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In this paper, we study the mapping properties of Toeplitz operators T f associated with IMOs symbols f acting between two
generalized Fock spaces Fp

φ, where 1 < s ≤∞. We characterize bounded or compact Toeplitz operators T f from one generalized
Fock space Fp

φ to another Fq
φ, respectively, in four cases.

1. Introduction

Let ℂn be the n-dimensional complex Euclidean space and
ω0 = ddcj·j2 be the Euclidean Kähler form on ℂn, where d
denotes the usual exterior derivative and dc = ð ffiffiffiffiffiffi

−1
p

/4Þð�∂
− ∂Þ: In what follows, φ ∈ C2ðℂnÞ is assumed to be real-
valued such that

c1ω0 ≤ ddcφ ≤ c2ω0, ð1Þ

for two positive constants c1 and c2.
Given 1 ≤ p <∞, the space Lpφ consists of all measurable

functions f on ℂn such that

fk kp,φ =
ð
ℂn

f zð Þe−φ zð Þ
��� ���pdV zð Þ

� �1/p
<∞, ð2Þ

where dV is the usual Lebesgue measure on ℂn.
Let HðℂnÞ be the class of all entire functions on ℂn. For

1 ≤ p <∞; the generalized Fock space is defined by

Fp
φ =H ℂnð Þ

\
Lpφ, ð3Þ

and

F∞
φ = f ∈H ℂnð Þ: ∥f ∥∞,φ = sup

z∈ℂn
∣ f zð Þ ∣ e−φ zð Þ <∞

� �
: ð4Þ

It is well known that Fp
φ is a Banach space under the norm

∥·∥p,φ when 1 ≤ p ≤∞. The generalized Fock spaces Fp
φ have

been studied by many mathematics researchers (refer to
[1–4] and the references therein). For a particular choice
of φ, Fp

φ corresponds to some spaces that we are familiar

with. For example, when φ = ðα/2Þjzj2 with α > 0, it
becomes the classical Fock space studied in [5]. When
φðzÞ = ð1/2Þjzj2 −m ln ∣ z ∣ , it becomes the Fock-Sobolev
space introduced in [6].

It is clear that F2
φ is a Hilbert space with inner product

f , gh iF2φ =
ð
ℂn
f zð Þ �g zð Þe−2φ zð ÞdV zð Þ: ð5Þ

For z,w ∈ℂn, the reproducing kernel of F2
φ is given by

KzðwÞ = Kðw, zÞ and the projection P from L2φ to F2
φ is given

by

Pf zð Þ =
ð
ℂn
f wð ÞK z,wð Þe−2φ wð ÞdV wð Þ: ð6Þ

For z ∈ℂn, we denote kz = Kz/∥Kz∥2,φ by the normalized

reproducing kernel for F2
φ. By Proposition 4.2 in [4], we see

that kz ⟶ 0 weakly in Fp
φ as z⟶∞ for 1 ≤ p ≤∞.

Given z ∈ℂn and r > 0, write Bðz, rÞ = fw ∈ℂn : jw − zj
< rg. For a locally Lebesgue integrable function f on ℂn
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(written as f ∈ L1loc), the averaging function f̂ rðzÞ on ℂn is
defined by

f̂ r zð Þ = 1
V B z, rð Þð Þ

ð
B z,rð Þ

f wð ÞdV wð Þ, ð7Þ

and the mean oscillation of f at z is given by

MOr fð Þ zð Þ = 1
V B z, rð Þð Þ

ð
B z,rð Þ

f wð Þ − f̂ r zð Þ
��� ���dV wð Þ: ð8Þ

For 1 < s ≤∞ and r > 0, the space IMOs
r , s-th integrable

mean oscillation, is defined to be the class of all f ∈ L1loc such
that

fk kIMOs
r
= MOr fð Þk kLs <∞, ð9Þ

where Ls = Lsðℂn, dVÞ.
For r > 0, denote BMOr by the space of functions on ℂn

with bounded mean oscillation, consisting of those functions
f ∈ L1loc such that

fk kBMOr
= sup

z∈ℂn
MOr fð Þ zð Þ <∞: ð10Þ

The spaces IMOs
r and BMOr are both independent of r

(see Remark 5 below and Lemma 3.1 of [2]); thus, we will
respectively write them IMOs and BMO for simplicity. From
the definition, it is easy to see that IMO∞ = BMO. Hence,
IMOs spaces are generalizations of BMO spaces.

