
Research Article
The Equivalence of Operator Norm between the Hardy-Littlewood
Maximal Function and Truncated Maximal Function on the
Heisenberg Group

Xiang Li 1 and Xingsong Zhang 2

1School of Mathematics and Finance, Chuzhou University, Chuzhou, Anhui 239012, China
2RDFZ Chaoyang School, Beijing 100028, China

Correspondence should be addressed to Xingsong Zhang; zhangxingsong17@mails.ucas.ac.cn

Received 5 June 2021; Revised 13 July 2021; Accepted 6 August 2021; Published 24 August 2021

Academic Editor: Andrea Scapellato

Copyright © 2021 Xiang Li and Xingsong Zhang. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

In this article, we define a kind of truncatedmaximal function on theHeisenberg space byMc
γ f ðxÞ = sup

0<r<γ
ð1/mðBðx, rÞÞÞÐ Bðx,rÞj f ðyÞjdy.

The equivalence of operator norm between the Hardy-Littlewood maximal function and the truncated maximal function on the
Heisenberg group is obtained. More specifically, when 1 < p <∞, the Lp norm and central Morrey norm of truncated maximal
function are equal to those of the Hardy-Littlewood maximal function. When p = 1, we get the equivalence of weak norm L1 ⟶

L1,∞ and _M
1,λ

⟶ _WM1,λ. Those results are generalization of previous work on Euclid spaces.

1. Introduction

Let f be a locally integrable function on ℝn. We define the
centered Hardy-Littlewood maximal function as

Mcf xð Þ = sup
r>0

1
m B x, rð Þð Þ

ð
B x,rð Þ

f yð Þj jdm yð Þ, ð1Þ

and define the uncentered Hardy-Littlewood maximal
function as

Mf xð Þ = sup
B∋x

1
m Bð Þ

ð
B
f yð Þj jdm yð Þ: ð2Þ

The Hardy-Littlewood maximal functions play an
important role in harmonic analysis. Their boundness
and sharp bounds are important since a variety of opera-
tors are controlled by maximal functions. The L1 ⟶
L1,∞ and Lp ⟶ Lp boundness of Hardy-Littlewood maxi-
mal functions are well-known [1–5]. However, sharp

bounds are very hard to obtain. For a long time, we only
know how the sharp bounds of Hardy-Littlewood maximal
functions behave when the dimension n changes. In 2003,
Melas [6] obtained the sharp bound of the one-dimensional
centered Hardy-Littlewood maximal function of weak type
(1, 1). But it is hard to apply his method to higher dimensional
cases. No result has been stated for general cases.

Now, we introduce another point of view. In [7], Wei
et al. defined a truncated maximal function:

Definition 1. Let f ∈ LlocðℝnÞ be a locally integrable function
on ℝn. We define truncated centered maximal function:

Mc
α,β f xð Þ = sup

α<r<β

1
m B x, rð Þð Þ

ð
B x,rð Þ

f yð Þj jdy, ð3Þ

and truncated uncentered maximal function:

Mα,β f xð Þ = sup
B∋x,α<radi Bð Þ<β

1
m Bð Þ

ð
B
f yð Þj jdy, ð4Þ
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where radiðBÞ is the radium of ball B. 0 ≤ α < β ≤∞. β =∞
means that there is no limit of upper bound of r or radiðBÞ.

When α = 0, we write truncated centered maximal func-
tion briefly as

Mc
γ f xð Þ = sup

0<r<γ

1
m B x, rð Þð Þ

ð
B x,rð Þ

f yð Þj jdy: ð5Þ

Then, we have the following theorem [7]:

Theorem 2. For γ > 0, there is

Mck kL1 ℝnð Þ⟶L1,∞ ℝnð Þ = Mc
γ

��� ���
L1 ℝnð Þ⟶L1,∞ ℝnð Þ

: ð6Þ

For 1 < p ≤∞, γ > 0, there is

Mck kLp ℝnð Þ⟶Lp ℝnð Þ = Mc
γ

��� ���
Lp ℝnð Þ⟶Lp ℝnð Þ

: ð7Þ

There holds similar results of truncated uncentered maxi-
mal function. We also can prove that the operator norm of the
truncated maximal function with ðα, βÞ is only related to C
= α/β. When C tends to zero, the norm tends to that of the
Hardy-Littlewood maximal function.

We choose to study the truncated maximal operator and
maximal operator because there are some differences among
themwhile their operator norms are equivalent. For example,
for locally integrable functions with compact support, their
truncated maximal functions have compact support while
their Hardy-Littlewood maximal functions may not have.
Based on the above reasons, it will be easier to study the trun-
cated maximal functions sometimes. We hope that equiva-
lence and difference among truncated maximal operator
and maximal operator may bring new thoughts and methods.

