem is guaranteed under the condition that aðt, xÞ, bðt, xÞ are all superlinear (sublinear), or one is
superlinear, the other is sublinear.

1. Introduction

In the applied mathematical field, three-point BVP can
describe many phenomena. Moshinsky [1] introduced the
vibrations of a guy wire with a uniform cross-section and
composed of N parts of different densities using a multipoint
BVP. Timoshenko [2] also revealed that the theory of elastic
stability can be used by the method of a three-point BVP. Il’in
and Moviseev [3] were the first to study this aspect. Since
then, more general nonlinear BVP have been studied by
several authors [4–25].

In their paper [7], Ma and Wang obtained the existence
of positive solutions for a three-point BVP by Krasnoselskii’s
fixed theorem:

u″ tð Þ + a tð Þu′ tð Þ + b tð Þu tð Þ + h tð Þf uð Þ = 0, 0 ≤ t ≤ 1,
u 0ð Þ = 0, u 1ð Þ = αu ηð Þ,

(

ð1Þ

where α is a positive constant, 0 < η < 1, aðtÞ ∈ Cð½0, 1�, R+Þ,
bðtÞ ∈ Cð½0, 1�, R−Þ, f ∈ CðR+, R+Þ,h ∈ Cð½0, 1�, R+Þ and there
exists x0 ∈ ð0,+∞Þ such that hðx0Þ > 0:

In our paper, we study the existence of positive solutions
of second-order third-point semipositive BVP:

Lxð Þ tð Þ + λa t, xð Þ + μb t, xð Þ, 0 ≤ t ≤ 1,
x 0ð Þ = 0, x 1ð Þ = αx ξð Þ,

(
ð2Þ

where ðLuÞðtÞ = u″ðtÞ + f ðtÞu′ðtÞ + gðtÞuðtÞ, λ, μ are posi-
tive parameters, 0 < ξ < 1, f ðtÞ ∈ C½0, 1�, and gðtÞ ∈ Cð½0, 1�,
ð−∞,0ÞÞ. And our paper also allows that aðt, xÞ, bðt, xÞ are
both semipositive and lower unbounded.

Our main tool is the following fixed point index theory.

Theorem 1 [4].We suppose that K ⊂ E is a cone in E, in which
E is a real Banach space, the open bounded set Ω1,Ω2 is in E,
θ ∈Ω1, �Ω1 ⊂Ω2, and T : K ∩ ð�Ω2 \Ω1Þ⟶ K . Suppose
operator T can be completely continuous and satisfies one of
the following conditions:

(i) kTxk ≤ kxk, ∀x ∈ K ∩ ∂Ω1; kTxk ≥ kxk, ∀x ∈ K ∩
∂Ω2

(ii) kTxk ≥ kxk, ∀x ∈ K ∩ ∂Ω1; kTxk ≤ kxk, ∀x ∈ K ∩
∂Ω2
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Then, operator T has at least one fixed point x∗ in K
∩ ð�Ω2 \Ω1Þ.

Theorem 2 [4].We suppose that P ⊂ E is a cone in E, in which
E is a real Banach space, the open bounded setΩ1,Ω2,Ω3 is in
E, θ ∈Ω1, �Ω1 ⊂Ω2, �Ω2 ⊂Ω3, and T : P ∩Ω3 ⟶ P. Suppose
operator A is completely continuous and satisfies the following
conditions:

Txk k ≤ xk k, ∀x ∈ P ∩ ∂Ω1,
Txk k ≥ xk k, Ax ≠ x,∀x ∈ P ∩ ∂Ω2,
Txk k ≤ xk k, ∀x ∈ P ∩ ∂Ω3:

ð3Þ

Then, operator T has at least two fixed points x∗ and x∗∗ in
P ∩ ð�Ω3/Ω1Þ, and x∗ ∈ P ∩ ðΩ2/Ω1Þ and x∗∗ ∈ P ∩ ð�Ω3/�Ω2Þ.

2. Preliminaries and Lemmas

We set a Banach space E = Cð½0, 1�,ð−∞,+∞ÞÞ with norm
kxk =maxt∈I jxðtÞj. We know of the following lemmas
from Ref. [6].

Lemma 3. Settingξ1ðtÞas the positive solution of the equation,
we have:

Lξ1ð Þ tð Þ = 0, 0 ≤ t ≤ 1,
ξ1 0ð Þ = 0, ξ1 1ð Þ = 1:

(
ð4Þ

Then, ξ1ðtÞ ∈ ½0, 1� is strictly increasing on ½0, 1�, and ξ1′
ð0Þ > 0.

