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In this paper, we investigate the conditions for the existence of the common fixed points of generalized contractions in the partial
b-metric spaces endowed with an arbitrary binary relation. We establish some unique common fixed-point theorems. The
obtained results may generalize and improve earlier fixed-point results. We provide examples to illustrate our findings. As an

application, we discuss the common solution to the system of boundary value problems.

1. Introduction, Preliminaries, and Motivations

The b-metric space was introduced by Czerwik [1]. It is
obtained by modifying the triangle property of the metric
space. Every metric is a b-metric, but the converse is not
true. Almost all the fixed-point theorems in the metric
spaces have been proved true in the b-metric spaces; for
example, see [2-10] and references therein.

Matthews [11] introduced the notion of the partial met-
ric space as a part of the study of denotational semantics of
the dataflow network. In this space, the usual metric is
replaced by a partial metric having a property that the self-
distance of any point of the space may not be zero. Every
metric is a partial metric, but the converse is not true. Mat-
thews [11] also initiated the fixed-point theory in the partial
metric space. He proved the Banach contraction principle in
this space to be applied in program verification. We can find
so many fixed-point theorems in the metric spaces which
have been proved in the partial metric spaces by many
fixed-point theorists ([12, 26] and references therein).

Shukla [13] introduced the concept of partial b-metric by
modifying the triangle property of the partial metric and
investigated fixed points of Banach contraction and Kannan

contraction in the partial b-metric spaces. Mustafa et al. [14]
modified the triangle property of partial b-metric and estab-
lished a convergence criterion and some working rules in
partial b-metric spaces. Moreover, Mustafa et al. [14] inves-
tigated common fixed-point results for (¢, y)-weakly con-
tractive mappings. Dolicanin-Pekic [15] obtained the
fixed-point theorems for Ciric-type contractions in the par-
tial b-metric spaces. Singh et al. [16] investigated some con-
ditions to show the existence of the common fixed points of
power graphic (F, w)-contractions defined on the partial b
-metric space endowed with directed graphs. More results
on F-contractions can be seen in (8, 17, 18].

Let X be a nonempty set, then the nonempty binary rela-
tion R is a subset of X?. The set X? itself is known as univer-
sal relation, and the empty set is known as an empty relation;
both are trivial relations. If any two elements «, $ € X are
related with respect to R, then we shall write («, ) € R.
We shall use the notation [a, 3] € R if either («, ) € R or
(B, ) eR. R is reflexive if (o, a) € R, for all a e X.R is
symmetric if («, f) € R implies (S, &) € R, for all o, e X.
R is antisymmetric if («, f) € R and (B, a) € R implies «
=, for all a, S € XN is transitive if (a, ) €N and (B, y)
€R implies (a,y)eNR, for all a, feX. The inverse,
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transpose, or dual of binary relation R is denoted by R™
and defined as follows: R™' = {(a, B) € X | (B, a) € R}. Let
R =RUR, then it is easy to prove that (a, f) € R° if
and only if [«, f] € R.

Definition 1 (see [19]). Let T be a self-mapping on a non-
empty set X. A binary relation R on X is said to be T
-closed if for all o, B € X,

(@) € R = (T(a). T(B)) € R. )

Definition 2 (see [19]). Let R be a binary relation on X. A
path in R from atof is a sequence {ay, o, &y, a5, -+, o, }
C X such that

(1) ay=aanda, = f
2) (apaj,)eRforall je{0,1,2, - - ,n—1}

The set of all paths from « to § in R is denoted by I'(
o, B, R). The path of length # involves n + 1 element of X.

Definition 3 (see [19]). A metric space (X, d) equipped with
the binary relation %R is called R-regular (or d-self-closed) if
for each sequence {a,}inX, whenever (a,,a,,;) €R and

a, %, &, we have (a,, ) €R, for all n e NuU {0}.

Alam and Imdad [19] used nonempty binary relation on
the nonempty set X to obtain the following relation-
theoretic contraction principle.

Theorem 4 (see [19]). Let (X, d) be a complete metric space
and R be a binary relation on X. Let T be a self-mapping
defined on (X, d) satisfying the following conditions:

(a) There exists ay € X such that (e, T(aty)) € R and R
is T-closed

(b) Either T is continuous or (X, d) is R — reqular

(c) There exists k€ [0, 1) such that d(T(a), T(f))) < kd
(a, B) for a, B € X with (o, f) € R

Then T admits a fixed point in X. Moreover, if I'(a, 3,
R¥) is a nonempty set for all o, € X, then the fixed point
is unique.

al-Sulami et al. [20] generalized Theorem 4 by replacing
Banach contraction with 6-contraction as follows.