Given f ∈ IMOs, the Toeplitz operator T f on Fp
φ is

defined by

T f g zð Þ =
ð
ℂn
f wð Þg wð ÞK z,wð Þe−2φ wð ÞdV wð Þ, z ∈ℂn: ð11Þ

For any f on ℂn with f jkzj2 ∈ L1φ and z ∈ℂn, the Berezin
transform of f is given by

~f zð Þ =
ð
ℂn
f wð Þ kz wð Þj j2e−2φ wð ÞdV wð Þ: ð12Þ

It is easy to check that ~f ðzÞ = hT f kz , kzi.
For 1 < s ≤∞ and r > 0, let IAs

r be the space of all func-
tions f ∈ L1loc with

fk kIAs
r
= d∣f ∣ r��� ���

Ls
<∞: ð13Þ

Lemma 2.3 of [1] shows that the space IAs
r is independent

of r, and we write it IAs for simplicity. Moreover,

f ∈ IAs if and only if f∣f ∣ ∈ Ls: ð14Þ

Given a continuous function f on ℂn, the oscillation of f

at z is defined to be

ωr fð Þ zð Þ = sup f wð Þ − f zð Þj j: w − zj j < rf g: ð15Þ

For 1 < s ≤∞ and r > 0, let IOs
r denote the space of con-

tinuous functions on ℂn such that

fk kIOs
r
= ωr fð Þk kLs <∞: ð16Þ

It follows from Lemma 2.1 in [7] that the space IOs
r is

independent of the choice of r, we simply write IOs instead
of IOs

r .
The BMO space in the Bergman metric was first intro-

duced by Zhu in [8] and further studied by Berger et al. in
[9]. Over the past few decades, a great number of research
work have been done on the boundedness and compactness
of Toeplitz operators induced by BMO symbols on Bergman
spaces or Fock spaces (see [10–14] and the references
therein). The IMOs space was firstly introduced and studied
by Hu et al. in [2]. Recently, Wang [12] studied the the
boundedness and compactness of Toeplitz operators induced
by IMOs symbols between two classical Fock spaces. Inspired
by his work, we proceed to extend the results to the general-
ized Fock spaces. Moreover, the largest generalized Fock
spaces F∞

φ are taken into account and some interesting
results are obtained.

In this paper, we aim to answer when the Toeplitz
operators T f with f ∈ IMOs between two generalized Fock
spaces are bounded or compact, where 1 < s ≤∞. Specifi-
cally, we characterize the boundedness and compactness
of Toeplitz operators T f from Fp

φ to Fq
φ in four cases,

i.e., 1 < p ≤ q <∞, 1 < q < p <∞, 1 < p <∞ and q =∞,
and p =∞ and 1 < q <∞. As we see, the proofs of the
main results in [12] rely heavily on the explicit formula
of the reproducing kernel. Unfortunately, we do not know
whether there is a similar explicit formula on the general-
ized Fock space setting. Therefore, some different tech-
niques and methods are needed to show our main
conclusions on the generalized Fock space.

Throughout this paper, for each 1 < p <∞, we write p′
for its conjugate exponent, that is, ð1/pÞ + ð1/p′Þ = 1. We will
use the same letter C to denote various constants which may
change at different occurrences. We denote f ≲ g whenever
there exists a positive number C, independent of the essential
variables, such that f ≤ Cg, and f ≃ g if both f ≲ g and g ≲ f
hold.

2. Preliminaries

We begin with some estimates for the reproducing kernel K
ð·, · Þ of F2

φ; results were proved in [4].

Lemma 1. The reproducing kernel Kð·, · Þ for F2
φ satisfies:

(1) For z,w ∈ℂn, there exists some θ > 0 such that
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K z,wð Þj je−φ zð Þe−φ wð Þ ≲ e−θ∣z−w∣: ð17Þ

(2) For z ∈ℂn, there exists some r > 0 such that

K z,wð Þj je−φ zð Þe−φ wð Þ ≃ 1, for w ∈ B z, rð Þ: ð18Þ

(3) For z ∈ℂn and 1 ≤ p ≤∞,

K ·, zð Þk kp,φ ≃ eφ zð Þ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K z, zð Þ

p
: ð19Þ

The following lemma from Lemma 2.4 in [1] is called the
atomic decomposition for Fp

φ.

Lemma 2. For 1 ≤ p ≤∞, let fajg∞j=1 be an r-lattice and

fλjg∞j=1 ∈ l
p (the p-summable sequence space) and set

f zð Þ = 〠
∞

j=1
λjkaj zð Þ, z ∈ℂn: ð20Þ

Then, f ∈ Fp
φ and there exists a constant C > 0 such that

fk kp,φ ≤ C λ j

	 
∞
j=1

��� ���
lp
: ð21Þ

Lemma 3. For any z ∈ℂn and w ∈ Bðz, rÞ, where r is taken as
in (18), there exists some constant C > 0 depending only on r
such that

1
V B z, rð Þð Þ ≤ C kz wð Þj j2e−2φ wð Þ: ð22Þ

Proof. By estimate (18), for w ∈ Bðz, rÞ, we have

kz wð Þj j2e−2φ wð Þ ≃ 1: ð23Þ

Since VðBðz, rÞÞ ≃ r2n, we have

1
V B z, rð Þð Þ ≲max 1

r2n
, 1

� �
≃max 1

r2n
, 1

� �
kz wð Þj j2e−2φ wð Þ:

ð24Þ

This completes the proof. ☐ ☐

Proposition 4. Suppose f ∈ L1loc and 1 < s ≤∞. Then, the fol-
lowing statements are equivalent:

(1) f ∈ IMOs
r for some (or any) r > 0:

(2) f ∈ IMOs:

(3) f = f1 + f2, where f1 ∈ IO
s and f2 ∈ IA

s:

(4) f acting on ℂn with f jkzj2 ∈ L1φ satisfies

ð
ℂn

f wð Þ − ~f zð Þ
��� ��� kz wð Þj j2e−2φ wð ÞdV wð Þ ∈ Ls: ð25Þ

Proof. The equivalences of ð1Þ⇔ ð2Þ⇔ ð3Þ follow from The-
orem 2.2 of [7].