Lemma 4. Settingξ2ðtÞas the positive solution of the equation,
we have:

Lξ2ð Þ tð Þ = 0, 0 ≤ t ≤ 1,
ξ2 0ð Þ = 1, ξ2 1ð Þ = 0:

(
ð5Þ

Then, ξ2ðtÞ ∈ ½0, 1� is strictly decreasing on ½0, 1�.

From Lemma 3 and Lemma 4, we know that 0 < ξ1ðtÞ < 1,
0 < ξ2ðtÞ < 1. In the rest of our paper, the following condition
is used:

(C1) 0 < αξ1ðηÞ < 1, whereξ1ðtÞis given by Lemma 3

Throughout this paper, we shall use the following
notation:

G t, sð Þ = 1
ζ

ξ1 tð Þξ2 sð Þ, 0 ≤ t ≤ s ≤ 1,
ξ1 sð Þξ2 tð Þ, 0 ≤ s ≤ t ≤ 1,

(
ð6Þ

where ζ = ξ1′ð0Þξ2ð0Þ.

Obviously, from Ref. [6], we can be assured that when
(C1) holds, the BVP

Lxð Þ tð Þ + y tð Þ = 0, 0 ≤ t ≤ 1,
x 0ð Þ = 0, x 1ð Þ = αu ξð Þ,

(
ð7Þ

is equivalent to the following integral equation:

x tð Þ =
ð1
0
G t, sð Þe sð Þy sð Þds + αξ1 tð Þ

1 − αξ1 ξð Þ
ð1
0
G ξ, sð Þe sð Þy sð Þds,

ð8Þ

where eðtÞ = exp ðÐ t0 f ðsÞdsÞ.
Set zðtÞ =min ððξ1ðtÞ/kξ1kÞ, ðξ2ðtÞ/kξ2kÞÞ. From (6), for

t ∈ ½0, 1�, we know that

z tð ÞG s, sð Þ ≤G t, sð Þ ≤G s, sð Þ: ð9Þ

We present some other lemmas that are important to our
main results.

Lemma 5 [7]. Assume that for any y ∈ Cð½0, 1�, ð0,+∞ÞÞ, xðtÞ
is the solution of the following BVP:

Lxð Þ tð Þ + y tð Þ = 0, 0 < t < 1,
x 0ð Þ = 0, x 1ð Þ = αx ξð Þ:

(
ð10Þ

Then, we have

x tð Þ ≥ z tð Þ xk k, t ∈ 0, 1½ �: ð11Þ

Lemma 6. Assume that �w is a solution of the following BVP:

Lxð Þ tð Þ = −B tð Þ, 0 < t < 1,
x 0ð Þ = 0, x 1ð Þ = αx ξð Þ,

(
ð12Þ

where B ∈ Cð0, 1Þ,M > 0. Then, there exists constant M > 0
and satisfies

�w tð Þ ≤M Bk kz tð Þ, t ∈ 0, 1½ �: ð13Þ

Proof. For t ∈ ½0, 1�, we can have

�w tð Þ =
ð1
0
G t, sð Þe sð ÞB sð Þds + αξ1 tð Þ

1 − αξ1 ξð Þ
ð1
0
G ξ, sð Þe sð ÞB sð Þds:

ð14Þ
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Obviously, for t ∈ ½0, 1�, we have
ð1
0
G t, sð Þe sð ÞB sð Þds

= 1
ζ

ðt
0
ξ1 sð Þξ2 tð Þe sð ÞB sð Þds +

ð1
t
ξ1 tð Þξ2 sð Þe sð ÞM sð Þds

� �

≤
p 1ð Þ
ζ

ξ1 tð Þξ2 tð Þ
ðt
0
B sð Þds + ξ1 tð Þξ2 tð Þ

ð1
t
B sð Þds

� �

= e 1ð Þ ξ1k k ξ2k k
ζ

�
ξ1 tð Þ
ξ1k k

ξ2 tð Þ
ξ2k k

ðt
0
M sð Þds

+ ξ1 tð Þ
ξ1k k

ξ2 tð Þ
ξ2k k

ð1
t
B sð Þds

�

≤
e 1ð Þ ξ1k k ξ2k k

ζ
z tð Þ

ð1
0
B sð Þds ≤M1z tð Þ Bk k,

ð15Þ

where M1 = ðeð1Þkξ1kkξ2kÞ/ζ.
By the same method, we can know that

αξ1 tð Þ
1 − αξ1 ξð Þ

ð1
0
G ξ, sð Þe sð ÞB sð Þds ≤M2z tð Þ Bk k, ð16Þ

where M2 = ðαeð1Þkξ1kkξ2kÞ/ð1 − αξ1ðξÞÞ.
So, by choosing constant M ≥M1 +M2, we have