Theorem 5 (see [20]). Let (X, d) be a complete metric space
and R be a binary relation on X. Let T be a self-mapping
defined on (X, d) satisfying the following conditions:

(a) There exists oy € X such that (o, T(aty)) € R and R
is T-closed

(b) Either T is continuous or (X, d) is R — regular
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(c) There exists k€ [0, 1) such that 8(d(T(a), T(f))) <
[0(d(a, B))]* for a, B € X with (a, f) € R

Then T admits a fixed point in X. Moreover, if I'(«, 3, R*)
is a nonempty set for all o, § € X, then the fixed point is unique.

Definition 6 (see [21]). Let T and S be two self-mappings on
a nonempty set X. A binary relation R on X is said to be (
T, S)-closed if for all o, f € X,

(@ B) € R = (T(a), S(B)) € Ror (S(a), T(B)) € R (2)

Zada and Sarwar [21] generalized Theorem 4 by replac-
ing Banach contraction with F-contraction as follows.

Theorem 7 (see [21]). Let (X, d) be a complete metric space
and R be a binary relation on X. If the self-mappings T
and S defined on (X, d) satisfy the following conditions:

(a) There exists oy € X such that (a, T(ety)) € R and R
is (T, S)-closed

(b) Either T, S are continuous or (X, d) is R — regular

(c) There exists T > 0, such that for all (a, 8) € R with d
(T(a), S(B)) >0,

7+ F(d(T(), S(B))) < F<d(a, g+ A (BB T(«)))

I+d(a, B)
(3)

Then T and S have a unique common fixed point in X.
Moreover, if I'(a, 5, R¥) is nonempty for all «, € X, then
the common fixed point is unique.

Liu et al. [22] introduced the (D, €)-contractions where
the mapping D maps positive real numbers to positive real
numbers and satisfies the conditions (D;) — (D;):

(D,) D is nondecreasing

(D,) nli_r}nooD(tn) == n@wtn =0, for each positive

sequence {t,}

(D5) D is continuous

€ : (0,00) — (0,00) is a comparison function; that is, it
satisfies the following conditions:

(i) € is monotone increasing, that is,

a<f=%F(a)<E(p) (4)

(i) lim €"(t) =0 for all ¢ > 0, where €" stands for the
n—=o0

n™ jterate of €

Let @={D: (0,00) — (0,00)|D satisfies (D, ) — (Ds)}.
If D is defined by D(t)=t;D(t)=Int, then D belongs
to 9.



Journal of Function Spaces

Note that if € is a comparison function, then €(t) < t,
for every t > 0. The mappings €(¢) =at,0<a <1,t>0,and
€ (t)=t/(1+t¢),t> 0, are comparison functions.

Definition 8 ([22], (D, ®)-contraction). Let T be a self-
mapping defined on the metric space (X, d). Let

F={(ap)eX>:d(T(a). T(B))>0}. (5)

The mapping T is called (D, €)-contraction if it satisfies
the following condition:

D(d(T (), T(B))) <E(D(d(a, B))), foralla, B 3. (6)

Definition 9 ([22], generalized (D, €)-contraction). Let T be
a self-mapping defined on the metric space (X,d). If the
mapping T satisfies the condition D(d(T(«), T(f8))) <€(D
(M(a, 8))), forall (a, §) € 5, where M(a, 8) is defined by
M(a, B) = max {d(a, B), d(a, Tax), d(B, TB), (d(a, TB) + d(

B, Ta))/2 }. Then it is called generalized (D, & )-contraction.

Liu et al. established the following theorem for (D, %)
-contractions.

Theorem 10 (see [22]). Every generalized (D, €)-contraction
has a unique fixed point in a complete metric space (X, d).

In this paper, in Section 3, we investigate common fixed-
point results for generalized contractions in the partial b
-metric spaces endowed with binary relation R. The
obtained results generalize Theorems 4, 5, 7, 10. We support
the results with a nontrivial example and counter the
remarks given in [23].

2. Basic Notions in the Partial b-Metric Spaces

Let X be a nonempty set, and the mapping P: X x X —
—[0,00) satisfies the following axioms:
(1) z=yoP(z,2)=P(z,y) =Py, y),Vz,y € X
() P(2, 2) < P(a, y)Va, g € X
() P(z,y)=P(y, z)Vx,y € X
(4) P(@, %) <P(@,y) + P(y, %) — Py, y )V, 4, % € X

(5) There exists a real number s > 1 such that

P(@, %) <s[P (2, y) + Py, 2)] = Py, g )V, y, 2 € X (7)

According to Matthews [11], if the mapping P satisfies
axioms (1-4), we say that it is a partial metric on the set X
and (X, P) is called partial metric space. According to Shukla
[13], if P satisfies axioms (1, 2, 3, and 5), then it is a partial b
-metric on the set X and (X, P,) is called partial b -metric
space. For convenience, we denote partial b-metric by P,.