In addition, Zhang et al. obtained the equivalence of
operator norm between the truncated maximal function
and the Hardy-Littlewood function on Morrey spaces in [8]:

Definition 3. Set 1 ≤ q <∞ and 0 ≤ λ ≤ n. For f ∈ LqlocðℝnÞ,
define the central Morrey norm k f k _M

q,λðℝnÞ:

fk k _M
q,λ

Rnð Þ = sup
R>0

1
Rλ

ð
B 0,Rð Þ

f xð Þj jqdx
 !1/q

, ð8Þ

where Bð0, RÞ is a ball centered in origin with radium R.

The central Morrey space _M
q,λðℝnÞ is defined as

_M
q,λ

ℝnð Þ = f ∈ Lqloc ℝ
nð Þ: fk k _M

q,λ
ℝnð Þ<∞

n o
: ð9Þ

Set 1 ≤ q <∞ and 0 ≤ λ ≤ n. For any measurable function
f , define weak the central Morrey norm k f k _WMq,λðℝnÞ:

fk k _WMq,λ ℝnð Þ = sup
R>0

1
Rλ/q sup

s>0
s y ∈ B 0, Rð Þ: f yð Þj j > sf gj j1/q:

ð10Þ

The weak centered Morrey space _WMq,λðℝnÞ is
defined as

_WMq,λ ℝnð Þ = measurable function f : fk k _WMq,λ ℝnð Þ<∞
n o

:

ð11Þ

Zhang et al. proved the following theorem [8]:

Theorem 4. For 0 < λ < n, γ > 0, there is

Mck k _M
1,λ

ℝnð Þ⟶ _WM1,λ ℝnð Þ = Mc
γ

��� ���
_M
1,λ

ℝnð Þ⟶ _WM1,λ ℝnð Þ
: ð12Þ

For 1 < p <∞, 0 < λ < n, γ > 0, there is

Mck k _M
p,λ

ℝnð Þ⟶ _M
p,λ

ℝnð Þ = Mc
γ

��� ���
_M
p,λ

ℝnð Þ⟶ _M
p,λ

ℝnð Þ
: ð13Þ

Those are the results on ℝn. Nowdays, the researchers
concern about the classic operators on more abstract back-
ground such as p-adic fields and the Heisenberg group. Some
researchers have already obtained the boundness of the
Hardy-Littlewood maximal function on the Heisenberg
group, one example is the following theorem in [9]:

Theorem 5. There exists constant A such that for lnn≫ 1,
we have

Mc fk kL1,∞ ℍnð Þ ≤ An fk kL1 ℍnð Þ: ð14Þ

We can see that there is still no specific sharp bound. In
order to apply the methods of truncated maximal functions,
we are going to establish the equivalence of operator norm
between the Hardy-Littlewood maximal functions and trun-
cated maximal functions on the Heisenberg group.

We outline some basic information of the Heisenberg
group. The Heisenberg group ℍn is underlying manifold
ℝ2n ×ℝ1 with group law

x1, x2,⋯, x2n, x2n+1ð Þ x1′ , x2′ ,⋯, x2n′ , x2n+1′
� �

= x1 + x1′ , x2 + x2′ ,⋯, x2n + x2n′ , x2n+1 + x2n+1′ + 2〠
n

j=1
xj′xn+j − xjxn+j′

 !
:

ð15Þ

The identity element on ℍn is 0 ∈ℝ2n+1, and the inverse
element x−1 is −x. The Haar measure on ℍn coincides with
the Lebesgue measure on ℝ2n ×ℝ1.
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ℍn is a homogeneous group with dilations

δr x1, x2,⋯, x2n, x2n+1ð Þ = rx1, rx2,⋯, rx2n, r2x2n+1
� �

, r > 0:
ð16Þ

Set jEj as the measure of any measurable set E in ℍn.
Then

δr Eð Þj j = rQ Ej j,
d δrxð Þ = rQdx,

ð17Þ

where Q = 2n + 2 is called the homogeneous dimension
of ℍn.

The metric on ℍn derived from the norm

xj jh = 〠
2n

i=1
x2i

 !
+ x22n+1

" #1/4
, ð18Þ

where x = ðx1, x2,⋯, x2n, x2n+1Þ, is given by

d p, qð Þ = d q−1p, 0
� �

= q−1p
�� ��

h
: ð19Þ

For r > 0 and x ∈ℍn, define the ball and sphere with
center x and radius r on ℍn as

B x, rð Þ = y ∈ℍn : d x, yð Þ < rf g,
S x, rð Þ = y ∈ℍn : d x, yð Þ = rf g:

ð20Þ

We also have

B x, rð Þj j = B 0, rð Þj j =ΩQr
Q, ð21Þ

where

ΩQ = 2πn+1/2Γ n/2ð Þ
n + 1ð ÞΓ nð ÞΓ n + 1ð Þ/2ð Þ : ð22Þ

ΩQ is the volume of the unit ball Bð0, 1Þ on ℍn, and the
area of the sphere Sð0, 1Þ is ωQ =QΩQ.