�w tð Þ ≤M Bk kz tð Þ, 0 ≤ t ≤ 1: ð17Þ

☐

Lemma 7 [7]. Let 0 ≤ �lim
x∞

ðbðt, xÞ/xÞ ≤ L2, t ∈ ½0, 1�. Define the
following function:

G τð Þ = max
0≤t≤1,0≤x≤τ

b t, τð Þ: ð18Þ

Then

(i) G is a nondecreasing function for τ

(ii) 0 ≤ �lim
ρ∞

ðGðτÞ/τÞ ≤ K2

For g assumptions:

(C2) aðt, xÞ, bðt, xÞ ∈ C, ð½0, 1� × ½0,+∞ÞRÞ
From (C2), there exists a functionBðtÞ ∈ C½0, 1�, BðtÞ > 0,

which satisfies

a t, xð Þ ≥ −B tð Þ,
b t, xð Þ ≥ −B tð Þ,

∀t ∈ 0, 1ð Þ, x ≥ 0,
ð19Þ

where MkBk < 1. M is given by Lemma 6.

(C3) B1 ≤ a−∞ ≤∞,B2 ≤ b−∞ ≤∞

(C4) 0 ≤ a+∞ ≤ b1,0 ≤ b+∞ ≤ b2

(C5) K1 ≤ a−∞ ≤∞,0 ≤ b+∞ ≤ K2

where

min B1, B2ð Þ ≥ 2 λ + μð Þ min
0≤t≤1

ð1
0
G t, sð Þe sð Þz sð Þds

� �−1

,

b1 + b2 ≤ λ + μð Þp 1ð Þ
ð1
0
G s, sð Þds + αξ1 1ð Þ

1 − αξ1 ξð Þ
ð1
0
G ξ, sð Þds

� �� �−1

,

K1 ≥ 2 λ min
0≤t≤1

ð1
0
G t, sð Þe sð Þz sð Þds

� �−1

,

a−∞ = limx⟶∞
a t, xð Þ

x
,

a+∞ = �limx⟶∞
a t, xð Þ

x
,

b−∞ = limx⟶∞
b t, xð Þ

x
,

b+∞ = �limx⟶∞
b t, xð Þ

x
: ð20Þ

Let ε = min
0≤t≤1

zðtÞ, and

�H t, xð Þ =
H t, xð Þ, x ≥ 0,
F t, 0ð Þ, x < 0,

(

�Y t, xð Þ =
Y t, xð Þ, x ≥ 0,
G t, 0ð Þ, x < 0,

ð21Þ

where Hðt, xÞ = aðt, xÞ + BðtÞ, Yðt, xÞ = bðt, xÞ + BðtÞ.
For any l > 0, we set

Hl = max
0≤t≤1,0≤x≤l

�H t, xð Þ,

Yl = max
0≤t≤1,0≤x≤l

�Y t, xð Þ:
ð22Þ

From Lemma 6, letting wðtÞ = �wðtÞ, then xðtÞ is the pos-
itive solution of problem (2) if and only if ~xðtÞ = xðtÞ +wðtÞ
is the solution of the following problem:

Lxð Þ tð Þ + λ�H t, x −wð Þ + μ�Y t, x −wð Þ = 0,
x 0ð Þ = 0, x 1ð Þ = αu ξð Þ,

(
ð23Þ

and ~xðtÞ >wðtÞ, 0 < t < 1; here, �H, �Y is given by (21).
Defining the cone P in E, we have

P = x ∈ E : x tð Þ ≥ xk kq tð Þ, t ∈ 0, 1½ �f g: ð24Þ
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Obviously, problem (18) is equivalent to

x tð Þ =
ð1
0
Y t, sð Þe sð Þ λ�H s, x −wð Þ + μ�Y s, x −wð Þ� �

ds

+ αξ1 tð Þ
1 − αξ1 ξð Þ

ð1
0
G ξ, sð Þe sð Þ λ�H s, x −wð Þ + μ�Y s, x −wð Þ� �

ds:

ð25Þ

Defining the operator T : E⟶ E, we have

Txð Þ tð Þ =
ð1
0
G t, sð Þe sð Þ λ�H s, x −wð Þ + μ�Y s, x −wð Þ� �

ds

+ αξ1 tð Þ
1 − αξ1 ξð Þ

ð1
0
G ξ, sð Þe sð Þ

� λ�H s, x −wð Þ + μ�Y s, x −wð Þ� �
ds:

ð26Þ

Obviously TðPÞ ⊂ P and T is completely continuous.