ð3Þ⇒ ð4Þ. For f ∈ IAs, by the triangle inequality, we
obtain ð

ℂn
f wð Þ − ~f zð Þ
��� ��� kz wð Þj j2e−2φ wð ÞdV wð Þ

≤
ð
ℂn

f wð Þj j kz wð Þj j2e−2φ wð ÞdV wð Þ

+
ð
ℂn

~f zð Þ
��� ��� kz wð Þj j2e−2φ wð ÞdV wð Þ ≤ 2f∣f ∣ zð Þ:

ð26Þ

Since f ∈ IAs if and only if f∣f ∣ ∈ Ls by (14), we obtain (25)
whenever f ∈ IAs.

Meanwhile, for f ∈ IOs, by using Lemma 2.1, the chang-
ing of variables, Lemma 4.2 in [7], and Fubini’s theorem,
we deduce thatð

ℂn
f wð Þ − ~f zð Þ
��� ��� kz wð Þj j2e−2φ wð ÞdV wð Þ

≲
ð
ℂn

f wð Þ − ~f zð Þ
��� ���e−2θ z−wj jdV wð Þ

=
ð
ℂn

f z −wð Þ − ~f zð Þ
��� ���e−2θ wj jdV wð Þ

=
ð
ℂn

f z −wð Þ −
ð
ℂn
f ξð Þ kz ξð Þj j2e−2φ ξð ÞdV ξð Þ

���� ����e−2θ wj jdV wð Þ

≤
ð
ℂn

ð
ℂn

f z −wð Þ − f ξð Þj j kz ξð Þj j2e−2φ ξð ÞdV ξð Þe−2θ wj jdV wð Þ

≲
ð
ℂn

ð
ℂn

f z −wð Þ − f ξð Þj je−2θ z−ξj jdV ξð Þe−2θ wj jdV wð Þ

=
ð
ℂn

ð
ℂn

f z −wð Þ − f z − ξð Þj je−2θ ξj jdV ξð Þe−2θ wj jdV wð Þ

≲
ð
ℂn

ð
ℂn

1 + w − ξj jð Þ
ð1
0
ω fð Þ z −w + t w − ξð Þð Þdt

� �
� e−2θ wj jdV wð Þe−2θ ξj jdV ξð Þ =

ð
ℂn

ð
ℂn

ð1
0
1 + w − ξj jð Þω fð Þ

� z −w + t w − ξð Þð Þdte−2θ∣w∣dV wð Þe−2θ∣ξ∣dV ξð Þ:
ð27Þ

Let dVðt,w, ξÞ≔ dte−2θ∣w∣dVðwÞe−2θ∣ξ∣dVðξÞ and apply
Hölder’s inequality; then, the last integral above is less than
or equal to C times

ð
ℂn×ℂn× 0,1½ �

1+∣w − ξ ∣ð Þsω fð Þs z −w + t w − ξð Þð ÞdV t,w, ξð Þ
 !1/s

:

ð28Þ

For ∣w − ξ ∣ ≥1, the integral above is less than or equal to
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C times:

ð
ℂn×ℂn× 0,1½ �

wj js + ξj js� �
ω fð Þs z −w + t w − ξð Þð ÞdV t,w, ξð Þ

 !1/s

:

ð29Þ

It follows by Fubini’s theorem thatð
ℂn

ð
ℂn

f wð Þ − ~f zð Þ
��� ��� kz wð Þj j2e−2φ wð ÞdV wð Þ

� �s

dV zð Þ

≲
ð
ℂn

ð
ℂn×ℂn× 0,1½ �

wj js + ξj js� �
ω fð Þs z −w + t w − ξð Þð Þ

� dV t,w, ξð ÞdV zð Þ =
ð
ℂn×ℂn× 0,1½ �

wj js + ξj js� �
� dV t,w, ξð Þ

ð
ℂn
ω fð Þs z −w + t w − ξð Þð ÞdV zð Þ ≲ ∥f ∥sIOs :

ð30Þ

For ∣w − ξ ∣ <1, the integral in (28) is less than or equal to
C times:

ð
ℂn×ℂn× 0,1½ �

ω fð Þs z −w + t w − ξð Þð ÞdV t,w, ξð Þ
 !1/s

: ð31Þ

Thus, we obtain

ð
ℂn

ð
ℂn

f wð Þ − ~f zð Þ
��� ��� kz wð Þj j2e−2φ wð ÞdV wð Þ

� �s

dV zð Þ

≲
ð
ℂn

ð
ℂn×ℂn× 0,1½ �

ω fð Þs z −w + t w − ξð Þð ÞdV t,w, ξð ÞdV zð Þ

=
ð
ℂn×ℂn× 0,1½ �

dV t,w, ξð Þ
ð
ℂn
ω fð Þs z −w + t w − ξð Þð ÞdV zð Þ ≲ ∥f ∥sIOs :