For further information, readers could refer to [9].
Now, we can present the operators on the Heisenberg

group.
For f ∈ LlocðℍnÞ, we define the centered Hardy-

Littlewood maximal function on the Heisenberg group:

Mc f xð Þ = sup
r>0

1
B x, rð Þj j

ð
B x,rð Þ

f yð Þj jdy, ð23Þ

and a kind of truncated maximal function on the Heisen-
berg group:

Mc
γ f xð Þ = sup

0<r<γ

1
m B x, rð Þð Þ

ð
B x,rð Þ

f yð Þj jdy: ð24Þ

We will establish equivalence of their operator norms

on the Heisenberg group. In the next section, we intro-
duce some preliminaries and basic lemmas. In the third
section, we present the details of our main theorems
and the proofs.

2. Preliminaries

In this section, we present some preliminaries and basic
lemmas.

First, we give the definition of distribution function on
the Heisenberg group (similar to that on ℝn):

Definition 6. Let f be a measurable function on ℍn. Define
distribution function df : ℍ

n ⟶ ½0,+∞Þ as

df αð Þ = x ∈ℍn : f xð Þj j > αf gj j, ð25Þ

where j∗j is the Lebesgue measure on ℝ2n+1.

We have such a relation between distribution function
and Lp norms:

Lemma 7. Set 0 < p <∞ and f ∈ LpðℍnÞ. Then, we have

fk kpLp ℍnð Þ = p
ð∞
0
αp−1df αð Þdα: ð26Þ

This lemma is a basic equivalent expression of Lp norm,
and readers can find the proof in Proposition 1.1.4 of [3].

Lemma 8. Let μ be a positive measure on σ-algebra M. If sets
fAng satisfy that A1 ⊂ A2 ⊂ A3 ⋯⊂An ⋯ , and A = ∪∞

n=1An,
then we have

lim
n⟶∞

μ Anð Þ = μ Að Þ: ð27Þ

Readers can find proofs of Lemma 8 in Theorem 1.19 (d)
of [10].

Using Lemma 8, we can obtain the following lemma.

Lemma 9. LetMc andMc
γ be the operators defined in (23) and

(24). Then, for any f ∈ LpðℍnÞ and λ > 0, we have

dMc f λð Þ = lim
γ⟶∞

dMc
γ f

λð Þ: ð28Þ

Proof. Fix x ∈ℍn. For any ε, there exists rε > 0 such that

1
m B x, rεð Þð Þ

ð
B x,rεð Þ

f yð Þj jdy >Mc f xð Þ − ε: ð29Þ

For some large γ, we have

Mc
γ f xð Þ ≥ 1

m B x, rεð Þð Þ
ð
B x,rεð Þ

f yð Þj jdy >Mc f xð Þ − ε: ð30Þ
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Since Mc
γ f ðxÞ increases as γ becomes larger, then

lim
γ⟶∞

Mc
γ f xð Þ ≥Mc f xð Þ: ð31Þ

On the other hand, by definition we have

Mc
γ f xð Þ ≤Mc f xð Þ: ð32Þ

Then

lim
γ⟶∞

Mc
γ f xð Þ =Mc f xð Þ: ð33Þ

Set k = 1, 2, 3,⋯:

Ak = x∈ : Mc
k f xð Þ > λf g,

A = x∈ : Mc f xð Þ > λf g:
ð34Þ

By (33) and Lemma 8, we obtain that

dMc f λð Þ = Aj j = lim
k⟶∞

Akj j = lim
k⟶∞

dMc
k f

λð Þ = lim
γ⟶∞

dMc
γ f

λð Þ:
ð35Þ

☐

Lemma 9 implies that when γ tends to infinite, the distri-
bution tends to equal. It will be important in the proof of
weak-type operator norms. For strong-type operator norms,
we have the following lemma:

Lemma 10. 1 < p <∞. Fixing ε > 0, there is a function g ∈
C∞
c ðℍnÞ such that

Mcgk kLp ℍnð Þ
gk kLp ℍnð Þ

≥ Mck kLp ℍnð Þ⟶Lp ℍnð Þ − ε: ð36Þ

Proof. By the definition of operator norm, there exists a func-
tion f ∈ LpðℍnÞ such that