3. Our Main Three Results

Theorem 8. Suppose condition (C1), condition (C2), and con-
dition (C3) hold. Then, for the small number λ, μ, problem (2)
has at least one positive solution.

Proof. Firstly, we choose sufficiently small λ, μ which satisfies
the following:

λ + μ < H1 + Y1½ �p 1ð Þ
ð1
0
G s, sð Þds + αξ1 1ð Þ

1 − αξ1 ξð Þ
ð1
0
G ξ, sð Þds

� �� �−1
:

ð27Þ

Letting Ω1 = fx ∈ E : kxk < 1g, for any x ∈ P ∩ ∂Ω1, t ∈
½0, 1�, by the definition of operator T , we have

Txð Þ tð Þ ≤
ð1
0
G s, sð Þ λH1 + μY1½ �ds + αξ1 tð Þ

1 − αξ1 ξð Þ
�
ð1
0
G ξ, sð Þe sð Þ λH1 + μY1½ �ds

≤ λ + μð Þ H1 + Y1½ �e 1ð Þ

�
ð1
0
G s, sð Þds + αξ1 1ð Þ

1 − αξ1 ξð Þ
ð1
0
G ξ, sð Þds

� �
< 1 = xk k:

ð28Þ

Thus, we have

Txk k ≤ xk k, ∀x ∈ P ∩ ∂Ω1: ð29Þ

Secondly, by (C3), we know that there exists constant
l1 > 0 which satisfies

a t, xð Þ ≥ B1x, b t, xð Þ ≥ B2x,∀x ≥ l1, t ∈ 0, 1½ �: ð30Þ

Letting r =max f2MkBk, ð2l1/εÞ, 2g, then r > 1. Set
Ω2 = fx ∈ E : kxk < rg, for any x ∈ P ∩ ∂Ω2, t ∈ ½0, 1�, we
have

x tð Þ −w tð Þ ≥ x tð Þ −M Bk kz tð Þ ≥ x tð Þ − M Bk k1
r

x tð Þ ≥ 1
2 x tð Þ:
ð31Þ

Therefore, we have xðtÞ −wðtÞ ≥ ð1/2ÞxðtÞ ≥ ðkxk/2ÞzðtÞ
≥ ðεr/2Þ ≥ l1.

Thus, by the definition of �H, �Y and (30), we can have

λ�H s, x sð Þ −w sð Þð Þ + μ�Y s, x sð Þ −w sð Þð Þ
≥ B1λ x sð Þ −w sð Þð Þ + B2μ x sð Þ −w sð Þð Þ
≥min B1, B2ð Þ λ + μð Þ x sð Þ −w sð Þð Þ:

ð32Þ

We have

Txð Þ tð Þ ≥
ð1
0
G t, sð Þe sð Þ λ�H s, x −wð Þ + μ�Y s, x −wð Þ� �

ds

≥ min
0≤t≤1

ð1
0
G t, sð Þ min B1, B2ð Þ λ + μð Þ x sð Þ −w sð Þð Þds

≥
1
2 λ + μð Þ min B1, B2ð Þ min

0≤t≤1

ð1
0
G t, sð Þx sð Þds:

ð33Þ

Then, by Lemma 5, we have

Txð Þ tð Þk k ≥ 1
2 λ + μð Þ min B1, B2ð Þ min

0≤t≤1

ð1
0
G t, sð Þe sð Þz sð Þds x tð Þk k:

ð34Þ

Therefore, by the definition of B1, B2, we have

Txk k ≥ xk k, ∀x ∈ K ∩ ∂Ω2: ð35Þ

Then, by (29), (35) and Theorem 1, operator T has at last
one fixed point ~xðtÞ ∈ P ∩ ð �Ω2/Ω1Þ, i.e., ~xðtÞ is the solution of
problem (2), and it is easy to know k~xk ≥ 1.

