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In this paper, we investigate the conditions for the existence of the common fixed points of generalized contractions in the partial
b-metric spaces endowed with an arbitrary binary relation. We establish some unique common fixed-point theorems. The
obtained results may generalize and improve earlier fixed-point results. We provide examples to illustrate our findings. As an
application, we discuss the common solution to the system of boundary value problems.

1. Introduction, Preliminaries, and Motivations

The b-metric space was introduced by Czerwik [1]. It is
obtained by modifying the triangle property of the metric
space. Every metric is a b-metric, but the converse is not
true. Almost all the fixed-point theorems in the metric
spaces have been proved true in the b-metric spaces; for
example, see [2–10] and references therein.

Matthews [11] introduced the notion of the partial met-
ric space as a part of the study of denotational semantics of
the dataflow network. In this space, the usual metric is
replaced by a partial metric having a property that the self-
distance of any point of the space may not be zero. Every
metric is a partial metric, but the converse is not true. Mat-
thews [11] also initiated the fixed-point theory in the partial
metric space. He proved the Banach contraction principle in
this space to be applied in program verification. We can find
so many fixed-point theorems in the metric spaces which
have been proved in the partial metric spaces by many
fixed-point theorists ([12, 26] and references therein).

Shukla [13] introduced the concept of partial b-metric by
modifying the triangle property of the partial metric and
investigated fixed points of Banach contraction and Kannan

contraction in the partial b-metric spaces. Mustafa et al. [14]
modified the triangle property of partial b-metric and estab-
lished a convergence criterion and some working rules in
partial b-metric spaces. Moreover, Mustafa et al. [14] inves-
tigated common fixed-point results for ðϕ, ψÞ-weakly con-
tractive mappings. Dolicanin-Ðekic [15] obtained the
fixed-point theorems for Ciric-type contractions in the par-
tial b-metric spaces. Singh et al. [16] investigated some con-
ditions to show the existence of the common fixed points of
power graphic ðF, ψÞ-contractions defined on the partial b
-metric space endowed with directed graphs. More results
on F-contractions can be seen in [8, 17, 18].

Let X be a nonempty set, then the nonempty binary rela-
tionR is a subset of X2: The set X2 itself is known as univer-
sal relation, and the empty set is known as an empty relation;
both are trivial relations. If any two elements α, β ∈ X are
related with respect to R, then we shall write ðα, βÞ ∈R.
We shall use the notation ½α, β� ∈R if either ðα, βÞ ∈R or
ðβ, αÞ ∈R. R is reflexive if ðα, αÞ ∈R, for all α ∈ X:R is
symmetric if ðα, βÞ ∈R implies ðβ, αÞ ∈R, for all α, β ∈ X:
R is antisymmetric if ðα, βÞ ∈R and ðβ, αÞ ∈R implies α
= β, for all α, β ∈ X:R is transitive if ðα, βÞ ∈R and ðβ, γÞ
∈R implies ðα, γÞ ∈R, for all α, β ∈ X. The inverse,
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transpose, or dual of binary relation R is denoted by R−1

and defined as follows: R−1 = fðα, βÞ ∈ X ∣ ðβ, αÞ ∈Rg. Let
Rs =R ∪R−1, then it is easy to prove that ðα, βÞ ∈Rs if
and only if ½α, β� ∈R.

Definition 1 (see [19]). Let T be a self-mapping on a non-
empty set X. A binary relation R on X is said to be T
-closed if for all α, β ∈ X,

α, βð Þ ∈R⇒ T αð Þ, T βð Þð Þ ∈R: ð1Þ

Definition 2 (see [19]). Let R be a binary relation on X. A
path in R from α toβ is a sequence fα0, α1, α2, α3,⋯, αng
⊆ X such that

(1) α0 = α and αn = β

(2) ðαj, αj+1Þ ∈R for all j ∈ f0, 1, 2,⋯⋯ ⋯ , n − 1g

The set of all paths from α to β in R is denoted by Γð
α, β,RÞ. The path of length n involves n + 1 element of X:

Definition 3 (see [19]). A metric space ðX, dÞ equipped with
the binary relation R is called R-regular (or d-self-closed) if
for each sequence fαnginX, whenever ðαn, αn+1Þ ∈R and

αn ⟶
d

α, we have ðαn, αÞ ∈R, for all n ∈ℕ ∪ f0g.

Alam and Imdad [19] used nonempty binary relation on
the nonempty set X to obtain the following relation-
theoretic contraction principle.

Theorem 4 (see [19]). Let ðX, dÞ be a complete metric space
and R be a binary relation on X. Let T be a self-mapping
defined on ðX, dÞ satisfying the following conditions:

(a) There exists α0 ∈ X such that ðα0, Tðα0ÞÞ ∈R and R

is T-closed

(b) Either T is continuous or ðX, dÞ is R − regular

(c) There exists k ∈ ½0, 1Þ such that dðTðαÞ, TðβÞÞÞ ≤ kd
ðα, βÞ for α, β ∈ X with ðα, βÞ ∈R

Then T admits a fixed point in X: Moreover, if Γðα, β,
RsÞ is a nonempty set for all α, β ∈ X, then the fixed point
is unique.

al-Sulami et al. [20] generalized Theorem 4 by replacing
Banach contraction with θ-contraction as follows.

Theorem 5 (see [20]). Let ðX, dÞ be a complete metric space
and R be a binary relation on X: Let T be a self-mapping
defined on ðX, dÞ satisfying the following conditions:

(a) There exists α0 ∈ X such that ðα0, Tðα0ÞÞ ∈R and R

is T-closed

(b) Either T is continuous or ðX, dÞ is R − regular

(c) There exists k ∈ ½0, 1Þ such that θðdðTðαÞ, TðβÞÞÞ ≤
½θðdðα, βÞÞ�k for α, β ∈ X with ðα, βÞ ∈R

Then T admits a fixed point in X:Moreover, if Γðα, β,RsÞ
is a nonempty set for all α, β ∈ X, then the fixed point is unique.