ð32Þ

Hence, ð3Þ⇒ ð4Þ holds.
ð4Þ⇒ ð1Þ. Suppose f onℂn with f jkzj2 ∈ L1φ satisfies con-

dition (25), we are to show f ∈ IMOs.
Lemma 3 implies that

MOr fð Þ zð Þ = 1
V B z, rð Þð Þ

ð
B z,rð Þ

f wð Þ − f̂ r zð Þ
��� ���dV wð Þ

≤
1

V B z, rð Þð Þ
ð
B z,rð Þ

f wð Þ − ~f zð Þ
��� ���dV wð Þ

+ f̂ r zð Þ − ~f zð Þ
��� ��� ≤ 2

V B z, rð Þð Þ
ð
B z,rð Þ

f wð Þ − ~f zð Þ
��� ���

� dV wð Þ ≲
ð
ℂn

f wð Þ − ~f zð Þ
��� ��� kz wð Þj j2e−2φ wð ÞdV wð Þ,

ð33Þ

and this shows that MOrð f ÞðzÞ ∈ Ls; hence, f ∈ IMOs
r , which

gives ð4Þ⇒ ð1Þ. The proof ends here. ☐ ☐

Remark 5. It follows from Proposition 4 that the spaces IMOs
r

are independent of r. Although the equivalences of ð1Þ
⇔ ð2Þ⇔ ð3Þ hold for all 0 < s ≤∞, it is unknown whether
they are equivalent to ð4Þ in the case of 0 < s ≤ 1. We tried
to prove it, but there were two difficulties. Firstly, the
techniques of Hölder’s inequality or Jensen’s inequality
are not available when 0 < s ≤ 1. Secondly, the function ω
ð f Þ in Proposition 4 is not subharmonic, which makes
the method of lattice invalid in this case.

Corollary 6. Let 1 < s ≤∞. If f ∈ IMOs, then f∣f ∣ ðzÞ − ∣~f ðzÞ
∣ ∈Ls for all z ∈ℂn.

Proof. For z ∈ℂn, by the triangle inequality, we get

~fj j zð Þ − ~f zð Þ
��� ��� = ð

ℂn
f wð Þj j − ~f zð Þ

��� ��� �
kz wð Þj j2e−2φ wð ÞdV wð Þ

≤
ð
ℂn

f wð Þ − ~f zð Þ
��� ��� kz wð Þj j2e−2φ wð ÞdV wð Þ:

ð34Þ

Taking into account Proposition 4, we obtain

ð
ℂn

f wð Þ − ~f zð Þ
��� ��� kz wð Þj j2e−2φ wð ÞdV wð Þ ∈ Ls, ð35Þ

thus, we have f∣f ∣ ðzÞ − ∣~f ðzÞ ∣ ∈Ls for all z ∈ℂn. This com-
pletes the proof. ☐ ☐

Lemma 7 (see [1], Lemma 3.2). Let 1 ≤ p <∞. A subset E ⊂
Fp
φ is relatively compact if and only if for any ε > 0, there exists

some R > 0 such that

sup
f ∈E

ð
∣z∣≥R

f zð Þe−φ zð Þ
��� ���pdV zð Þ < ε: ð36Þ

Lemma 8 (see [4], Proposition 2.3). Suppose 1 ≤ p <∞ and
r > 0. Then, for f ∈HðℂnÞ and z ∈ℂn, we have

f zð Þe−φ zð Þ
��� ���p ≲ 1

r2n

ð
B z,rð Þ

f wð Þe−φ wð Þ
��� ���pdV wð Þ: ð37Þ

Lemma 9. Suppose f ∈ IMOs with 1 < s ≤∞. Then, for any
g ∈HðℂnÞ, there exists some constant C > 0 such that

ð
ℂn

g zð Þe−φ zð Þ
��� ���p f zð Þj jdV zð Þ ≤ C

ð
ℂn

g zð Þe−φ zð Þ
��� ���p f̂j jr zð ÞdV zð Þ,

ð38Þ

for r > 0 and 1 ≤ p <∞.
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Proof. By Lemma 8 and Fubini’s theorem, we haveð
ℂn

g zð Þe−φ zð Þ
��� ���p∣f zð Þ∣dV zð Þ ≲ 1

r2n

ð
ℂn

ð
B z,rð Þ

g wð Þe−φ wð Þ
��� ���p

dV wð Þ∣f zð Þ∣dV zð Þ =
ð
ℂn

g wð Þe−φ wð Þ
��� ���p 1

r2n

ð
B w,rð Þ

∣f zð Þ∣dV

� zð ÞdV wð Þ ≲
ð
ℂn

g wð Þe−φ wð Þ
��� ���pd∣f ∣ r wð ÞdV wð Þ,

ð39Þ

which completes the proof. ☐ ☐

Lemma 10. Let 1 ≤ p ≤ q <∞. Suppose E is relatively compact
in Fp

φ, then E is relatively compact in Fq
φ.