Finally, by (C2) and Lemma 3, we have

~x tð Þ ≥ ~xk kz tð Þ ≥ z tð Þ >M Bk kz tð Þ ≥ �w tð Þ =w tð Þ: ð36Þ

Thus, x = ~x −w is the positive solution of problem (2). ☐

Theorem 9. We suppose that condition (C1), (C2), and (C4)
hold, and the following condition also holds:

(C6) There exist constant D > 0, ρ > 0, and we have

a t, xð Þ ≥ ρ,
b t, xð Þ ≥ ρ,

x ∈ D,∞Þ½ , t ∈ 0, 1½ �:
ð37Þ
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Then, for the small number λ, μ, problem (2) has at least one
positive solution.

Proof. Firstly, let r =max f2MkBk, ð2D/εÞ, 2g, and

1 = 2r min
0≤t≤1

ð1
0
Y t, sð Þe sð Þ λ + μð Þρds

� �−1
: ð38Þ

Set Ω1 = fx ∈ E : kxk < rg, for any x ∈ P ∩ ∂Ω1, s ∈ ½0, 1�,
we have

x sð Þ −w sð Þ ≥ x sð Þ −M Bk kz sð Þ ≥ x sð Þ − M Bk k
r

x sð Þ ≥ 1
2 x sð Þ:

ð39Þ

Thus, xðsÞ −wðsÞ ≥ ð1/2ÞxðsÞ ≥ ðkxk/2ÞzðsÞ ≥ ðεr/2Þ ≥D.
Therefore, by (C6) and the definition of operator T , we have

Txð Þ tð Þ =
ð1
0
G t, sð Þe sð Þ λ�H s, x −wð Þ + μ�Y s, x −wð Þ� �

ds

+ αξ1 tð Þ
1 − αξ1 ξð Þ

ð1
0
G ξ, sð Þe sð Þ

� λ�H s, x −wð Þ + μ�Y s, x −wð Þ� �
ds:

ð40Þ

For BðtÞ > 0, t ∈ ð0, 1Þ, we have

Txð Þ tð Þ ≥
ð1
0
G t, sð Þe sð Þ λ�H s, x −wð Þ + μ�Y s, x −wð Þ� �

ds

≥
ð1
0
G t, sð Þe sð Þ λ ρ + B sð Þð Þ + μ ρ + B sð Þð Þ½ �ds

≥
1
2 min

0≤t≤1

ð1
0
G t, sð Þe sð Þ λ + μð Þρds = r = xk k:

ð41Þ

We can know that by the above discussion, we have

Txk k ≥ xk k,∀x ∈ P ∩ ∂Ω1: ð42Þ

Secondly, by (C4), we can have

0 ≤ lim
x⟶∞

�H s, x −wð Þ
u

≤ b1,

0 ≤ lim
x⟶∞

�Y s, x −wð Þ
u

≤ b2,

s ∈ 0, 1½ �:

ð43Þ

Then, there exists constant l2 > 0 which satisfies

�H s, x −wð Þ ≤ b1x,
�Y s, x −wð Þ ≤ b2x,

∀x ≥ l2, s ∈ 0, 1½ �:
ð44Þ

Letting R =max f2l2, 2rg, then r < R. Set Ω2 = fx ∈ E :
kxk < Rg, for any x ∈ P ∩ ∂Ω2, t ∈ ½0, 1�, we have

Txð Þ tð Þ ≤
ð1
0
G s, sð Þ λb1x sð Þ + μb2x sð Þ½ �ds

+ αξ1 tð Þ
1 − αξ1 ξð Þ

ð1
0
G ξ, sð Þe sð Þ λb1x sð Þ + μb2x sð Þ½ �ds:

ð45Þ

Thus, we have

Txð Þ tð Þ ≤ λ + μð Þ b1 + b2½ �e 1ð Þ

�
ð1
0
G s, sð Þx sð Þds + αξ1 1ð Þ

1 − αξ1 ξð Þ
ð1
0
G ξ, sð Þx sð Þds

� �
:

ð46Þ

So, we have

Txð Þ tð Þk k ≤ λ + μð Þ b1 + b2½ �e 1ð Þ

�
ð1
0
G s, sð Þds + αξ1 1ð Þ

1 − αξ1 ξð Þ
ð1
0
G ξ, sð Þds

� �
xk k:

ð47Þ

Then, we can have by the definition of b1, b2

Txk k ≤ xk k,∀x ∈ K ∩ ∂Ω2: ð48Þ

☐

Then, similar to the proof of heorem 8, we have that
result of heorem 9 by Theorem 1.