Definition 6 (see [21]). Let T and S be two self-mappings on
a nonempty set X: A binary relation R on X is said to be ð
T , SÞ-closed if for all α, β ∈ X,

α, βð Þ ∈R⇒ T αð Þ, S βð Þð Þ ∈R or S αð Þ, T βð Þð Þ ∈R: ð2Þ

Zada and Sarwar [21] generalized Theorem 4 by replac-
ing Banach contraction with F-contraction as follows.

Theorem 7 (see [21]). Let ðX, dÞ be a complete metric space
and R be a binary relation on X. If the self-mappings T
and S defined on ðX, dÞ satisfy the following conditions:

(a) There exists α0 ∈ X such that ðα0, Tðα0ÞÞ ∈R and R

is ðT , SÞ-closed
(b) Either T , S are continuous or ðX, dÞ is R − regular

(c) There exists τ > 0, such that for all ðα, βÞ ∈R with d
ðTðαÞ, SðβÞÞ > 0,

τ + F d T αð Þ, S βð Þð Þð Þ ≤ F d α, βð Þ + d α, S βð Þð Þd β, T αð Þð Þ
1 + d α, βð Þ

� �
ð3Þ

Then T and S have a unique common fixed point in X.
Moreover, if Γðα, β,RsÞ is nonempty for all α, β ∈ X, then
the common fixed point is unique.

Liu et al. [22] introduced the ðD,CÞ-contractions where
the mapping D maps positive real numbers to positive real
numbers and satisfies the conditions ðD1Þ − ðD3Þ:

(D1) D is nondecreasing
(D2) lim

n⟶∞
DðtnÞ = 0⟺ lim

n⟶∞
tn = 0, for each positive

sequence ftng
(D3) D is continuous
C : ð0,∞Þ⟶ ð0,∞Þ is a comparison function; that is, it

satisfies the following conditions:

(i) C is monotone increasing, that is,

α < β⟹C αð Þ <C βð Þ ð4Þ

(ii) lim
n⟶∞

CnðtÞ = 0 for all t > 0, where Cn stands for the

nth iterate of C

Let D = fD : ð0,∞Þ⟶ ð0,∞ÞjD satisfies ðD1Þ − ðD3Þg:
If D is defined by DðtÞ = t ;DðtÞ = ln t, then D belongs
to D:
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Note that if C is a comparison function, then CðtÞ < t,
for every t > 0. The mappings CðtÞ = αt, 0 < α < 1, t > 0, and
CðtÞ = t/ð1 + tÞ, t > 0, are comparison functions:

Definition 8 ([22], ðD,CÞ-contraction). Let T be a self-
mapping defined on the metric space ðX, dÞ. Let

I = α, βð Þ ∈ X2 : d T αð Þ, T βð Þð Þ > 0
� �

: ð5Þ

The mapping T is called ðD,CÞ-contraction if it satisfies
the following condition:

D d T αð Þ, T βð Þð Þð Þ ≤C D d α, βð Þð Þð Þ, for all α, β ∈I: ð6Þ

Definition 9 ([22], generalized ðD,CÞ-contraction). Let T be
a self-mapping defined on the metric space ðX, dÞ. If the
mapping T satisfies the condition DðdðTðαÞ, TðβÞÞÞ ≤CðD
ðMðα, βÞÞÞ, for all ðα, βÞ ∈I, where Mðα, βÞ is defined by
Mðα, βÞ =max fdðα, βÞ, dðα, TαÞ, dðβ, TβÞ, ð dðα, TβÞ + dð
β, TαÞÞ/2 g: Then it is called generalized ðD,CÞ-contraction.

Liu et al. established the following theorem for ðD,CÞ
-contractions.

Theorem 10 (see [22]). Every generalized ðD,CÞ-contraction
has a unique fixed point in a complete metric space ðX, dÞ.

In this paper, in Section 3, we investigate common fixed-
point results for generalized contractions in the partial b
-metric spaces endowed with binary relation R. The
obtained results generalize Theorems 4, 5, 7, 10. We support
the results with a nontrivial example and counter the
remarks given in [23].

2. Basic Notions in the Partial b-Metric Spaces

Let X be a nonempty set, and the mapping P : X × X ⟶
⟶½0,∞Þ satisfies the following axioms:

(1) x = y⇔ Pðx,xÞ = Pðx, yÞ = Pðy, yÞ, ∀x, y ∈ X

(2) Pðx,xÞ ≤ Pðx, yÞ∀x, y ∈ X

(3) Pðx, yÞ = Pðy,xÞ∀x, y ∈ X

(4) Pðx,zÞ ≤ Pðx, yÞ + Pðy,zÞ − Pðy, yÞ∀x, y,z ∈ X

(5) There exists a real number s ≥ 1 such that

P x,zð Þ ≤ s P x, yð Þ + P y,zð Þ½ � − P y, yð Þ∀x, y,z ∈ X ð7Þ

According to Matthews [11], if the mapping P satisfies
axioms (1-4), we say that it is a partial metric on the set X
and ðX, PÞ is called partial metric space. According to Shukla
[13], if P satisfies axioms (1, 2, 3, and 5), then it is a partial b
-metric on the set X and ðX, PbÞ is called partial b -metric
space. For convenience, we denote partial b-metric by Pb:

Every partial b-metric Pb induces a b-metric dPb
: X ×

X ⟶ ½0,∞Þ defined by

dPb
x, yð Þ = 2Pb x, yð Þ − Pb x,xð Þ − Pb y, yð Þ∀x, y ∈ X:

ð8Þ

It is called induced b -metric on X.
Let BPb

ðx, ϵÞ = fy ∈ X : Pbðx,yÞ < ϵ + Pbðx,xÞg, then
fBPb

ðx, ϵÞ: x ∈ X, ϵ > 0g is a collection of Pb -balls which
forms a base for partial b -metric topology.

The following relation can be observed.

Remark 11.