Every partial b-metric P;, induces a b-metric dp, : X X
X — [0,00) defined by

dpb(x, y)=2P(z,y) - Py(z,z) - Py(y,y)Vz,y € X.

(8)

It is called induced b -metric on X.

Let Bp (z,€) ={y €X : Py(@,y) <€+ Py(z, )}, then
{Bp,(2,€): z €X,€e>0} is a collection of P, -balls which
forms a base for partial b -metric topology.

The following relation can be observed.

Remark 11.

(1) In (X, Py), Py(z,y) =0,=2 =y, Vo, y € X, but the
converse is not true (in this case, (X, P;,) reduces to a
b-metric space) Figure 1.

Example 1 (see [13]). Let X =[0,00),1> 1, be a constant and
P, : X x X —> [0,00) be defined by

Py(z,y) = (max {z,y})' + |z — y|' forallx,y e X. (9)

Then (X, P,) is a partial b-metric space with coefficient
s=2'> 1, but it is neither a b-metric space nor a partial met-
ric space.

Example 2 (see [13]). Let P: X x X —> [0,00) and d* : X X
X — [0,00) be the partial metric and b-metric on X, respec-
tively. Then the mapping P, : X x X — [0,00) defined by
Pz, y)=P(z,y)+d"(z,y) for all z, y € X defines a par-
tial b-metric on X.

Example 3 (see [13]). Let P: X x X — [0,00) be a partial
metric. Then the mapping P, : X X X — [0,00) defined by
Py(2,y)=((P(z,y)) for all z,y € Xandl>1 is a partial
b-metric on X provided s =2""!.

Definition 12 (see [13]). A sequence {2, } .\ in the partial
b-metric space (X, P,,s) is called a convergent sequence if
there exists 2 € X such that

limP, (z,, z) = Py(z, z). (10)

n—=a~oo

The uniqueness of the limit of a convergent sequence
may not be guaranteed in the partial b-metric spaces (see

(23]).

Definition 13 (see [13]). A sequence {«,}, .\ in a partial b
-metric space (X, Py, s) is called the Cauchy sequence if

lime(xn’m,n—woxm):Pb(x’x)' (11)
The partial b-metric space (X, Py, s) is said to be com-

plete if every Cauchy sequence {2, }, .y in X converges to
a point z € X.



4
Metric space < s=1 b-metric space
P(x,x)=0 P(x,x)=0
Partial metric space < o Partial b-metric space
FIGURE 1

Lemma 14 (see [14]).

(1) Every Cauchy sequence in the b -metric space is also
Cauchy in the partial b-metric space and vice versa

(2) The partial b-metric space is complete if and only if b
-metric space (induced b-metric space) is complete

(3) For any sequence {x,} ,  in X, ﬂ@mdpb(x*, z,)
=0 if and only if

lim Pb(x*’ xn) = Pb(x*’ SB*) = hmpbn,m—voo(xn’ xm)
n—a~aoo

(12)

3. Common Fixed-Point Theorems in the
Partial b-Metric Spaces

This section is the main part of this paper. It contains some
new common fixed-point theorems in the partial b-metric
spaces. The existence theorems given in [12, 15, 19-22, 24,
27] can be seen as a special case of the results proved in this
section.

The results in this paper are based on the following con-
tractive condition.

Definition 15. Let T and S be two self-mappings on the partial
b-metric space (X, P}, s) and R be a binary relation on X. Let

S={(2y)eR: P(T(2),5()>0}. (1)

The mappings T and S form a D% -contraction if there
exists a continuous comparison function € and D € & such
that

D(ssz(T(x), S(y))) <E(D(Py(z,y))), forallz,y € 3.
(14)

In [23], it was remarked that some contraction conditions
on partial b-metric spaces imply contraction conditions on b
-metric spaces (see Theorem 2.6 in [23]). In the following
example, we show that the contraction condition (14) is inde-
pendent of these remarks.

Example 4. Let X =[0,00) and R=X% Let P, : X x X — |
0,00) be defined by

Py(2,y) = (max {z,y})" +|x - y|* forallx,y € X. (15)
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Then (X, P,) is a partial b-metric space with coefficient
s=4. The associated b-metric is given by

dpb(x,y) = 2((max {x,y})z + |z - y|2) -z* -4 (16)

Define T=S:[0,1]—[0,1] by
(if z €[0,1)) and T(1) = 0. Consider

D<52dpb (T(l),T@))) s%@(dpb(l, g))) (17)

This implies,

oD@ o

a contradiction to the definition of mapping D € 2. On
the other hand, for partial b-metric, we have

o) o)

Note that we have taken (1, 5/6) € R. Similarly, it can be
shown that the above conclusion holds for all other cases.