Mc fk kLp ℍnð Þ
fk kLp ℍnð Þ

≥ Mck kLp ℍnð Þ⟶Lp ℍnð Þ − ε/2: ð37Þ

Since C∞
c ðℍnÞ is dense in LpðℍnÞ, then we have g ∈ C∞

c
ðℍnÞ such that

f − gk kLp ℍnð Þ < δ: ð38Þ

Let A be a upper bound of norm of Mc. Then

Mc f − gð Þk kLp ℍnð Þ < A f − gk kLp ℍnð Þ < Aδ: ð39Þ

So

Mcgk kLp ℍnð Þ
gk kLp ℍnð Þ

≥
Mc fk kLp ℍnð Þ − Mc f − gð Þk kLp ℍnð Þ

fk kLp ℍnð Þ + f − gk kLp ℍnð Þ

≥
Mc fk kLp ℍnð Þ − Aδ

fk kLp ℍnð Þ + δ
:

ð40Þ

Pick suitable δ in order that

Mc fk kLp ℍnð Þ − Aδ

fk kLp ℍnð Þ + δ
≥

Mc fk kLp ℍnð Þ
fk kLp ℍnð Þ

− ε/2

≥ Mck kLp ℍnð Þ⟶Lp ℍnð Þ − ε:

ð41Þ

Then, we finish the proof. ☐

Notice that g has compact support. This property is
important when we establish equivalence of operator norms.

We need the following key lemma:

Lemma 11. Let γ > 0. Then

Mc
γ f δγx
� �

=Mc
1 τγ f
� �

xð Þ, ð42Þ

where τγ f ðxÞ = f ðδγxÞ.

Proof. By direct computation, we arrive at

Mc
γ f γxð Þ = sup

0<r<γ

1
ΩQrQ

ð
yj j<r

f δγx − y
� ��� ��dy

= sup
0<r<γ

γQ

ΩQrQ

ð
yj j<r/γ

f δγx − δγy
� ��� ��dy

= sup
0<r/γ<1

1
ΩQ r/γð ÞQ

ð
yj j<r/γ

τγ f
� �

x − yð Þ�� ��dy
=Mc

1 τγ f
� �

xð Þ:

ð43Þ

This lemma is based on dilation. Remind that the dila-
tion on the Heisenberg group is different from that on
Euclid spaces. ☐

Notice that Lemma 11 implies the relation between Mc
γ

and Mc
1. Connecting it with the definition of operator norm,

we obtain the following Lemma 12:

Lemma 12.

(1) For γ > 0, we have

Mc
1k kL1 ℍnð Þ⟶L1,∞ ℍnð Þ = Mc

γ

��� ���
L1 ℍnð Þ⟶L1,∞ ℍnð Þ

: ð44Þ

(2) For 1 < p ≤∞, γ > 0, we have
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Mc
1k kLp ℍnð Þ⟶Lp ℍnð Þ = Mc

γ

��� ���
Lp ℍnð Þ⟶Lp ℍnð Þ

: ð45Þ

(3) For 0 < λ < n, γ > 0, we have

Mc
1k k _M

1,λ
ℍnð Þ⟶ _WM1,λ ℍnð Þ = Mc

γ

��� ���
_M
1,λ

ℍnð Þ⟶ _WM1,λ ℍnð Þ
: ð46Þ

(4) For 1 < p <∞, 0 < λ < n, γ > 0, we have

Mc
1k k _M

p,λ
ℍnð Þ⟶ _M

p,λ
ℍnð Þ = Mc

γ

��� ���
_M
p,λ

ℍnð Þ⟶ _M
p,λ

ℍnð Þ
: ð47Þ

Proof. Based on Lemma 11, we have

(1) For λ > 0

x : Mc
1 τγ f
� �

xð Þ > λ
� 	�� �� = x : Mc

γ f δγx
� �

> λ
n o��� ���

= δ1
γ
x : Mc

γ f xð Þ > λ
n o��� ���

= 1
γQ

x : Mc
γ f xð Þ > λ

n o��� ���:
ð48Þ

Then, there stands

1
γQ

sup
λ>0

x : Mc
γ f xð Þ > λ

n o��� ���
fk kL1 ℍnð Þ

=
sup
λ>0

x : Mc
1 τγ f
� �

xð Þ > λ
� 	�� ��

fk kL1 ℍnð Þ

= 1
γQ

sup
λ>0

x : Mc
1 τγ f
� �

xð Þ > λ
� 	�� ��

τγ f
�� ��

L1 ℍnð Þ
:

ð49Þ

Taking the supremum over all f with k f kL1ðℍnÞ > 0,
we have

Mc
1k kL1 ℍnð Þ⟶L1,∞ ℍnð Þ = Mc

γ

��� ���
L1 ℍnð Þ⟶L1,∞ ℍnð Þ

: ð50Þ

(2) Using the same method of dilation, it is obvious that

Mc
γ f

��� ���
Lp ℍnð Þ

fk kLp ℍnð Þ
=

Mc
γ f δγ ·
� ���� ���

Lp ℍnð Þ
f δγ ·
� ��� ��

Lp ℍnð Þ
=

Mc
1 τγ f
� ��� ��

Lp ℍnð Þ
τγ f
�� ��

Lp ℍnð Þ
:

ð51Þ

Taking the supremum over all f with k f kLpðℍnÞ > 0,
we have

Mc
1k kLp ℍnð Þ⟶Lp ℍnð Þ = Mc

γ

��� ���
Lp ℍnð Þ⟶Lp ℍnð Þ

: ð52Þ

(3) By homogeneous dimension of ℍn, we obtain that

fk k _WM1,λ ℍnð Þ = γQ−λ τγ f
�� ��

_WM1,λ ℍnð Þ: ð53Þ

There holds that

Mc
γ f

��� ���
_WM1,λ ℍnð Þ

= sup
R>0

1
Rλ

sup
s>0

s y ∈ B 0, Rð Þ: Mc
γ f yð Þ > s

n o��� ���
= sup

R>0

1
Rλ

sup
s>0

sγQ δ1
γ
y : y ∈ B 0, Rð Þ,Mc

γ f yð Þ > s
n o��� ���

= sup
R>0

1
Rλ

sup
s>0

sγQ zj jh <
R
γ
: Mc

γ f δγz
� �

> s

 �����

����
= sup

R>0

1
Rλ

sup
s>0

sγQ zj jh <
R
γ
: Mc

1 τγ f
� �

zð Þ > s

 �����

����
= γQ−λ sup

R>0

1
R/γð Þλ

sup
s>0

sγQ zj jh <
R
γ
: Mc

1 τγ f
� �

zð Þ > s

 �����

����
= γQ−λ sup

R>0

1
Rλ

sup
s>0

sγQ zj jh < R : Mc
1 τγ f
� �

zð Þ > s
� 	�� ��

= γQ−λ Mc
1 τγ f
� ��� ��

_WM1,λ ℍnð Þ:

ð54Þ

Then

Mc
γ f

��� ���
_WM1,λ ℍnð Þ

fk k _M
1,λ

ℍnð Þ
=

Mc
1 τγ f
� ��� ��

_WM1,λ ℍnð Þ
τγ f
�� ��

_M
1,λ

ℍnð Þ
: ð55Þ

Taking the spermum over all f with k f k _M
1,λðℍnÞ > 0,

we have

Mc
1k k _M

1,λ
ℍnð Þ⟶ _WM1,λ ℍnð Þ = Mc

γ

��� ���
_M
1,λ

ℍnð Þ⟶ _WM1,λ ℍnð Þ
: ð56Þ

(4) By homogeneous dimension of ℍn, we obtain that

fk k _M
p,λ

ℍnð Þ = γ Q−λð Þ/p τγ f
�� ��

_M
p,λ

ℍnð Þ: ð57Þ
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So we get that

Mc
γ f

��� ���p
_M
p,λ

ℍnð Þ
= sup

R>0

1
Rλ

ð
B 0,Rð Þ

Mc
γ f xð Þ

��� ���pdx
 !

= sup
R>0

1
Rλ

ð
B 0,R/γð Þ

Mc
γ f δγy
� ���� ���pγQdy

 !

= sup
R>0

1
Rλ

ð
B 0,R/γð Þ

Mc
1 τγ f
� �

yð Þ�� ��pγQdy
 !

= γQ−λ sup
R>0

1
R/λð Þλ

ð
B 0,R/γð Þ

Mc
1 τγ f
� �

yð Þ�� ��pdy
 !

= γQ−λ Mc
1 τγ f
� ��� ��p

_M
p,λ

ℍnð Þ
:

ð58Þ

Then

Mc
γ f

��� ���
_M
p,λ

ℍnð Þ
fk k _M

p,λ
ℍnð Þ

=
Mc

1 τγ f
� ��� ��

_M
p,λ

ℍnð Þ
τγ f
�� ��

_M
p,λ

ℍnð Þ
: ð59Þ

Taking the spermum over all f with k f k _M
p,λðℍnÞ > 0,

we have

Mc
1k k _M

p,λ
ℍnð Þ⟶ _M

p,λ
ℍnð Þ = Mc

γ

��� ���
_M
p,λ

ℍnð Þ⟶ _M
p,λ

ℍnð Þ
: ð60Þ

Now, we finish the proof. ☐

Lemma 12 suggests that the operator norm is unrelated to
the limit of radius γ.