(1) In ðX, PbÞ, Pbðx, yÞ = 0,⇒x = y, ∀x, y ∈ X, but the
converse is not true (in this case, ðX, PbÞ reduces to a
b-metric space) Figure 1.

Example 1 (see [13]). Let X = ½0,∞Þ, l > 1, be a constant and
Pb : X × X⟶ ½0,∞Þ be defined by

Pb x, yð Þ = max x, yf gð Þl + x − yj jl for all x, y ∈ X: ð9Þ

Then ðX, PbÞ is a partial b-metric space with coefficient
s = 2l > 1, but it is neither a b-metric space nor a partial met-
ric space.

Example 2 (see [13]). Let P : X × X ⟶ ½0,∞Þ and d∗ : X ×
X ⟶ ½0,∞Þ be the partial metric and b-metric on X, respec-
tively. Then the mapping Pb : X × X ⟶ ½0,∞Þ defined by
Pbðx, yÞ = Pðx,yÞ + d∗ðx, yÞ for all x, y ∈ X defines a par-
tial b-metric on X.

Example 3 (see [13]). Let P : X × X ⟶ ½0,∞Þ be a partial
metric. Then the mapping Pb : X × X ⟶ ½0,∞Þ defined by
Pbðx, yÞ = ððPðx, yÞÞl for all x, y ∈ X and l ≥ 1 is a partial
b-metric on X provided s = 2l−1.

Definition 12 (see [13]). A sequence fxngn∈N in the partial
b-metric space ðX, Pb, sÞ is called a convergent sequence if
there exists x ∈ X such that

limPb
n⟶∞

xn,xð Þ = Pb x,xð Þ: ð10Þ

The uniqueness of the limit of a convergent sequence
may not be guaranteed in the partial b-metric spaces (see
[23]).

Definition 13 (see [13]). A sequence fxngn∈N in a partial b
-metric space ðX, Pb, sÞ is called the Cauchy sequence if

limPb xn,m,n⟶∞xmð Þ = Pb x,xð Þ: ð11Þ

The partial b-metric space ðX, Pb, sÞ is said to be com-
plete if every Cauchy sequence fxngn∈N in X converges to
a point x ∈ X.
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Lemma 14 (see [14]).

(1) Every Cauchy sequence in the b -metric space is also
Cauchy in the partial b-metric space and vice versa

(2) The partial b-metric space is complete if and only if b
-metric space (induced b-metric space) is complete

(3) For any sequence fxngn∈N in X, lim
n⟶∞

dPb
ðx∗,xnÞ

= 0 if and only if

lim
n⟶∞

Pb x∗,xnð Þ = Pb x∗,x∗ð Þ = limPbn,m⟶∞ xn,xmð Þ
ð12Þ

3. Common Fixed-Point Theorems in the
Partial b-Metric Spaces

This section is the main part of this paper. It contains some
new common fixed-point theorems in the partial b-metric
spaces. The existence theorems given in [12, 15, 19–22, 24,
27] can be seen as a special case of the results proved in this
section.

The results in this paper are based on the following con-
tractive condition.

Definition 15. Let T and S be two self-mappings on the partial
b-metric space ðX, Pb, sÞ andR be a binary relation on X. Let

I = x, yð Þ ∈R : Pb T xð Þ, S yð Þð Þ > 0f g: ð13Þ

The mappings T and S form a DC -contraction if there
exists a continuous comparison functionC andD ∈D such
that

D s2Pb T xð Þ, S yð Þð Þ� �
≤C D Pb x, yð Þð Þð Þ, for allx, y ∈I:

ð14Þ

In [23], it was remarked that some contraction conditions
on partial b-metric spaces imply contraction conditions on b
-metric spaces (see Theorem 2.6 in [23]). In the following
example, we show that the contraction condition (14) is inde-
pendent of these remarks.

Example 4. Let X = ½0,∞Þ and R = X2. Let Pb : X × X⟶ ½
0,∞Þ be defined by

Pb x, yð Þ = max x, yf gð Þ2 + x − yj j2 for all x, y ∈ X: ð15Þ

Then ðX, PbÞ is a partial b-metric space with coefficient
s = 4: The associated b-metric is given by

dPb
x, yð Þ = 2 max x,yf gð Þ2 + x − yj j2� �

−x2 − y2: ð16Þ

Define T ≡ S : ½0, 1�⟶ ½0, 1� by TðxÞ =x/5
ðif x ∈ ½0, 1ÞÞ and Tð1Þ = 0: Consider

D s2dPb
T 1ð Þ, T 5

6

� �� �� �
≤C D dPb

1, 56

� �� �� �
: ð17Þ

This implies,

D
16
36

� �
≤C D

13
36

� �� �
<D

13
36

� �
, ð18Þ

a contradiction to the definition of mapping D ∈D: On
the other hand, for partial b-metric, we have

D s2Pb T 1ð Þ, T 5
6

� �� �� �
=D

32
36

� �
≤C D Pb 1, 56

� �� �� �

<D
37
36

� �
:

ð19Þ

Note that we have taken ð1, 5/6Þ ∈R. Similarly, it can be
shown that the above conclusion holds for all other cases.

Since, in general, b-metric is discontinuous mapping (see
[5]), so by Example 2, the partial b-metric is not continuous
in general. The following lemma is necessary for the upcom-
ing results.

Lemma 16 (see [14]). Let ðX, Pb, sÞ be a partial b-metric
space. If there exists a fxng in ðX, Pb, sÞ and x∗, y∗ such that
lim

n⟶∞
xn =x∗. Then

1
s
Pb x∗, y∗ð Þ ≤ lim

n⟶∞
inf Pb xn, y∗ð Þ

≤ lim
n⟶∞

sup Pb xn, y∗ð Þ ≤ sPb x∗, y∗ð Þ:
ð20Þ

3.1. Main Results. We state our main results which describe
the conditions for the existence of the common fixed points
of DC-contraction in the partial b-metric spaces.

Theorem 17. Let ðX, PbÞ be a complete partial b-metric space
and R be a transitive binary relation on X. Let T and S form
a DC-contraction. Then T and S have a common fixed point
in X, if the following conditions are satisfied.