Since, in general, b-metric is discontinuous mapping (see
[5]), so by Example 2, the partial b-metric is not continuous
in general. The following lemma is necessary for the upcom-
ing results.

T(x)=x/5

(19)

Lemma 16 (see [14]). Let (X, P,,s) be a partial b-metric
space. If there exists a {x, } in (X, P,,s) and z*, y* such that
lim z, =" Then

72—00
IP Sy < i inf P *
B (275 y )—ﬂinoo inf Py(2,,y")
< lim sup Py(x,,y") <sPy(x™,y").
772—00
(20)
3.1. Main Results. We state our main results which describe

the conditions for the existence of the common fixed points
of D@-contraction in the partial b-metric spaces.

Theorem 17. Let (X, P,) be a complete partial b-metric space
and R be a transitive binary relation on X. Let T and S form
a DG-contraction. Then T and S have a common fixed point
in X, if the following conditions are satisfied.

(a) There exists oy € X such that (ay, T(ay)) € R
(b) Ris (T, S)-closed

(c) T and S are continuous
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Proof. By assumption (a), there exists a, € X such that («,,
T(ay)) € R. Taking «, € X as the initial point, we define
the sequence {«,} in X by

{ a, = T(ay), &, = S(a; ), continuing with the same pattern, we have
U1 = T(@3,)s iy = S(0gyy41)> Where n € N'U {0}

(21)
O O

Moreover, by assumptions (a) and (b), we have

(0 3) = (T(et), S(e)) € R,
(a3, 23) = (S(oy), T(ax)) € R, (22)
(@) = (T(et), S(a3)) € R,
(@ 0t5) = (S(0ts), T(ay)) € R.

In general, we have (a,,, ay,,1) = (S(ay,1)> T(a,,)) € R
and (041> 0p2) = (T(0) S(az1)) € R

— *
Case 1. If a,,. = 4,1, for some n*, then

Tl = Xopega (23)

Indeed, on the contrary, if a,,.,; # &y, 5> then (a1,
0y,04,) €S, and by contractive condition (14), we have

D(Py (00415 Qe 12) < D(ssz (T(“zn*)> S(“zmn))
< %(D(Pb(aZn*’ ‘xZn*+l))'

(24)

Since €(t) < t, for every ¢ > 0, we obtain
D(Py (0t 15 Xape42) < D(Py(@gpe> A1) (25)

Since the function D is nondecreasing, so P,(ay,,;»
0 12) < Py(0ty,e, @y, q ). This contradicts the second condi-
tion of partial b-metric spaces (P,(x,x) < Py(x, y)Vx, y € X).
Hence, a,,. = a,,.,; implies a,,.,; =a,,.,,. Consequently,
a,,. is a common fixed point of T, and that is a,,. = T(
(x2n*) = S(“Zn“rl) = S(“Zn* )

Case 2. If a,, # a,,,; for all n € N. We have P,(T(a,,), S(
a,, 1)) >0 for all neN. Since (a,,, 0, 1) €R, so (ay,,
oy, 1) €. Setting « = a,,, and S=a,,_; in (14), we get

D(Py(oty11> %)) < D(Szpb( Ko+l “2n))
D($*Py(T( ), S(0t3 1)) (26)
%(D(Pb(“zm “Zn—l)’

IA

for all n e N.

Similarly, setting a = a,, and = a,,,, in (14), we get

D(Py( @pps15 Opi) < (Szpb(T( Q)> S(“2n+1))>

D (27)
< %(D(Ph(azw “2n+1))'

In general, for all h(n) € N, either even or odd, we have

D(Pb ( Xh(n)> ah(n)ﬂ)) < %<D(Pb ( Xn(m)-1> “h(n)> ))
<@’ (D(Pb ( Op(n)-2> “h(n)-1> )) :

<& (D(Py(ag> 1))
(28)

Taking limit # — o0 in the above inequality, we get

0< nEnWD (Pb ( Fn(n)> “h(n)ﬂ))
< lim &"™ (D (Py( g 1)) =0.

n—=oo

(29)

This implies lim D(P,( (), @y (n)41) = 0, and by (D,),
we have
lim Py (ay(,), @ ()41) = 0. This implies (by (8)) that

n—a~oo

im dp, ( Xp(n)> “h(n)+1) =0. (30)

By axiom (2), we have lim Py (ay(,), @) < lim Py(
n—aoo n—~oo

() n(ny+1) = 0. Thus, for all n,m > 1, we have

)lim dpb(och(m,och(n)):z lim Pb(och(m),och(n)). (31)

n,M—>00

We claim that {a,, } is a Cauchy sequence in (X, dp, ), for
this is sufficient to prove that {«,, } is Cauchy sequence. On
the contrary, if {a,,} is not Cauchy, then for some subse-
quences {a,, },° and {a,,, },° , there exist €>0, and a pos-
itive integer k(e€), such that for all ny,m; >k, we have
dp (o> 0oy ) 2 € and dp (05, > @y, ) <& thus,

e<dp, ( X, > “an) <sdp, ( X, > “ka+l) +sdp, ( Kom+1> “2nk) .