Proof. Suppose E is relatively compact in Fp
φ. Given any ε > 0,

by Lemma 7, there exists some R > 0 such that

sup
f ∈E

ð
∣z∣≥R

f zð Þe−φ zð Þ
��� ���pdV zð Þ < ε: ð40Þ

Lemma 8 gives

f zð Þj j ≲ ∥f ∥p,φe
φ zð Þ, for f ∈ E: ð41Þ

Thus,

ð
zj j≥R

f zð Þe−φ zð Þ
��� ���qdV zð Þ =

ð
zj j≥R

f zð Þj jp f zð Þ
�����
q−p

e−qφ zð ÞdV zð Þ

≤ ∥f ∥q−pp,φ

ð
zj j≥R

f zð Þe−φ zð Þ
��� ���pdV zð Þ < ∥f ∥q−pp,φ ε,

ð42Þ

for f ∈ E. Note that by the proof of Lemma 2.7 in [1], the fact
that E is relatively compact in Fp

φ implies that E is bounded in
Fp
φ. It follows that there is a constant C > 0 such that

sup
f ∈E

ð
∣z∣≥R

f zð Þe−φ zð Þ
��� ���qdV zð Þ < Cε: ð43Þ

An application of Lemma 7 implies that E is relatively
compact in Fq

φ, and the lemma is proved. ☐ ☐

3. Toeplitz Operators with IMOs Symbols

In this section, we will derive necessary and sufficient condi-
tions for which Toeplitz operators T f with IMOs symbols are
bounded or compact from Fp

φ to Fq
φ, respectively, in four

cases, where 1 < s ≤∞.

Case 1. 1 < p ≤ q <∞.
The following theorems are the main results in the case of

1 < p ≤ q <∞.

Theorem 11. Let 1 < p ≤ q <∞ and f ∈ IMO∞. Then, T f

: Fp
φ ⟶ Fq

φ is bounded if and only if ~f ∈ L∞.

Proof. Assume that ~f ∈ L∞, then T f is bounded on Fp
φ by

Theorem 3.2 in [1]. That is, for any function g ∈ Fp
φ, we have

T f g ∈ Fp
φ with

∥T f g∥p,φ ≲ ∥g∥p,φ: ð44Þ

Observe that Fp
φ ⊂ Fq

φ when 1 < p ≤ q <∞. Thus,

∥T f g∥q,φ ≲ ∥T f g∥p,φ ≲ ∥g∥p,φ: ð45Þ

This implies that T f : F
p
φ ⟶ Fq

φ is bounded.
Conversely, if T f : F

p
φ ⟶ Fq

φ is bounded for 1 < p ≤ q <
∞. Note that ∥kz∥p,φ ≃ 1 by estimate (19). Applying Hölder’s
inequality, we get

∣~f zð Þ∣ = T f kz , kz
� ��� �� ≤ ∥T f kz∥q,φ∥kz∥q′ ,φ ≲ ∥T f ∥Fp

φ⟶Fq
φ
∥kz∥p,φ

≃ ∥T f ∥Fpφ⟶Fqφ
:

ð46Þ

It follows that ~f ∈ L∞.
This completes the proof. ☐ ☐

Furthermore, we equivalently characterize the compact
Toeplitz operators T f with f ∈ IMO∞.

Theorem 12. Let 1 < p ≤ q <∞ and f ∈ IMO∞. Then, T f

: Fp
φ ⟶ Fq

φ is compact if and only if

lim
z⟶∞

sup
w∈B z,rð Þ

T f kz , kw
� �

F2
φ

���� ���� = 0, for any r > 0: ð47Þ

Proof. For 1 < p ≤ q <∞, since kz ⟶ 0 weakly in Fp
φ as

z⟶∞ and T f : F
p
φ ⟶ Fq

φ is compact by assumption,
we deduce that

lim
z⟶∞

T f kz
�� ��

q,φ = 0: ð48Þ

Thus, by Hölder’s inequality, we have

sup
w∈B z,rð Þ

T f kz , kw
� �

F2
φ

���� ���� ≤ sup
w∈B z,rð Þ

∥T f kz∥q,φ∥kw∥q′ ,φ ≲ ∥T f kz∥q,φ ⟶ 0,

ð49Þ

for any r > 0 as z⟶∞.
Conversely, suppose

lim
z⟶∞

sup
w∈B z,rð Þ

T f kz , kw
� �

F2φ

���� ���� = 0, ð50Þ

for any r > 0, then by Theorem 3.2 in [1], we see that T f is
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compact on Fp
φ, namely, T f maps any bounded set in Fp

φ to a
relatively compact set in Fp

φ. Lemma 10 implies that a rela-
tively compact set in Fp

φ is also relatively compact in Fq
φ for

1 < p ≤ q <∞. Therefore, T f maps any bounded set in Fp
φ

to a relatively compact set in Fq
φ. This shows T f is compact

from Fp
φ to Fq

φ.
This completes the proof. ☐ ☐

Case 2. 1 < q < p <∞.
Before we show the main result in the case of 1 < q < p

<∞, we need to introduce some notations firstly. Recall that
the Rademacher functions are defined by

r0 tð Þ =
1, 0 ≤ t − t½ � < 1

2 ,

−1, 1
2 ≤ t − t½ � < 1,

8>><>>:
rn tð Þ = r0 2ntð Þ, n ≥ 1,

ð51Þ

where ½t� denotes the largest integer less than or equal to t.
The Khinchine’s inequality [15] is given as follows.
For 0 < p <∞, there exist positive constants C1 and C2

depending only on p such that, for all natural numbers m
and all complex numbers b1, b2,⋯, bm,