(a) There exists α0 ∈ X such that ðα0, Tðα0ÞÞ ∈R
(b) R is ðT , SÞ-closed
(c) T and S are continuous

s = 1

s = 1

b-metric spaceMetric space

Pb(x, x) = 0 Pb(x, x) = 0

Partial metric space Partial b-metric space

Figure 1
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Proof. By assumption (a), there exists α0 ∈ X such that ðα0,
Tðα0ÞÞ ∈R. Taking α0 ∈ X as the initial point, we define
the sequence fαng in X by

α1 = T α0ð Þ, α2 = S α1ð Þ, continuing with the same pattern, we have
α2n+1 = T α2nð Þ, α2n+2 = S α2n+1ð Þ, where n ∈ℕ ∪ 0f g:

(

ð21Þ

☐

Moreover, by assumptions (a) and (b), we have

α1, α2ð Þ = T α0ð Þ, S α1ð Þð Þ ∈R,
α2, α3ð Þ = S α1ð Þ, T α2ð Þð Þ ∈R,
α3, α4ð Þ = T α2ð Þ, S α3ð Þð Þ ∈R,
α4, α5ð Þ = S α3ð Þ, T α4ð Þð Þ ∈R:

ð22Þ

In general, we have ðα2n, α2n+1Þ = ðSðα2n−1Þ, Tðα2nÞÞ ∈R
and ðα2n+1, α2n+2Þ = ðTðα2nÞ, Sðα2n+1ÞÞ ∈R:

Case 1. If α2n∗ = α2n∗+1, for some n∗, then

α2n∗+1 = α2n∗+2: ð23Þ

Indeed, on the contrary, if α2n∗+1 ≠ α2n∗+2, then ðα2n∗+1,
α2n∗+2Þ ∈I, and by contractive condition (14), we have

D Pb α2n∗+1, α2n∗+2ð Þð ≤D s2Pb T α2n∗Þ, S αð 2n∗+1

� 	� 	�
≤C D Pb α2n∗ , α2n∗+1ð Þð Þð :

ð24Þ

Since CðtÞ < t, for every t > 0, we obtain

D Pb α2n∗+1, α2n∗+2ð Þð <D Pb α2n∗ , α2n∗+1ð Þð : ð25Þ

Since the function D is nondecreasing, so Pbðα2n∗+1,
α2n∗+2Þ < Pbðα2n∗ , α2n∗+1Þ: This contradicts the second condi-
tion of partial b-metric spaces ðPbðx, xÞ ≤ Pbðx, yÞ∀x, y ∈ XÞ.
Hence, α2n∗ = α2n∗+1 implies α2n∗+1 = α2n∗+2: Consequently,
α2n∗ is a common fixed point of T , and that is α2n∗ = Tð
α2n∗Þ = Sðα2n∗+1Þ = Sðα2n∗Þ.

Case 2. If α2n ≠ α2n+1 for all n ∈ℕ. We have PbðTðα2nÞ, Sð
α2n−1ÞÞ > 0 for all n ∈ℕ: Since ðα2n, α2n−1Þ ∈R, so ðα2n,
α2n−1Þ ∈I. Setting α = α2n and β = α2n−1 in (14), we get

D Pb α2n+1, α2nð Þð Þ ≤D s2Pb α2n+1, α2nð Þ� �
=D s2Pb T α2nð Þ, S α2n−1ð Þð Þ� �
≤C D Pb α2n, α2n−1ð Þðð ,

ð26Þ

for all n ∈ℕ:

Similarly, setting α = α2n and β = α2n+1 in (14), we get

D Pb α2n+1, α2n+2ð Þð ≤D s2Pb T α2nð Þ, S α2n+1ð Þð Þ� �
≤C D Pb α2n, α2n+1ð Þðð Þ:

ð27Þ

In general, for all hðnÞ ∈ℕ, either even or odd, we have

D Pb αh nð Þ, αh nð Þ+1
� 	� 	

≤C D Pb αh nð Þ−1, αh nð Þ
� 	� 	� 	

≤C2 D Pb αh nð Þ−2, αh nð Þ−1
� 	� 	� 	

⋮

≤Ch nð Þ D Pb α0, α1ð Þð Þð Þ:
ð28Þ

Taking limit n⟶∞ in the above inequality, we get

0 ≤ lim
n⟶∞

D Pb αh nð Þ, αh nð Þ+1
� 	� 	

≤ lim
n⟶∞

Ch nð Þ D Pb α0, α1ð Þð Þð Þ = 0:
ð29Þ

This implies lim
n⟶∞

DðPbð αhðnÞ, αhðnÞ+1Þ = 0, and by ðD2Þ,
we have

lim
n⟶∞

Pbð αhðnÞ, αhðnÞ+1Þ = 0: This implies (by (8)) that

lim
n⟶∞

dPb
αh nð Þ, αh nð Þ+1

� 	
= 0: ð30Þ

By axiom (2), we have lim
n⟶∞

PbðαhðnÞ, αhðnÞÞ ≤ lim
n⟶∞

Pbð
αhðnÞ, αhðnÞ+1Þ = 0: Thus, for all n,m ≥ 1, we have

lim
n,m⟶∞

dPb αh mð Þ, αh nð Þ
� 	

= 2 lim
n,m⟶∞

Pb αh mð Þ, αh nð Þ
� 	

: ð31Þ

We claim that fαng is a Cauchy sequence in ðX, dPb
Þ, for

this is sufficient to prove that fα2ng is Cauchy sequence. On
the contrary, if fα2ng is not Cauchy, then for some subse-
quences fα2nkg

∞
k=1 and fα2mk

g∞
k=1, there exist ∈>0, and a pos-

itive integer kð∈Þ, such that for all nk,mk > k, we have
dPb

ð α2mk
, α2nkÞ ≥ ε and dPbð α2mk

, α2nk−2Þ < ε; thus,

ε ≤ dPb
α2mk

, α2nk
� �

≤ sdPb
α2mk

, α2mk+1
� �

+ sdPb α2mk+1, α2nk
� �

:

ð32Þ

As k⟶∞ in the above inequality, we have

ε

s
≤ lim

k⟶∞
sup dPb α2mk+1, α2nk

� �
: ð33Þ

By using triangular inequality (axiom (5)), we get

dPb
α2mk

, α2nk−1
� �

≤ sdPb
α2mk

, α2nk−2
� �

+ sdPb
α2nk−2, α2nk−1

� �
:

ð34Þ
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Taking limit k⟶∞, we have

lim
k⟶∞

sup dPb
α2mk

, α2nk−1
� �

≤ sε: ð35Þ

Also, we have the following information:

dPb α2mk
, α2nk

� �
≤ sdPb α2mk

, α2nk−2
� �

+ sdPb
α2nk−2, α2nk

� �
≤ sdPb α2mk

, α2nk−2
� �

+ s2dPb
α2nk−2, α2nk−1

� �
+ s2dPb

α2nk−1, α2nk
� �

:

ð36Þ

Taking limit k⟶∞, we have

lim
k⟶∞

sup dPb
α2mk

, α2nk
� �

≤ sε: ð37Þ

By axiom (5), we have

dPb α2mk+1, α2nk−1
� �

≤ sdPb
α2mk+1, α2mk

� �
+ sdPb

α2mk
, α2nk−1

� �
:

ð38Þ

Taking limit k⟶∞ and using (35), we have

lim
k⟶∞

sup dPb
α2mk+1, α2nk−1

� �
≤ s2ε: ð39Þ

By using (31), we have the following information from
(33), (35), (37), and (39):

ε

2s ≤ lim
k⟶∞

sup Pb α2mk+1, α2nk
� �

, ð40Þ

lim
k⟶∞

sup Pb α2mk
, α2nk−1

� �
≤
sε
2 , ð41Þ

lim
k⟶∞

sup Pb α2mk
, α2nk

� �
≤
sε
2 , ð42Þ

lim
k⟶∞

sup Pb α2mk+1
, α2nk−1

� �
≤
s2ε
2 , ð43Þ

Since ðα2mk
, α2nk−1Þ ∈I, by (14), we have

D
s ∈
2

� 	
=D s2 · s ∈2

� 	
≤D s2 lim

k⟶∞
sup Pb α2mk+1, α2nk

� �� �
= lim

k⟶∞
sup D s2Pb T α2mk

� �
, S α2nk−1
� �� �� �

≤ lim
k⟶∞

sup C D Pb α2mk
, α2nk−1

� �� �� �
=C D lim

k⟶∞
sup Pb α2mk

, α2nk−1
� �� �� �

≤C D
s ∈
2

� 	� 	
<D

s ∈
2

� 	
:

ð44Þ

This is a contradiction to the definition of function D.

Thus, fαng is a Cauchy sequence in ðX, dPb
Þ. By Lemma 14

(1), fαng is a Cauchy sequence in ðX, PbÞ. Since ðX, PbÞ is
a complete Partial b-metric space, so by Lemma 14 (2), ðX
, dpbÞ is also a complete metric space. Thus, there exists α∗

∈ X such that αn ⟶ α∗, that is, lim
n⟶∞

dpbð αn, α∗Þ =0. By
Lemma 14 (3), we get

lim
n⟶∞

Pb αn, α∗ð Þ = Pb α∗, α∗ð Þ = lim
n,m⟶∞

Pb αn, αmð Þ: ð45Þ

Since lim
n,m⟶∞

Pbð αn, αmÞ = 0, so that Pbðα∗, α∗Þ = 0.
Thus, fαng converges to α∗ in ðX, PbÞ:

Now, we claim that Tðα∗Þ = Sðα∗Þ = α∗. By (40), we have

lim
n⟶∞

Pb α2n+1, α∗ð Þ = 0,

lim
n⟶∞

Pb α2n+2, α∗ð Þ = 0:
ð46Þ

Since T and S are continuous, we have

lim
n⟶∞

Pb T α2nð Þ, T α∗ð Þð Þ = 0,

lim
n⟶∞

Pb S α2n+1ð Þ, S α∗ð Þð Þ = 0:
ð47Þ

By Lemma 16, we have

1
s
Pb α∗, T α∗ð Þð Þ ≤ lim

n⟶∞
inf Pb α2n+1, T α∗ð Þð Þ

= lim inf
n⟶∞

Pb T α2nð Þ, T α∗ð Þð Þ = 0:
ð48Þ

Thus, PbðTðα∗Þ, α∗Þ = Pbðα∗, α∗Þ = PbðTðα∗Þ, Tðα∗ÞÞ:
This implies Tðα∗Þ = α∗: Similar arguments lead us to

have Sðα∗Þ = α∗:Hence,
Tðα∗Þ = Sðα∗Þ = α∗; that is, T and S have a common

fixed point α∗ ∈ X.
If Γðα, β,RÞ ≠∅, then we have the following theorem.

Theorem 18. Let ðX, PbÞ be a complete partial b-metric space
and R be a transitive binary relation on X. Let T and S form
a DC-contraction. Suppose that Γðα, β,RÞ ≠∅ and state-
ment of Theorem 17 holds, then the mappings T and S admit
a unique common fixed point in X.