(32)
As k — oo in the above inequality, we have
e
S klg?oo sup dp, ( Q41> %, )- (33)

By using triangular inequality (axiom (5)), we get

de ( Xomy > “2nk—1) < Sdpb ( Xomy > “2nk—2) + Sdp,, ( Xon—2> “2nk—1) .

(34)



Taking limit kK — co, we have

lim sup dp (0, , @, ) <se. (35)

k—00
Also, we have the following information:
dp, ( Komy> 0‘2nk) <sdp, ( Komy> 0‘2nk—2) +sdp, ( X, -2 “2nk)

< SdP,, ( Komy> “2nk—2) + Szde ( Xon—2> “2nk—1)

+ szdph ( Wy 1> ocan).

(36)
Taking limit kK — oo, we have
kliﬂm00 sup dp (g5 0y, ) < sE- (37)

By axiom (5), we have
dp, ( X +1> “2nk71) <sdp, ( Q1> 0‘2mk) +sdp, ( Xpmy > aan—l) :
(38)

Taking limit k — co and using (35), we have

lim sup dp, (@, 41> @, ) <€ (39)

k—00

By using (31), we have the following information from
(33), (35), (37), and (39):

e
2s < klinoo sup P, ( Eomy+1> "‘znk>’ (40)
) se
o, SuP Py (@ o) < 2’ 4l
) se
(m sup Py (@2 @2, ) < 2’ 42)
) s’e (43)
kinoo Sup Pb (“kaﬂ > “an—l) = 7’

Since (ay,,, &, _1) €S, by (14), we have

€ €
D(ST) - D($2 . 57) < D(Szkhl)noo sup Pb(akaH’ (ink)>
- kli—r>noo sup D(Szpb( T(“zmk)’ S(“Z”k—l ) ))

< kl'inoo sup € (D (Py (oty,> 02, ,)))

<o(o(5)) <o(’5).

This is a contradiction to the definition of function D.

(44)
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Thus, {a,} is a Cauchy sequence in (X, dp, ). By Lemma 14
(1), {a,} is a Cauchy sequence in (X, P,). Since (X, P,) is
a complete Partial b-metric space, so by Lemma 14 (2), (X

’ de

€X such that a, — a7, that is, lim d, («,,a")=0. By

n—-00

) is also a complete metric space. Thus, there exists o

Lemma 14 (3), we get

lim Py(a,, a*)=Py(a*,a") =

n—~oo

lim Py(a,a,). (45)

n,m—00

Since lim Py (a,, a,)=0, so that P,(a*, a*)=0.
n,Mm—>00

Thus, {«,} converges to a* in (X, P,).
Now, we claim that T'(a*) = S(a*) = a*. By (40), we have

lim Py (ay,,,a")=0,
n—~oo
(46)
lim Py(ay,,, a)=0.
n—~oo

Since T and S are continuous, we have

lim_Py(T(a,), T(a)) =0,

n—=o0

lim_ Py (8@, S(a")) = 0.

n—=oo

(47)

By Lemma 16, we have

1

—Py(a*, T(a")) < lim inf Py(a,,,;, T(a"

P T@)) < i By )
=lim inf P,( T(a,,), T(«™)) =0.

n—~oo

Thus, P,(T(a*), a*) =Py(a*, a*) = P, (T(a*), T(a*)).

This implies T(a*) =a*. Similar arguments lead us to
have S(a*) = a*.Hence,

T(a*)=S(a*) =a*; that is, T and S have a common
fixed point a* € X.

If I'(ar, B, R) + &, then we have the following theorem.

Theorem 18. Let (X, P,) be a complete partial b-metric space
and R be a transitive binary relation on X. Let T and S form
a D@-contraction. Suppose that I'(a, B, R) + D and state-
ment of Theorem 17 holds, then the mappings T and S admit
a unique common fixed point in X.