3. Main Theorem

In this section, we present our main results. We divide them
into four theorems:

Theorem 13. For γ > 0, we have

Mck kL1 ℍnð Þ⟶L1,∞ ℍnð Þ = Mc
γ

��� ���
L1 ℍnð Þ⟶L1,∞ ℍnð Þ

: ð61Þ

Theorem 14. For 1 < p ≤∞, γ > 0, we have

∥Mc∥Lp ℍnð Þ⟶Lp ℍnð Þ = ∥Mc
γ∥Lp ℍnð Þ⟶Lp ℍnð Þ: ð62Þ

Theorem 15. For 0 < λ < n, γ > 0, we have

Mck k _M
1,λ

ℍnð Þ⟶ _WM1,λ ℍnð Þ = Mc
γ

��� ���
_M
1,λ

ℍnð Þ⟶ _WM1,λ ℍnð Þ
: ð63Þ

Theorem 16. For 1 < p <∞, 0 < λ < n, γ > 0, we have

Mck k _M
p,λ

ℍnð Þ⟶ _M
p,λ

ℍnð Þ = Mc
γ

��� ���
_M
p,λ

ℍnð Þ⟶ _M
p,λ

ℍnð Þ
: ð64Þ

Remark 17. The four theorems only concern about equiva-

lence of operator norms. We do not need that the norms
are less than infinite, neither can we ensure that the norms
are finite by our theorems. Readers can get results of upper
bounds from such articles like [9], but the results are neither
necessary nor sufficient with our theorems like Theorem 14.

In the process of the proof, the general idea is that the
norm of truncated maximal functions is less than that of
the Hardy-Littlewood maximal function from definition.
For some γ, the norm of the Hardy-Littlewood maximal
function will be less than the norm of some truncated maxi-
mal functions from the definition of supremum. But accord-
ing to Lemma 12, the norm of truncated maximal function is
unrelated to γ. Thus, we can establish the equivalence of
operator norms from that idea.

Proof of Theorem 18. By definition of truncated maximal
functions, we always have Mc

γ f ≤Mc f for any γ > 0; combin-
ing with Proposition 1.1.3(1) of [3], we can obtain that

sup
λ>0

λ lim
γ⟶∞

dMc
γ f

λð Þ
� 

≤ sup
λ>0

λdMc f λð Þ: ð65Þ

On the other hand, by Lemma 9, we have

sup
λ>0

λdMc f λð Þ = sup
λ>0

λ lim
γ⟶∞

dMc
γ f

λð Þ
� 

: ð66Þ

For any ε > 0, there exists λ0 > 0, such that

sup
λ>0

λdMc f λð Þ − ε < λ0dMc f λ0ð Þ < sup
λ>0

λdMc f λð Þ: ð67Þ

Obviously

sup
λ>0

λ lim
γ⟶∞

dMc
γ f

λð Þ
� 

≥ lim
γ⟶∞

λ0dMc
γ f

λ0ð Þ ≥ sup
λ>0

λdMc f λð Þ − ε:

ð68Þ

Then

sup
λ>0

λ lim
γ⟶∞

dMc
γ f

λð Þ
� 

≥ sup
λ>0

λdMc f λð Þ: ð69Þ

So we obtain

lim
γ⟶∞

sup
λ>0

λ dMc
γ f

λð Þ
� �

= sup
λ>0

λdMc f λð Þ: ð70Þ
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Combining with Lemma 12, we have

Mck kL1 ℍnð Þ⟶L1,∞ ℍnð Þ = lim
γ⟶∞

Mc
γ

��� ���
L1 ℍnð Þ⟶L1,∞ ℍnð Þ

= lim
γ⟶∞

Mc
1k kL1 ℍnð Þ⟶L1,∞ ℍnð Þ

= Mc
1k kL1 ℍnð Þ⟶L1,∞ ℍnð Þ

= Mc
γ

��� ���
L1 ℍnð Þ⟶L1,∞ ℍnð Þ

:

ð71Þ

So, we finish the proof.

Proof of Theorem 19. By definition of truncated maximal
functions, we obtain that

∥Mc∥Lp ℍnð Þ⟶Lp ℍnð Þ ≥ ∥Mc
γ∥Lp ℍnð Þ⟶Lp ℍnð Þ: ð72Þ

Now, we only need to prove that

Mck kLp ℍnð Þ⟶Lp ℍnð Þ ≤ Mc
γ

��� ���
Lp ℍnð Þ⟶Lp ℍnð Þ

: ð73Þ

By Lemma 10, fixing ε > 0, there exists g ∈ C∞
c ðℍnÞ,

so that

Mcgk kLp ℍnð Þ
gk kLp ℍnð Þ

≥ Mck kLp ℍnð Þ⟶Lp ℍnð Þ − ε: ð74Þ

Suppose that the support of g is in the ball fx ∈
ℍn : jxjh < Rg.