Proof. We have proved the existence of a common fixed
point in Theorem 17 : On the contrary, suppose that v and
v∗ are two distinct common fixed points of T and S in X.
Then the class of paths of finite length ℓ in R from v to v∗

is Γðv, v∗,RÞ. Let one of the paths be fA0, A1,A2,⋯, Aℓg
in X from v to v∗ with

A0 = v, Aℓ = v∗, Aj, Aj+1
� �

∈R ; j = 0, 1, 2, 3⋯⋯⋯ ⋯ ℓ − 1ð Þ:
ð49Þ
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By transitivity of R, we have

v, A1ð Þ ∈R, A1, A2ð Þ ∈R,⋯, Aℓ−1, v∗ð Þ ∈R⇒ v, v∗ð Þ ∈R:

ð50Þ

It is given that T and S form a DC-contraction, that is,

D s2Pb T vð Þ, S v∗ð Þð Þ� �
≤C D Pb v, v∗ð Þðð : ð51Þ

This implies Dðs2Pbðv, v∗ÞÞ ≤CðDðPbðv, v∗ÞÞÞ <DðPbðv
, v∗ÞÞ. This is a contradiction to the definition of D. Hence,
v = v∗. This shows that v is a unique common fixed point
of T and S:☐

Remark 19. If the mappings T and S are discontinuous, then
we have the following theorem.

Theorem 20. Let ðX, PbÞ be an R − regular complete partial
b-metric space. Let T and S form a DC-contraction. Suppose
that R is an antisymmetric relation, then T and S admit a
common fixed point in X if they meet the conditions (a)
and (b):

(a) There exists α0 ∈ X such that ðα0, Tðα0ÞÞ ∈R
(b) R is ðT , SÞ-closed

Proof. By Theorem 17, we know that ðαn, αn+1Þ ∈R and αn
⟶ α∗ as n⟶∞. It is given that ðX, PbÞ is R − regular,
so ðαn, α ∗Þ ∈R, for all n ∈ℕ. There are two possible
cases.☐

Case 1. If the sequence fαng is constant. Let αn = α∗ for each
n ∈ℕ so that α2n = α∗ and Tðα∗Þ = Tð α2nÞ = α2n+1: Since ð
X, PbÞ is R − regular, so ðα2n+1, α∗Þ = ðTðα∗Þ, α∗Þ ∈R. We
know that ðα2n, α2n+1Þ ∈R; thus, ðα∗, Tðα∗ÞÞ ∈R. As R is
an antisymmetric relation, so α∗ = Tðα∗Þ, by the same argu-
ments we have α∗ = Sðα∗Þ as required.

Case 2. If fαng is not constant and arbitrary, we claim that
Pbðα∗, Sðα∗ÞÞ = 0. Let Pbðα∗, Sðα∗ÞÞ > 0. It is proved in The-
orem 17 that lim

i⟶∞
α2i+1 = α∗, so there must be an integer

n0 > 0, such that

Pb α2i+1, S α∗ð Þð Þ > 0, Pb α2i, α∗ð Þ < Pb α∗, S α∗ð Þð Þ
2 , for all i ≥ n0:

ð52Þ

It is assumed that ðX, PbÞ is R − regular, and by Theo-
rem 17, we know that α2i ⟶ α∗ as i⟶∞;thus, ðα2i, α∗Þ
∈R. By contractive condition (2.1), monotonicity of D,

and Lemma 16, we have

D pb α∗, S α∗ð Þð Þð Þ ≤D s lim
i⟶∞

inf Pb α2i+1, S α∗ð Þð Þ
� 	

≤D s2lim
i⟶∞

inf Pb α2i+1, S α∗ð Þð Þ
� 	

= lim
i⟶∞

inf D s2Pb T α2ið Þ, S α∗ð Þð Þ� �
≤ lim

i⟶∞
inf C D Pb α2i, α∗ð Þð Þð Þ

<lim i⟶∞ inf C D
Pb α∗, S α∗ð Þð Þ

2

� �� �

<D
Pb α∗, S α∗ð Þð Þ

2

� �
:

ð53Þ

This is a contradiction to the definition of mapping D:
Thus, Pbðα∗, Sðα∗ÞÞ = 0. Also, we have the following infor-
mation:

Pb S α∗ð Þ, S α∗ð Þð Þ = 0 = Pb α∗, α∗ð Þ: ð54Þ

Thus, α∗ = Sðα∗Þ: By interchanging roles of S and T , we
have α∗ = Tðα∗Þ:

Hence, Tðα∗Þ = Sðα∗Þ = α∗; that is, α∗ is a common fixed
point of T and S in X:

The following is the most general theorem of this
section.

Theorem 21. Let ðX, PbÞ be an R − regular complete partial
b-metric space and R be a transitive and antisymmetric
binary relation on X. Let T and S form a DC-contraction.
Suppose that Γðα, β,RÞ ≠∅, and assumptions (a) and (b)
in Theorem 17 hold. Then the mappings T and S admit a
unique common fixed point in X:

Proof. See the proofs of Theorems 17, 18, and 20, respec-
tively.☐

Remark 22.

(1) The results in this section are independent of the
observation made in [23], and hence, our results
are a real generalization of the related results in liter-
ature (see [12, 19–22])

(2) Theorem 21 remains true if Pbðα, βÞ is replaced by
Mðα, βÞ

The following example explains the main results.

Example 5. Let X = fan =nðn + 1Þ/2 : n ∈ℕg:Define the
partial b-metric function Pb : X × X⟶ ½0,∞Þ by

Pb α, βð Þ = max α, βf gð Þ2, for all α, β ∈ X: ð55Þ

Then (X, Pb, 2) is a complete partial b-metric space.
Define D∶ð0,∞Þ⟶ ð0,∞Þ by DðaÞ =aea for each a > 0,
then D ∈D. Let the function C : ð0,∞Þ⟶ ð0,∞Þ be
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defined by CðrÞ = r/2 for all r ∈ ð0,∞Þ: Then C is continu-
ous comparison. Define the binary relation R on X by

R = an,amð Þ: an +am ≥ 2 for eachm ≥nf g: ð56Þ

Define the mappings T , S∶X⟶ X by

T anð Þ =
a1, n = 1,
n n − 1ð Þ

2 , n ≥ 2,

8<
:

S amð Þ =
a1, m ∈ 1, 2f g,
m − 1ð Þ m − 2ð Þ

2 , m ≥ 3,m ∈ℕ:

8<
:

ð57Þ

We observe that there exists a1 ∈ X such that ða1, T ð
a1ÞÞ ∈R ðsince ða1 + T ða1Þ = 2Þ by definition of R, so
assumption (a) is satisfied in Theorem 17. Let ðan,amÞ ∈
R, then we have Tðan Þ + SðamÞ ≥ 2 for each m ≥n, so ð
TðanÞ, SðamÞÞ ∈R. Thus, R is ðT , SÞ-closed (this verifies
assumption (b) of Theorem 17. Also, T , S are continuous
(assumption (c) is satisfied). Now, we show that T and S
form DC-contraction. It is noted that the mappings T , S
do not form Banach contraction in the partial b-metric
sense. Indeed,

lim
n⟶∞

Pb T anð Þ, S a1ð Þð Þ
Pban,a1Þ

= lim
n⟶∞

n2 −n


 

2
n2 +nj j2

= 1: ð58Þ

We noticed that PbðTðanÞ, SðamÞÞ > 0 for eachm ≥n:
Thus, ðan,amÞ ∈I:Consider

4Pb T anð Þ, S amð Þð Þe4Pb T anð Þ,S amð Þð Þ ≤
1
2 Pb an,amð ÞePb an ,amð Þ:

ð59Þ

This implies

8Pb T anð Þ, S amð Þð Þ
Pb an,amð Þ ≤ ePb an ,amð Þ−4Pb T anð Þ,S amð Þð Þ: ð60Þ

For n = 1 and m = 2, the inequality (41) reduces to e5

≥ 8/9. Thus, (41) holds for this case. For n = 2 and m = 3,
the inequality (41) gets the form e32 ≥ 2/9. Similarly, for each
m ≥n, (41) holds true. Thus, we have

D s2Pb T αð Þ, S βð Þð Þ� �
≤C D Pb α, βð Þð Þð Þ, for all α, β ∈ X:

ð61Þ

We note that a1 = Tða1Þ = Sða1Þ.
3.2. Discussions. In this part of the current section, we state
some corollaries which are themselves prominent fixed-
point theorems in the literature.

The following corollary generalizes the results presented
by Jleli and Samet [6] and al-Sulami et al. [20].

Corollary 23. Let ðX, PbÞ be a complete partial b-metric space
and R be a transitive and antisymmetric binary relation on
X. If the self-mappings T and S defined on ðX, PbÞ satisfy
the following conditions:

(a) Γðα, β,RÞ is nonempty for all α, β ∈ X

(b) There exists α0 ∈ X such that ðα0, Tðα0ÞÞ ∈R and R

is ðT , SÞ-closed
(c) Either T , S are continuous or ðX, PbÞ is R − regular

(d) There exists a function θ ∈Θ and k ∈ ð0, 1Þ, such that
for all α, β ∈I,

θ s2Pb T αð Þ, S βð Þð Þ� �
≤ θ Pb α, βð Þð Þ½ �k ð62Þ

Then the mappings T and S admit a unique common
fixed point.

Proof. Setting CðtÞ = ðln kÞt and DðtÞ = θðs2tÞ in Theorem
17 and following the proofs of Theorems 17, 18, and 20
respectively, we obtain the required result.☐

The following corollary generalizes and improves the
results presented by Zada and Sarwar [21] and War-
dowski [25].

Corollary 24. Suppose that the self-mappings T and S defined
on the complete partial b-metric space ðX, PbÞ satisfy the fol-
lowing conditions:

(a) Γðα, β,RÞ is nonempty for all α, β ∈ X

(b) There exists α0 ∈ X such that ðα0, Tðα0ÞÞ ∈R and R

is ðT , SÞ-closed
(c) Either T , S are continuous or ðX, PbÞ is R − regular

(d) There exists F ∈F and τ > 0,such that for all α, β ∈I,

τ + F s2Pb T αð Þ, S βð Þð Þ� �
≤ F Pb α, βð Þð Þ ð63Þ

If R is a transitive and antisymmetric binary relation on
X, then the mappings T , S admit a unique common fixed
point.

Proof. Setting CðtÞ = e−τt and DðtÞ = es
2FðtÞ in Theorem 17

and following the proofs of Theorems 17, 18, and 20, respec-
tively, we obtain the required result.☐

Corollary 25 (see [21]). Let ðX, PbÞ be a complete partial b
-metric space andR be a transitive and antisymmetric binary
relation on X. If the self-mappings T and S defined on ðX, PbÞ
satisfy the following conditions:

(a) Γðα, β,RÞ is nonempty for all α, β ∈ X

(b) There exists α0 ∈ X such that ðα0, Tðα0ÞÞ ∈R and R

is ðT , SÞ-closed
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(c) Either T , S are continuous or ðX, PbÞ is R − regular

(d) There exists F ∈F and τ > 0, such that for all α, β ∈I
,

τ + F sPb T αð Þ, S βð Þð Þð Þ ≤ F Pb α, βð Þ + Pb α, S βð Þð ÞPb β, T αð Þð Þ
1 + Pb α, βð Þ

� �
ð64Þ

Then T and S have a unique common fixed point in X:

Proof. This proof follows the proof of Corollary 24.
The following corollary improves the fixed-point results

presented by Geraghty [24].☐

Corollary 26. Let ðX, PbÞ be a complete partial b-metric space
and R be a transitive and antisymmetric binary relation on
X. If the self-mappings T and S defined on ðX, PbÞ satisfy
the following conditions:

(a) Γðα, β,RÞ is nonempty for all α, β ∈ X

(b) There exists α0 ∈ X such that ðα0, Tðα0ÞÞ ∈R and R

is ðT , SÞ-closed
(c) Either T , S are continuous or ðX, PbÞ is R − regular

(d) For all α, β ∈ X and ðα, βÞ ∈R

s2Pb T αð Þ, S βð Þð Þ ≤ γ Pb α, βð Þð ÞPb α, βð Þ, ð65Þ

where γ : ½0,∞Þ⟶ ½0,∞Þ such that lim
r⟶t+

γðrÞ < 1/s, for each
t ∈ ð0,∞Þ

Proof. By defining CðtÞ = tγðtÞ and DðtÞ = s2t in Theorem 17
and following the proofs of Theorems 17, 18, and 20, respec-
tively, we obtain the required result.☐

Remark 27.