Proof. We have proved the existence of a common fixed
point in Theorem 17 . On the contrary, suppose that v and
v* are two distinct common fixed points of T and S in X.
Then the class of paths of finite length € in R from v to v*
is I'(v, v*,R). Let one of the paths be {A), A, A,, -+, A,}
in X from v to v* with

Ag=v, Ag=v" (A A ) €R; 7=0,1,2,3 e oo (1),

(49)

j+1)
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By transitivity of R, we have

(AN ER, (ALA)ER, - (A, V) eR = (,v") e R.
(50)

It is given that T and S form a D@-contraction, that is,
D(s*P,(T(v), S(v*))) < G(D(Py(v,v"). (51)

This implies D(s*P,(v,v*)) < €(D(P,(v,v*))) < D(P,(v
,v*)). This is a contradiction to the definition of D. Hence,
v=v*. This shows that v is a unique common fixed point
of T'and S.0 O

Remark 19. If the mappings T and S are discontinuous, then
we have the following theorem.

Theorem 20. Let (X, P),) be an R — reqular complete partial
b-metric space. Let T and S form a DE-contraction. Suppose
that R is an antisymmetric relation, then T and S admit a
common fixed point in X if they meet the conditions (a)
and (b):

(a) There exists ay € X such that (ay, T(ay)) € R
(b) Ris(T,S)-closed

Proof. By Theorem 17, we know that («,, @,,;) € R and «,
— a* as n—> oo. It is given that (X, P,) is R — regular,
so (a,, ax)eR, for all neN. There are two possible
cases.(] |

Case 1. If the sequence {a, } is constant. Let a, = a* for each
neN so that oy, =a* and T(a*) = T(«a,,) = a,,,, Since (
X, P,) is R —regular, so (ay,,,a")=(T(a*),a*) e R. We
know that (a,,, ®,,,;) € R; thus, (a*, T(a*)) e R. As R is
an antisymmetric relation, so a* = T(a*), by the same argu-
ments we have o* = S(a*) as required.

Case 2. If {a,,} is not constant and arbitrary, we claim that
Py(a*,S(a*)) =0. Let Py(a*, S(a*)) > 0. It is proved in The-

orem 17 that lim a,;; =a*, so there must be an integer
1—00

ny > 0, such that

P *’ S *
Py (ayper> S(@")) > 0, Py (s &) < M,for alli>n,.
(52)
It is assumed that (X, P,) is R — regular, and by Theo-

rem 17, we know that a,; — a* asi — oosthus, (a,;, a*)
€ R. By contractive condition (2.1), monotonicity of D,

and Lemma 16, we have

D(py(a, S(a"))) < D(slim inf Py(ay,y, S(ac')))

1—>00 (
(@i1> S(a )))
= lim_inf D(s*Py( T(aty), S(a")))

1—>00

SD(szlim inf P,

i—00

< lim inf €(D(Py( a,;, a™)))

i—00

dlim,_, inf %(D (M»

2
) D(m(«ﬁ;(«*»)

(53)

This is a contradiction to the definition of mapping D.
Thus, P,(a*, S(a*)) =0. Also, we have the following infor-
mation:

P,(S(a), S(a")) = 0= Py(a", ). (54)

Thus, o* = S(a*). By interchanging roles of S and T, we
have a* = T(a*).

Hence, T(a*) = S(a*) = a*; that is, a* is a common fixed
point of T and S in X.

The following is the most general theorem of this
section.

Theorem 21. Let (X, Py) be an R — regular complete partial
b-metric space and R be a transitive and antisymmetric
binary relation on X. Let T and S form a DEG-contraction.
Suppose that I'(a, B, R) # &, and assumptions (a) and (b)
in Theorem 17 hold. Then the mappings T and S admit a
unique common fixed point in X.

Proof. See the proofs of Theorems 17, 18, and 20, respec-
tively.OJ O

Remark 22.

(1) The results in this section are independent of the
observation made in [23], and hence, our results
are a real generalization of the related results in liter-
ature (see [12, 19-22])

(2) Theorem 21 remains true if P,(a, §) is replaced by

M(a, B)

The following example explains the main results.

Example 5. Let X ={ @, =7n(7n +1)/2 : n € N}.Define the
partial b-metric function P, : X x X — [0,00) by

Py(a, B) = (max {a, f})* foralla, B € X. (55)
Then (X, P,,2) is a complete partial b-metric space.

Define D:(0,00) — (0,00) by D(«) = we” for each « >0,
then DeP. Let the function & : (0,00) — (0,00) be



defined by €(#) = #/2 for all » € (0,00). Then ¥ is continu-
ous comparison. Define the binary relation R on X by

R={(a,.a,) ¢,+a, =22foreachm>7n} (56)

Define the mappings T, S:X — X by

@1, n=1,
I(e,)= n(n—1) )
— 7 22,
@, m €{1,2}, &7)
S(@m) =9 (1) (2 -2)

> , m=3,m €N.