Since g has compact support, we can find S > 0 such that

Mcgð Þχ ·j j≥Sf g
��� ���

Lp ℍnð Þ
≤ ε gk kLp ℍnð Þ: ð75Þ

Fix γ0 > R + S, when jxjh < S,

Mcg xð Þ =Mc
γ0
g xð Þ: ð76Þ

So

Mc
γ0
g

��� ���
Lp ℍnð Þ

≥ Mc
γ0
g

� �
χ ·j j≤Sf g

����
����
Lp ℍnð Þ

= Mcgð Þχ ·j j≤Sf g
��� ���

Lp ℍnð Þ

≥ Mcgk kLp ℍnð Þ − Mcgð Þχ ·j j≥Sf g
��� ���

Lp ℍnð Þ
≥ Mck kLp ℍnð Þ⟶Lp ℍnð Þ gk kLp ℍnð Þ − 2ε gk kLp ℍnð Þ:

ð77Þ

Then

Mc
1k kLp ℍnð Þ⟶Lp ℍnð Þ = Mc

γ0

��� ���
Lp ℍnð Þ⟶Lp ℍnð Þ

≥ Mck kLp ℍnð Þ⟶Lp ℍnð Þ − 2ε:

ð78Þ

For any γ, by Lemma 12

Mc
γ

��� ���
Lp ℍnð Þ⟶Lp ℍnð Þ

= Mc
1k kLp ℍnð Þ⟶Lp ℍnð Þ

≥ Mck kLp ℍnð Þ⟶Lp ℍnð Þ − 2ε:
ð79Þ

So we can obtain (73).
Therefore, we have

Mck kLp ℍnð Þ⟶Lp ℍnð Þ = Mc
γ

��� ���
Lp ℍnð Þ⟶Lp ℍnð Þ

: ð80Þ

Proof of Theorem 20. Using Lemmas 9 and 12, we directly
compute that

Mck k _M
1,λ

ℍnð Þ⟶ _WM1,λ ℍnð Þ = sup
fk k _M1,λ ℍnð Þ>0

Mc fk k _WM1,λ ℍnð Þ
fk k _M

1,λ
ℍnð Þ

= sup
fk k _M1,λ ℍnð Þ>0

sup
R>0

1/Rλ
� �

sup
s>0

s y ∈ B 0, Rð Þ: Mc f yð Þ > sf gj j
fk k _M

1,λ
ℍnð Þ

= sup
fk k _M1,λ ℍnð Þ>0

sup
R>0

1/Rλ
� �

lim
γ⟶∞

sup
s>0

s ∣ y ∈ B 0, Rð Þ: Mc
γ f yð Þ > s

n o
∣

fk k _M
1,λ

ℍnð Þ

= lim
γ⟶∞

sup
fk k _M1,λ ℍnð Þ>0

sup
R>0

1/Rλ
� �

sup
s>0

s y ∈ B 0, Rð Þ: Mc
γ f yð Þ > s

n o��� ���
fk k _M

1,λ
ℍnð Þ

= lim
γ⟶∞

Mc
γ

��� ���
_M
1,λ

ℍnð Þ⟶ _WM1,λ ℍnð Þ
= Mc

1k k _M
1,λ

ℍnð Þ⟶ _WM1,λ ℍnð Þ

= Mc
γ

��� ���
_M
1,λ

ℍnð Þ⟶ _WM1,λ ℍnð Þ
:

ð81Þ

We can immediately obtain Theorem 15.

Proof of Theorem 21. By definition of truncated maximal
functions, we obtain that

Mck k _M
p,λ

ℍnð Þ⟶ _M
p,λ

ℍnð Þ ≥ Mc
γ

��� ���
_M
p,λ

ℍnð Þ⟶ _M
p,λ

ℍnð Þ
: ð82Þ

It is remained to be proved that

Mck k _M
p,λ

ℍnð Þ⟶ _M
p,λ

ℍnð Þ ≤ Mc
γ

��� ���
_M
p,λ

ℍnð Þ⟶ _M
p,λ

ℍnð Þ
: ð83Þ
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Using distribution functions and Lemma 9, we have