C1 〠
m

j=1
bj
�� ��2 !p/2

≤
ð1
0
〠
m

j=1
bjr j tð Þ

�����
�����
p

dt ≤ C2 〠
m

j=1
bj
�� ��2 !p/2

:

ð52Þ

Given some r > 0, a sequence fajg∞j=1 in ℂn is called an

r-lattice if the balls fBðaj, rÞg∞j=1 cover ℂn and

fBðaj, ðr/4ÞÞg∞j=1 are pairwise disjoint. For any δ > 0, it is

elementary to prove that there exists some positive integer
N (depending only on r and δ) such that each z ∈ℂn

belongs to at most N balls of fBðaj, δÞg∞j=1. Moreover,

given r > 0, it is easy to choose aj such that fajg∞j=1 forms

an r-lattice.

Theorem 13. Let 1 < q < p <∞ and set s = pq/ðp − qÞ. Then,
for f ∈ IMOs, the following statements are equivalent:

(1) T f : F
p
φ ⟶ Fq

φ is bounded.

(2) T f : F
p
φ ⟶ Fq

φ is compact.

(3) ~f ∈ Ls:

Proof. The implication ð2Þ⇒ ð1Þ is trivial, it suffices to prove
the implications ð1Þ⇒ ð3Þ and ð3Þ⇒ ð2Þ.

ð1Þ⇒ ð3Þ. Given any r > 0, let fajg∞j=1 be an r-lattice. For

z ∈ℂn and 1 < p <∞, let fλ jg∞j=1 ∈ l
p, by Lemma 2, we see

that the function

gt zð Þ = 〠
∞

j=1
λjr j tð Þkaj zð Þ ð53Þ

belongs to Fp
φ and ∥gt∥p,φ ≲ kfλjg∞j=1klp . By assumption,

T f : F
p
φ ⟶ Fq

φ is bounded; it follows that

T f gt
�� ��

q,φ ≤ T f

�� ��
Fp
φ⟶Fq

φ
gtk kp,φ ≲ T f

�� ��
Fp
φ⟶Fq

φ
λj

	 
∞
j=1

��� ���
lp
:

ð54Þ

Applying Fubini’s theorem, Khinchine’s inequality, and
Lemma 8, we obtain

ð1
0
T f gt
�� ��q

q,φdt =
ð1
0

ð
ℂn

〠
∞

j=1
λjr j tð ÞT f kaj zð Þ

�����
�����
q

e−qφ zð ÞdV zð Þdt

=
ð
ℂn

ð1
0
〠
∞

j=1
λjr j tð ÞT f kaj zð Þ

�����
�����
q

dte−qφ zð ÞdV zð Þ

≳
ð
ℂn

〠
∞

j=1
λj

�� ��2 T f kaj zð Þ
��� ���2 !q/2

e−qφ zð ÞdV zð Þ

≳ 〠
∞

i=1

ð
B ai ,rð Þ

〠
∞

j=1
λj

�� ��2 T f kaj zð Þ
��� ���2 !q/2

e−qφ zð ÞdV zð Þ

≥ 〠
∞

i=1
λij jq
ð
B ai ,rð Þ

T f kai zð Þ�� ��qe−qφ zð ÞdV zð Þ

≳ 〠
∞

i=1
λij jq T f kai aið Þ�� ��qe−qφ aið Þ:

ð55Þ

By the reproducing property and estimate (19), we have

T f kai aið Þ�� ��qe−qφ aið Þ = T f kai , Kai

� �
F2
φ

���� ����qe−qφ aið Þ

= T f kai , kai
� �

F2φ

���� ����qe−qφ aið Þ∥Kai
∥qp,φ ≃ ~f aið Þ

��� ���q:
ð56Þ

This together with (54) and (55) gives

〠
∞

i=1
λij jq ~f aið Þ
��� ���q ≲ T f

�� ��q
Fp
φ⟶Fq

φ
λj

	 
∞
j=1

��� ���q
lp

= T f

�� ��q
Fpφ⟶Fqφ

λj

�� ��q	 
∞
j=1

��� ���
lp/q
:

ð57Þ

Since p/q > 1, the classical duality ðlp/qÞ∗ ≃ lp/ðp−qÞ now
implies

〠
∞

i=1
~f aið Þ
��� ���s ≲ T f

�� ��s
Fp
φ⟶Fqφ

: ð58Þ
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Choose a point wi ∈ �Bðai, rÞ such that

~f wið Þ
��� ��� = sup

z∈B ai ,rð Þ
~f zð Þ
��� ���: ð59Þ

Then, we obtain

ð
ℂn

~f zð Þ
��� ���sdV zð Þ ≤ 〠

∞

i=1

ð
B ai ,rð Þ

~f zð Þ
��� ���sdV zð Þ ≲ 〠

∞

i=1
~f wið Þ
��� ���s:

ð60Þ

Note that the set fwigi is a finite union of δ-lattices and
(58) holds for any r-lattice, this along with (58) implies that
~f ∈ Ls.