We observe that there exists «, € X such that (e, T (
@,)) € R (since (@, + T (@) =2) by definition of R, so
assumption (a) is satisfied in Theorem 17. Let (¢, ,,) €
R, then we have T(«, )+ S(«,,) =2 for each 72 > 7, so (
T(w,),S(¢,,)) € R. Thus, R is (T, S)-closed (this verifies
assumption (b) of Theorem 17. Also, T, S are continuous
(assumption (c) is satisfied). Now, we show that TandS
form D®-contraction. It is noted that the mappings T, S
do not form Banach contraction in the partial b-metric
sense. Indeed,

Py(T(2,), (1)) _

lim
Pbﬁ/ﬂ’ ﬁ’l)

n—=aoo

We noticed that P,(T(«,), S(<,,)) > 0 for each 772 > 7.
Thus, (¢, ¢,,) € S.Consider
1
4P, (T(2,), S(@m))e‘ﬂ’b(T(%),S(@m)) < pr(@ﬂ, @m)el’b(@w@m).

(59)
This implies

8Py(T(@,), S(2 )

< Pol@nen) P (T(@,)8() (60
Pb<a’ﬂ’ﬁ’m> ‘ ( )

For 7z =1 and 7z =2, the inequality (41) reduces to e
>8/9. Thus, (41) holds for this case. For 2 =2 and 7z = 3,
the inequality (41) gets the form €** > 2/9. Similarly, for each
m > 7, (41) holds true. Thus, we have

D(s*Py(T (), S(B))) < G(D(Py(, B))), forall a, f € X.
(61)

We note that ¢, =T(«,) =S(z,).

3.2. Discussions. In this part of the current section, we state
some corollaries which are themselves prominent fixed-
point theorems in the literature.

The following corollary generalizes the results presented
by Jleli and Samet [6] and al-Sulami et al. [20].
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Corollary 23. Let (X, P,,) be a complete partial b-metric space
and R be a transitive and antisymmetric binary relation on
X. If the self-mappings T and S defined on (X, P,) satisfy
the following conditions:

(a) I'(a, B, R) is nonempty for all a, f € X

(b) There exists oy € X such that (ay, T(aty)) € R and R
is (T, S)-closed

(c) Either T, S are continuous or (X, P,) is R — regular

(d) There exists a function 0 € ® and k € (0, 1), such that
foralla, B,

0(s’P,(T(), S(B))) < [O(P, (s B)))" (62)

Then the mappings T and S admit a unique common
fixed point.

Proof. Setting €(t) = (In k)t and D(t) =6(s*t) in Theorem
17 and following the proofs of Theorems 17, 18, and 20
respectively, we obtain the required result.(] O

The following corollary generalizes and improves the
results presented by Zada and Sarwar [21] and War-
dowski [25].

Corollary 24. Suppose that the self-mappings T and S defined
on the complete partial b-metric space (X, P,,) satisfy the fol-
lowing conditions:

(a) I'(a, B, R) is nonempty for all a, f € X

(b) There exists oy € X such that (ay, T(ay)) € R and R
is (T, S)-closed

(c) Either T, S are continuous or (X, P,) is R — regular

(d) There exists F € # and T > 0,such that for all a, p € 5,

T+ F(SP,(T(2), S(B)) < F(Py(a ) (63)

If R is a transitive and antisymmetric binary relation on
X, then the mappings T,S admit a unique common fixed
point.

Proof. Setting €(t) =e ™"t and D(t) = ¢ F(¥) in Theorem 17
and following the proofs of Theorems 17, 18, and 20, respec-
tively, we obtain the required result.(J O

Corollary 25 (see [21]). Let (X, P,) be a complete partial b
-metric space and R be a transitive and antisymmetric binary
relation on X. If the self-mappings T and S defined on (X, P,,)
satisfy the following conditions:

(a) I'(a, B, R) is nonempty for all a, f € X

(b) There exists oy € X such that (ay, T(ay)) € R and R
is (T, S)-closed
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(c) Either T, S are continuous or (X, P,) is R — regular

(d) There exists F €  and T > 0, such that for all a, f €

>

T+ F(sPy(T (), S(B))) < F(Pb(oc, B)+ Py(a S(B)) Py (s T(“)))

I+ Py(a B)
(64)

Then T and S have a unique common fixed point in X.

Proof. This proof follows the proof of Corollary 24.
The following corollary improves the fixed-point results
presented by Geraghty [24].00 |

Corollary 26. Let (X, P),) be a complete partial b-metric space
and R be a transitive and antisymmetric binary relation on
X. If the self-mappings T and S defined on (X, P,) satisfy
the following conditions:

(a) I'(a, B, R) is nonempty for all a, f € X

(b) There exists oy € X such that (ay, T(ay)) € R and R
is (T, S)-closed

(c) Either T, S are continuous or (X, P,) is R — regular
(d) Forall a, € X and (a, B) € R

S"Py(T(@), S(B)) < y(Py(a B))Py( B),  (65)

where y : [0,00) — [0,00) such that lin%y(r) < 1/s, for each
t € (0,00)

Proof. By defining €(t) = ty(t) and D(t) = s*t in Theorem 17
and following the proofs of Theorems 17, 18, and 20, respec-
tively, we obtain the required result.(J |

Remark 27.