1
Rλ

ð
B 0,Rð Þ

Mc f xð Þj jpdx = 1
Rλ

Mc fχB 0,Rð Þ
��� ���p

Lp ℍnð Þ

= p

Rλ

ð∞
0
αp−1 x ∈ B 0, Rð Þ: Mc f xð Þj j > αf gj jdα

= p

Rλ

ð∞
0
αp−1 lim

γ⟶∞
B 0, Rð Þ ∩ x ∈ℍn : Mc

γ f xð Þ
��� ��� > α

n o��� ���dα
= lim

γ⟶∞

p

Rλ

ð∞
0
αp−1 B 0, Rð Þ ∩ x ∈ℍn : Mc

γ f xð Þ
��� ��� > α

n o��� ���dα
= lim

γ⟶∞

1
Rλ

ð
B 0,Rð Þ

Mc
γ f xð Þ

��� ���pdx:
ð84Þ

Taking the supremum over R, combining with Lemma
12, we have

Mck k _M
p,λ

ℍnð Þ ≤ lim
γ⟶∞

Mc
γ

��� ���
_M
p,λ

ℍnð Þ

= lim
γ⟶∞

Mc
γ

��� ���
_M
p,λ

ℍnð Þ⟶ _M
p,λ

ℍnð Þ
fk k _M

p,λ
ℍnð Þ

= Mc
1k k _M

p,λ
ℍnð Þ⟶ _M

p,λ
ℍnð Þ fk k _M

p,λ
ℍnð Þ

= Mc
γ

��� ���
_M
p,λ

ℍnð Þ⟶ _M
p,λ

ℍnð Þ
fk k _M

p,λ
ℍnð Þ:

ð85Þ

So we obtain (83).
Then

Mck k _M
p,λ

ℍnð Þ⟶ _M
p,λ

ℍnð Þ = Mc
γ

��� ���
_M
p,λ

ℍnð Þ⟶ _M
p,λ

ℍnð Þ
: ð86Þ

So the proof is accomplished.

We only present the details of centered maximal function
and its truncation. In fact, for uncentered case, there still
holds similar results:

Theorem 22.

(1) For γ > 0, we have

Mk kL1 ℍnð Þ⟶L1,∞ ℍnð Þ = Mγ

�� ��
L1 ℍnð Þ⟶L1,∞ ℍnð Þ: ð87Þ

(2) For 1 < p ≤∞, γ > 0, we have

Mk kLp ℍnð Þ⟶Lp ℍnð Þ = Mγ

�� ��
Lp ℍnð Þ⟶Lp ℍnð Þ: ð88Þ

(3) For 0 < λ < n, γ > 0, we have

Mk k _M
1,λ

ℍnð Þ⟶ _WM1,λ ℍnð Þ = Mγ

�� ��
_M
1,λ

ℍnð Þ⟶ _WM1,λ ℍnð Þ: ð89Þ

(4) For 1 < p <∞, 0 < λ < n, γ > 0, we have

Mk k _M
p,λ

ℍnð Þ⟶ _M
p,λ

ℍnð Þ = Mγ

�� ��
_M
p,λ

ℍnð Þ⟶ _M
p,λ

ℍnð Þ: ð90Þ

We save the details since the methods are the same.

Remark 23. For general cases of truncated maximal function,
we also can define them on the Heisenberg group:

Mα,β f xð Þ = sup
α<r<β

1
m B x, rð Þð Þ

ð
B x,rð Þ

f yð Þj jdm yð Þ: ð91Þ

Using the same methods, we can prove such theorem:

Theorem 24. 1 < p ≤∞. γ1, γ2, γ3, γ4 is positive number, and

γ1
γ2

= γ3
γ4

= C: ð92Þ

Then, the norms of Mγ1 ,γ2 and Mγ3 ,γ4 have such relations:
(1)

Mγ1 ,γ2

��� ���
L1 ℍnð Þ⟶L1,∞ ℍnð Þ

= Mγ3 ,γ4

��� ���
L1 ℍnð Þ⟶L1,∞ ℍnð Þ

: ð93Þ

(2) For 1 < p ≤∞

Mγ1 ,γ2

��� ���
Lp ℍnð Þ⟶Lp ℍnð Þ

= Mγ3 ,γ4

��� ���
Lp ℍnð Þ⟶Lp ℍnð Þ

: ð94Þ

(3) For 0 < λ < n, we have

Mγ1 ,γ2

��� ���
_M
1,λ

ℍnð Þ⟶ _WM1,λ ℍnð Þ
= Mγ3 ,γ4

��� ���
_M
1,λ

ℍnð Þ⟶ _WM1,λ ℍnð Þ
:

ð95Þ

(4) For 1 < p <∞, 0 < λ < n, we have

Mγ1 ,γ2

��� ���
_M
p,λ

ℍnð Þ⟶ _M
p,λ

ℍnð Þ
= Mγ3 ,γ4

��� ���
_M
p,λ

ℍnð Þ⟶ _M
p,λ

ℍnð Þ
:

ð96Þ

The main theorems can be seen as the special case C = 0.
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