ð3Þ⇒ ð2Þ. Assume that ~f ∈ Ls. Since s = pq/ðp − qÞ > 1, by
Corollary 6, we have f∣f ∣ ∈ Ls. Notice that

0 ≤ Re fð Þ+, Re fð Þ−, Im fð Þ+, Im fð Þ− ≤ fj j, ð61Þ

we get gðRe f Þ+, gðRe f Þ−, gðIm f Þ+, and gðIm f Þ− are all in Ls. By
Theorem 3.6 in [1], Toeplitz operators induced by these non-
negative symbols ðRe f Þ+, ðRe f Þ−, ðIm f Þ+, and ðIm f Þ− are
all compact from Fp

φ to Fq
φ. Consequently, T f is compact

from Fp
φ to Fq

φ, since

f = Re f + i Im f = Re fð Þ+ − Re fð Þ−� �
+ i Im fð Þ+ − Im fð Þ−� �

:

ð62Þ

This completes the proof. ☐ ☐

Case 3. 1 < p <∞, q =∞.
We now state the main result in the case of 1 < p <∞,

q =∞.

Theorem 14. Let 1 < p <∞ and f ∈ IMO∞. Then, the follow-
ing statements are equivalent:

(1) T f : F
p
φ ⟶ F∞

φ is bounded.

(2) T f : F
p
φ ⟶ F∞

φ is compact.

(3) ~f ∈ L∞:

Proof. The implication ð2Þ⇒ ð1Þ is trivial; we are to prove the
implications ð1Þ⇒ ð3Þ and ð3Þ⇒ ð2Þ.

ð1Þ⇒ ð3Þ. Assume that T f : F
p
φ ⟶ F∞

φ is bounded. For
any z ∈ℂn, since ∥kz∥p,φ ≃ 1 by the estimate (19), we have

~f zð Þ
��� ��� = T f kz , kz

� �
F2
φ

���� ���� ≤ ð
ℂn

T f kz wð Þ�� �� kz wð Þj je−2φ wð ÞdV wð Þ

≤ ∥T f kz∥∞,φ

ð
ℂn

kz wð Þj je−φ wð ÞdV wð Þ
≲ ∥T f ∥Fp

φ⟶F∞
φ
∥kz∥p,φ∥kz∥1,φ ≃ ∥T f ∥Fp

φ⟶F∞
φ
:

ð63Þ

Therefore, ~f ∈ L∞.

ð3Þ⇒ ð2Þ. Suppose ~f ∈ L∞, we have f∣f ∣ ∈ L∞ by Corollary

6, equivalently, d∣f ∣ r ∈ L∞ by (14). Assume that the sequence
gj ⟶ 0 weakly in Fp

φ as j⟶∞, we just need to show that

lim
j⟶∞

T f gj

��� ���
∞,φ

⟶ 0, ð64Þ

since Fp
φ is reflexive for 1 < p <∞.

For any ε > 0, there exists an R > 0 large enough such that

ð
∣w∣>R

kz wð Þj jp′e−p′φ wð ÞdV wð Þ
� �1/p′

< ε, ð65Þ

since kz ∈ Fp′
φ .

In views of Proposition 4.1 in [4], our assumption on
fgjgj implies that kgjkp,φ ≲ 1 and gj ⟶ 0 uniformly on

compact subsets of ℂn as j⟶∞. This showsð
∣w∣≤R

gj wð Þ
��� ��� kz wð Þj je−2φ wð ÞdV wð Þ < ε, ð66Þ

for arbitrary ε > 0 and fixed R above.
Combing the estimate (19), Lemma 9 (to the weight 2φ),

Hölder’s inequality, (65), and (66), we get

∣T f gj zð Þ∣e−φ zð Þ ≤
ð
ℂn

f wð Þj j gj wð Þ
��� ��� K z,wð Þj je−2φ wð ÞdV wð Þe−φ zð Þ ≃

ð
ℂn

� f wð Þj j gj wð Þ
��� ��� kz wð Þj je−2φ wð ÞdV wð Þ

≲
ð
ℂn

gj wð Þ
��� ��� kz wð Þj je−2φ wð Þd∣f ∣ r wð ÞdV wð Þ

≲ f̂j jr
��� ���

L∞

ð
ℂn

gj wð Þ
��� ��� kz wð Þj je−2φ wð ÞdV wð Þ

≲
ð
∣w∣≤R

∣gj wð Þkkz wð Þ∣e−2φ wð ÞdV wð Þ +
ð
∣w∣>R

� gj wð Þ
��� ��� kz wð Þj je−2φ wð ÞdV wð Þ

≲ ε+∥gj∥p,φ
ð
∣w∣>R

kz wð Þj jp′e−p′φ wð ÞdV wð Þ
� �1/p′

≲ ε

ð67Þ
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as j⟶∞, which yields (64). Hence, T f : F
p
φ ⟶ F∞

φ is
compact.

This finishes the proof. ☐ ☐

Remark 15. It is interesting and surprising that the bounded-
ness and compactness of T f from Fp

φ to F∞
φ are equivalent

when 1 < p <∞, which is quite different from that in the case
of 1 < p ≤ q <∞.

We will end this section by proving the last case.