(1) For s=1, Theorems 17, 18, and 20 establish criteria
for the existence of common fixed points of J -con-
tractions in the partial metric spaces [12] and corre-
spondingly for Corollaries 23, 24, 25, and 26

(2) For the zero self-distance (P,(a, 8) =0foralla, )
and for the zero self-distance with s =1, the results
stated in Remark 27 (1) hold in the b-metric spaces
and metric spaces, respectively

4. Application to the System of Boundary
Value Problems

We will apply Theorem 17 to achieve the existence of a com-
mon solution to the following system of boundary value

9
problems:
v
=X (L e(1))s 1 €T, w(0) = u(1) =0, (66)
_‘;7”;:%(f,w(f));tef,wm):w(l):o, (67)

where . =[0,1], C(.¥) represents the set of continuous
functions defined on .#. The functions %, % : [0, 1] x C(
F) — R are continuous and nondecreasing according to
ordinates. We define the binary relation it on C(.¥) as fol-
lows:

N={(v,w)eC(I)xC(F): v(¢)<w(¢ )Nt € F}. (68)

The associated Green function ¢ : F X f — .7 to (66)
and (67) can be defined as follows:

7(1-8)if0<Z <6<,
9(2,6)= ) (69)
4(1-2)if0<d<Z<1.

Let the mapping d, : C(F)x C(.F) —[0,00) be
defined by

d,(v,w)= H(v—w)ZHOO
=sup |¢(Z) - w({)|2,‘v’v, weC(S),teS.
(70)

It is claimed that (C(.7),d,,2) is a complete b-metric
space. By integration, we see that (66) and (67) can be writ-
ten as v =S(¢) and w =T (w), where S, T : C(F) — C(
#) are defined by

S(v)(¢) = J 9(2,6)% (6, v(6))ds,
) (71)
T(w)(Z) = Lg(z‘, VK (6, w(6))dE.

It is remarked that the common solution to (66) and (67)
is the common fixed point of the operators S, T. Suppose the
following conditions:

(a) 3% > 0 such that for v(¢) # w(Z)(VZ), we have

(2, 0(¢)) = H (L, w(2))|* <16e *|v(¢) - w(2)|’V € I
(72)

(b) Jery, wry € C(F) such that
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vo(2) < Jlg({, £) I (6, vo(£))dE,
) (73)

wy(7) < J 9(4, 0) K (6, wy(6))dd

0

The following theorem states the conditions under
which equations (66) and (67) have a common solution.

Theorem 28. Let the functions %, K : [0,1] x C(F) — R
satisfy conditions (a) and (b). Then equations (66) and (67)
have a common solution.

Proof. We will apply Theorem 17 to show the existence of
the common solution to (66) and (67). By condition (b),
there exists ¢, such that (¢, S(z)) € N. Since the functions
H, K are continuous, so S,T:C(F)— C(F) defined
above are continuous. Since it is given that #’, # are nonde-
creasing, thus, 9 is (S, T') closed. To show that the mappings
S, T form DC-contraction, we proceed as follows:

1S()(2) = T(w)(2)]* = JO”({’ ) (H (6, 0(8)) - H (&, w(#)))dd

2

< (j}(a 017 (60(6) = (6, )

< (J;g({, #)\ 166 |u(2) - w({)|2dﬁ>2.
(74)

d O

Since (sup jég({, ﬁ)dﬁ)z =1/64, for all Z € .7, thus, tak-
ing supremum on both sides of the above inequality, we have

$d,(S(v), T(w)) <ed, (v, w)Vo(-), w(-) € C(F). (75)
Define the b-metric d, on C(.¥) by

Py(v,w), ifv+w,

d, (v, ) = { (76)

0, ifv=w.
Inequality (75) can be written as
$*Py(S(v), T(w)) < € Py (v, )V (), w(-) € C(F). (77)

Defining the functions &, F, and D by €(¢) = e *#, F(
Z)=In¢, and D(¢) = e"?), respectively, for all Z € [0,00),
we have

£+ B(SPy(S(0), () < F(Py (0, 05),

o . oF (SPo(S@).T(w)) o oF (Po(es))

(78)
F (FPST(@)) ¢ g7 oF (Py(e2r))

>

D(Py(S(2:), T())) < B(D(Py (w1 12)).
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Hence, applying Theorem 17, we say that the boundary
value problems (66) and (67) have a common solution in
C(7).
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