(1) For s = 1, Theorems 17, 18, and 20 establish criteria
for the existence of common fixed points of Jc-con-
tractions in the partial metric spaces [12] and corre-
spondingly for Corollaries 23, 24, 25, and 26

(2) For the zero self-distance (Pbðα, βÞ = 0 for all α, β)
and for the zero self-distance with s = 1, the results
stated in Remark 27 (1) hold in the b-metric spaces
and metric spaces, respectively

4. Application to the System of Boundary
Value Problems

We will apply Theorem 17 to achieve the existence of a com-
mon solution to the following system of boundary value

problems:

−
d2v

dt2
=H t, v tð Þð Þ ; t ∈I , v 0ð Þ = v 1ð Þ = 0, ð66Þ

−
d2w

dt2
=K t,w tð Þð Þ ; t ∈I ,w 0ð Þ =w 1ð Þ = 0, ð67Þ

where I = ½0, 1�, CðI Þ represents the set of continuous
functions defined on I : The functions H ,K : ½0, 1� × Cð
I Þ⟶ℝ are continuous and nondecreasing according to
ordinates. We define the binary relation N on CðI Þ as fol-
lows:

N = v,wð Þ ∈ C Ið Þ × C Ið Þ: v tð Þ ≤w tð Þ∀t ∈If g: ð68Þ

The associated Green function ℊ : I ×I ⟶I to (66)
and (67) can be defined as follows:

ℊ t, bð Þ =
t 1 − bð Þ if 0 ≤ t ≤ b ≤ 1,
b 1 − tð Þ if 0 ≤ b ≤ t ≤ 1:

(
ð69Þ

Let the mapping d∗ : CðI Þ × CðI Þ⟶ ½0,∞Þ be
defined by

d∗ v,wð Þ = v −wð Þ2�� ��
∞

= sup v tð Þ −w tð Þj j2,∀v,w ∈ C Ið Þ, t ∈I :

ð70Þ

It is claimed that ðCðI Þ, d∗, 2Þ is a complete b-metric
space. By integration, we see that (66) and (67) can be writ-
ten as v = SðvÞ and w = TðwÞ, where S, T : CðI Þ⟶ Cð
I Þ are defined by

S vð Þ tð Þ =
ð1
0
ℊ t, bð ÞH b, v bð Þð Þdb,

T wð Þ tð Þ =
ð1
0
ℊ t, bð ÞK b,w bð Þð Þdb:

ð71Þ

It is remarked that the common solution to (66) and (67)
is the common fixed point of the operators S, T: Suppose the
following conditions:

(a) ∃k > 0 such that for vðtÞ ≠wðtÞð∀tÞ, we have

H t, v tð Þð Þ −K t,w tð Þð Þj j2 ≤ 16e−k v tð Þ −w tð Þj j2∀t ∈I
ð72Þ

(b) ∃v0,w0 ∈ CðI Þ such that
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v0 tð Þ ≤
ð1
0
ℊ t, bð ÞH b, v0 bð Þð Þdb,

w0 tð Þ ≤
ð1
0
ℊ t, bð ÞK b,w0 bð Þð Þdb

ð73Þ

The following theorem states the conditions under
which equations (66) and (67) have a common solution.

Theorem 28. Let the functions H ,K : ½0, 1� × CðI Þ⟶ℝ
satisfy conditions (a) and (b): Then equations (66) and (67)
have a common solution.

Proof. We will apply Theorem 17 to show the existence of
the common solution to (66) and (67). By condition (b),
there exists v0 such that ðv0, Sðv0ÞÞ ∈N. Since the functions
H ,K are continuous, so S, T : CðI Þ⟶ CðI Þ defined
above are continuous. Since it is given thatH ,K are nonde-
creasing, thus,N is ðS, TÞ closed. To show that the mappings
S, T form DC-contraction, we proceed as follows:

S vð Þ tð Þ − T wð Þ tð Þj j2 =
ð1
0
ℊ t, bð Þ H b, v bð Þð Þ −K b,w bð Þð Þð Þdb











2

≤
ð1
0
ℊ t, bð Þ H b, v bð Þð Þ −K b,w bð Þð Þj jdb

� �2

≤
ð1
0
ℊ t, bð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16e−k v tð Þ −w tð Þj j2

q
db

� �2
:

ð74Þ

☐

Since ðsup Ð 1
0ℊðt, bÞdbÞ

2 = 1/64, for all t ∈I , thus, tak-
ing supremum on both sides of the above inequality, we have

s2d∗ S vð Þ, T wð Þð Þ ≤ e−kd∗ v,wð Þ∀v ·ð Þ,w ·ð Þ ∈ C Ið Þ: ð75Þ

Define the b-metric d∗ on CðI Þ by

d∗ v,wð Þ =
Pb v,wð Þ, if v ≠w,
0, if v =w:

(
ð76Þ

Inequality (75) can be written as

s2Pb S vð Þ, T wð Þð Þ ≤ e−kPb v,wð Þ∀v ·ð Þ,w ·ð Þ ∈ C Ið Þ: ð77Þ

Defining the functions C , F, and D by CðtÞ = e−kt, Fð
tÞ = ln t, and DðtÞ = eFðtÞ, respectively, for all t ∈ ½0,∞Þ,
we have

k + F s2Pb S vð Þ, T wð Þð Þ�
≤ F Pb v,wð Þð Þ,

ek · eF s2Pb S vð Þ,T wð Þð Þð Þ ≤ eF Pb v,wð Þð Þ,

eF s2Pb S vð Þ,T wð Þð Þð Þ ≤ e−τeF Pb v,wð Þð Þ,
D s2Pb S vð Þ, T wð Þð Þ� �

≤C D Pb v,wð Þð Þð Þ:

ð78Þ

Hence, applying Theorem 17, we say that the boundary
value problems (66) and (67) have a common solution in
CðI Þ:
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