Case 4. p =∞, 1 < q <∞.
The following theorem is the main result in the case of

p =∞, 1 < q <∞.

Theorem 16. Let 1 < q <∞ and f ∈ IMOq. Then, the follow-
ing statements are equivalent:

(1) T f : F
∞
φ ⟶ Fq

φ is bounded.

(2) T f : F
∞
φ ⟶ Fq

φ is compact.

(3) ~f ∈ Lq:

Proof. It is trivial that ð2Þ⇒ ð1Þ, it remains to prove the
implications ð1Þ⇒ ð3Þ and ð3Þ⇒ ð2Þ. The proof is similar
to that of Theorem 13, but we include it here for the sake of
completeness.

ð1Þ⇒ ð3Þ. Let fλ jg∞j=1 be any bounded sequence on ℂn

and fajg∞j=1 be an r-lattice. For z ∈ℂn, set

gt zð Þ = 〠
∞

j=1
r j tð Þλ jkaj zð Þ: ð68Þ

By Lemma 2, we have gt ∈ F∞
φ with

gtk k∞,φ ≲ λj

	 
∞
j=1

��� ���
l∞
: ð69Þ

Since T f : F
∞
φ ⟶ Fq

φ is bounded by hypothesis, we have
T f gt ∈ Fq

φ. Applying Khinchine’s inequality and Fubini’s the-
orem, we deduce that

ð
ℂn

〠
∞

j=1
λjT f kaj zð Þ
��� ���2 !q/2

e−qφ zð ÞdV zð Þ

≲
ð
ℂn

ð1
0
〠
∞

j=1
r j tð ÞλjT f kaj zð Þ

�����
�����
q

dte−qφ zð ÞdV zð Þ

=
ð1
0
T f 〠

∞

j=1
rj tð Þλjkaj

 !�����
�����
q

q,φ

dt

≲
ð1
0
∥T f ∥

q
F∞φ ⟶Fq

φ
gtk kq∞,φdt ≲ ∥T f ∥

q
F∞
φ ⟶Fq

φ
∥ λj

	 
∞
j=1∥

q
l∞ :

ð70Þ

By Lemma 8 and the estimate (56), we get

ð
ℂn

〠
∞

j=1
λjT f kaj zð Þ
��� ���2 !q/2

e−qφ zð ÞdV zð Þ

� 〠
∞

i=1

ð
B ai ,rð Þ

〠
∞

j=1
λjT f kaj zð Þ
��� ���2 !q/2

e−qφ zð ÞdV zð Þ
�����

≥ 〠
∞

i=1

ð
B ai ,rð Þ

λiT f kai zð Þ�� ��qe−qφ zð ÞdV zð Þk〠
∞

i=1
λij jq T f kai aið Þ�� ��qe−qφ aið Þ

≃ 〠
∞

i=1
λij jq ~f aið Þ
��� ���q:

ð71Þ

This along with the estimate (70) yields

〠
∞

i=1
λij jq ~f aið Þ
��� ���q ≲ ∥T f ∥

q
F∞
φ ⟶Fqφ

∥ λif g∞i=1∥ql∞ : ð72Þ

Take bi = jλijq for each i. Then, fbig∞i=1 ∈ l∞ and

〠
∞

i=1
bi ~f aið Þ
��� ���q ≲ ∥T f ∥

q
F∞
φ ⟶Fqφ

∥ bif g∞i=1∥l∞ : ð73Þ

It follows that

〠
∞

i=1

~f aið Þ
��� ���q ≲ ∥T f ∥

q
F∞
φ ⟶Fq

φ
: ð74Þ

Choose one point wi ∈ �Bðai, rÞ such that

~f wið Þ
��� ��� = sup

z∈B ai ,rð Þ
~f zð Þ
��� ���: ð75Þ

Then, we obtain

ð
ℂn

~f zð Þ
��� ���qdV zð Þ ≤ 〠

∞

i=1

ð
B ai ,rð Þ

~f zð Þ
��� ���qdV zð Þ ≲ 〠

∞

i=1

~f wið Þ
��� ���q:

ð76Þ

Note that the set fwigi is finite union of some δ-lattices
and (74) holds for any r-lattice, this along with (74) implies
that ~f ∈ Lq.

ð3Þ⇒ ð2Þ. Assume that ~f ∈ Lq, by Corollary 6, we havef∣f ∣ ∈ Lq. Since
0 ≤ Re fð Þ+, Re fð Þ−, Im fð Þ+, Im fð Þ− ≤ fj j, ð77Þ

we see that gðRe f Þ+, gðRe f Þ−, gðIm f Þ+, and gðIm f Þ− are all in
Lq. By Theorem 2.5 in [3], Toeplitz operators induced by
these nonnegative symbols ðRe f Þ+, ðRe f Þ−, ðIm f Þ+, and
ðIm f Þ− are all compact from F∞

φ to Fq
φ. Notice that

8 Journal of Function Spaces



f = Re f + i Im f = Re fð Þ+ − Re fð Þ−� �
+ i Im fð Þ+ − Im fð Þ−� �

,
ð78Þ

we conclude that T f is compact from F∞
φ to Fq

φ.
This finishes the proof. ☐ ☐
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