Theorem 10. Suppose condition (C1), condition (C2), and
condition (C5) hold. Then, for sufficiently small λ, μ, problem
(2) has at least two positive solutions.

Proof. Firstly, by Lemma 7, there exists constant τ > 0 which
satisfies

G τð Þ ≤ K2τ: ð49Þ

Therefore, setting Ω1 = fx ∈ E : kxk < τg, for any x ∈ P
∩ ∂Ω1, t ∈ ½0, 1�, by the above discussion, for the quite small
λ, μ, we have

λHτ + μY τð Þ½ �e 1ð Þ
ð1
0
G s, sð Þds + αξ1 1ð Þ

1 − αξ1 ξð Þ
ð1
0
G ξ, sð Þds

� �
≤ τ:

ð50Þ
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We have

Txð Þ tð Þ ≤ λHτ + μY τð Þ½ �

�
ð1
0
G t, sð Þe sð Þds + αξ1 1ð Þ

1 − αξ1 ξð Þ
ð1
0
G ξ, sð Þe sð Þds

� �
≤ λHτ + μY τð Þ½ �e 1ð Þ

�
ð1
0
G s, sð Þds + αξ1 1ð Þ

1 − αξ1 ξð Þ
ð1
0
G ξ, sð Þds

� �
≤ τ = xk k:

ð51Þ

Then, we have

Txk k ≤ xk k, ∀x ∈ P ∩ ∂Ω1: ð52Þ

Secondly, by (C5), there exists a constant l3 > 1, which
satisfies

a t, xð Þ ≥ K1x, ∀x ≥ l3: ð53Þ

Letting r =max f2MkBk, ð2l3/εÞ, 2τg, and Ω2 = fx ∈ E :
kxk < rg, for any x ∈ P ∩ ∂Ω2, t ∈ ½0, 1�, we have

x tð Þ −w tð Þ ≥ x tð Þ −M Bk kz tð Þ ≥ x tð Þ − M∥B∥
r

x tð Þ ≥ 1
2 x tð Þ:

ð54Þ

Then, xðtÞ −wðtÞ ≥ ð1/2ÞxðtÞ ≥ ðkxk/2ÞzðtÞ ≥ ðrε/2Þ ≥ l3.
Therefore, by the definitions of �H, �Y and the above dis-

cussion, we have

Txð Þ tð Þ ≥
ð1
0
G t, sð Þe sð Þ λ�H s, x −wð Þ + μ�Y s, x −wð Þ� �

ds

≥
ð1
0
G t, sð Þe sð ÞλK1 x −wð Þds

≥
K1
2 λ min

0≤t≤1

ð1
0
G t, sð Þe sð Þz sð Þds ≥ r = xk k:

ð55Þ

Thus, we have

Txk k ≥ xk k,∀x ∈ P ∩ ∂Ω2: ð56Þ

Finally, letting

R =max
�

λHR + μYR½ �
�ð1

0
G s, sð Þe sð Þds + αξ1 1ð Þ

1 − αξ1 ξð Þ
�
ð1
0
G ξ, sð Þe sð Þds

�
, 2r

	
,

ð57Þ

then, τ < r < R. Set Ω3 = fx ∈ E : kxk < Rg, for any x ∈ P ∩ ∂
Ω3, t ∈ ½0, 1�, by the definition of operator T , we have

Txð Þ tð Þ ≤ λHR + μYR½ �

�
ð1
0
G s, sð Þe sð Þds + αξ1 1ð Þ

1 − αξ1 ξð Þ
ð1
0
G ξ, sð Þe sð Þds

� �
:

ð58Þ

Thus, we have

Txk k ≤ xk k, ∀x ∈ P ∩ ∂Ω3: ð59Þ

Then, similar to the proof of heorem 8, we have the result
of heorem 10 by Theorem 2. ☐

Remark 11. The results of these three theorems in our paper
also hold under the condition in which nonlinear aðt, xÞ,
bðt, xÞ are both lower semicontinuous.

Remark 12. We can obtain the results of Theorem 10 if we
replace condition (C5) with (C6)K1 ≤ b−∞ ≤∞, 0 ≤ a+∞ ≤ K2.
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